On separable group rings

Let G be a finite non-abelian group, R a ring with 1, and Ĝ the inner automorphism group of the group ring RG over R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of (RG)Ĝ with Galois group Ĝ when the order of...

Full description

Saved in:
Bibliographic Details
Date:2010
Main Authors: Szeto, G., Lianyong Xue
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2010
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/154882
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On separable group rings / G. Szeto, Lianyong Xue // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 104–111. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let G be a finite non-abelian group, R a ring with 1, and Ĝ the inner automorphism group of the group ring RG over R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of (RG)Ĝ with Galois group Ĝ when the order of G is invertible in R, (ii) an equivalent condition for the Galois map from the subgroups H of G to (RG)H by the conjugate action of elements in H on RG is given to be one-to-one and for a separable subalgebra of RG having a preimage, respectively, and (iii) the Galois map is not an onto map. Remove selected