Автоматична неперервність, базиси і радикали в метризовних алгебрах
Доказывается автоматическая непрерывность линейного мультипликативного оператора T:X→Y, где X,Y — действительные полные метрнзуемые алгебры, причем Y полупростая. Показано, что комплексная алгебра Фрепш с безусловным ортогональным базисом (xi) (ортогональным в том смысле, что xixj=0 при i≠j) являетс...
Gespeichert in:
Datum: | 1992 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Ukrainian |
Veröffentlicht: |
Інститут математики НАН України
1992
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/155481 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Автоматична неперервність, базиси і радикали в метризовних алгебрах / А.М. Плічко // Український математичний журнал. — 1992. — Т. 44, № 8. — С. 1129–1132. — Бібліогр.: 10 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Доказывается автоматическая непрерывность линейного мультипликативного оператора T:X→Y, где X,Y — действительные полные метрнзуемые алгебры, причем Y полупростая. Показано, что комплексная алгебра Фрепш с безусловным ортогональным базисом (xi) (ортогональным в том смысле, что xixj=0 при i≠j) является коммутативной симметричной алгеброй с инволюцией. Отсюда выводится известный результат о том, что каждый мультипликативный линейный функционал на такой алгебре непрерывен. Вводится понятие ортогонального базиса Маркушевича в топологической алгебре и с его помощью показывается, что для любого замкнутого подпространства Y сепарабельного банахова пространства X на X можно ввести коммутативное умножение, радикалом которого будет Y. Доказывается одна теорема об автоматической непрерывно ти положительных функционалов. |
---|