A horizontal mesh algorithm for posets with positive Tits form
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155733 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A horizontal mesh algorithm for posets with positive Tits form / M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 240-261. — Бібліогр.: 34 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155733 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1557332019-06-18T01:26:45Z A horizontal mesh algorithm for posets with positive Tits form Kaniecki, M. Kosakowska, J. Malicki, P. Marczak, G. 2016 Article A horizontal mesh algorithm for posets with positive Tits form / M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 240-261. — Бібліогр.: 34 назв. — англ. 1726-3255 2010 MSC:68R10, 05C50, 06A07, 15A63. http://dspace.nbuv.gov.ua/handle/123456789/155733 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
format |
Article |
author |
Kaniecki, M. Kosakowska, J. Malicki, P. Marczak, G. |
spellingShingle |
Kaniecki, M. Kosakowska, J. Malicki, P. Marczak, G. A horizontal mesh algorithm for posets with positive Tits form Algebra and Discrete Mathematics |
author_facet |
Kaniecki, M. Kosakowska, J. Malicki, P. Marczak, G. |
author_sort |
Kaniecki, M. |
title |
A horizontal mesh algorithm for posets with positive Tits form |
title_short |
A horizontal mesh algorithm for posets with positive Tits form |
title_full |
A horizontal mesh algorithm for posets with positive Tits form |
title_fullStr |
A horizontal mesh algorithm for posets with positive Tits form |
title_full_unstemmed |
A horizontal mesh algorithm for posets with positive Tits form |
title_sort |
horizontal mesh algorithm for posets with positive tits form |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155733 |
citation_txt |
A horizontal mesh algorithm for posets with positive Tits form / M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 240-261. — Бібліогр.: 34 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kanieckim ahorizontalmeshalgorithmforposetswithpositivetitsform AT kosakowskaj ahorizontalmeshalgorithmforposetswithpositivetitsform AT malickip ahorizontalmeshalgorithmforposetswithpositivetitsform AT marczakg ahorizontalmeshalgorithmforposetswithpositivetitsform AT kanieckim horizontalmeshalgorithmforposetswithpositivetitsform AT kosakowskaj horizontalmeshalgorithmforposetswithpositivetitsform AT malickip horizontalmeshalgorithmforposetswithpositivetitsform AT marczakg horizontalmeshalgorithmforposetswithpositivetitsform |
first_indexed |
2025-07-14T07:58:25Z |
last_indexed |
2025-07-14T07:58:25Z |
_version_ |
1837608369677926400 |
fulltext |
Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 22 (2016). Number 2, pp. 240–261
© Journal “Algebra and Discrete Mathematics”
A horizontal mesh algorithm for posets
with positive Tits form
Mariusz Kaniecki, Justyna Kosakowska,
Piotr Malicki and Grzegorz Marczak
Communicated by D. Simson
Abstract. Following our paper [Fund. Inform. 136 (2015),
345–379], we define a horizontal mesh algorithm that constructs
a Φ̂I -mesh translation quiver Γ(R̂I , Φ̂I) consisting of Φ̂I -orbits of
the finite set R̂I = {v ∈ Z
I ; q̂I(v) = 1} of Tits roots of a poset
I with positive definite Tits quadratic form q̂I : ZI → Z. Under
the assumption that q̂I : ZI → Z is positive definite, the algorithm
constructs Γ(R̂I , Φ̂I) such that it is isomorphic with the Φ̂D-mesh
translation quiver Γ(RD, ΦD) of Φ̂D-orbits of the finite set RD of
roots of a simply laced Dynkin quiver D associated with I.
1. Introduction
The paper is mainly devoted to the existence of a Φ̂I -mesh root
system Γ(R̂I , Φ̂I) in the sense of [30], that is, a Φ̂I -mesh translation quiver
Γ(R̂I , Φ̂I) consisting of Φ̂I -orbits of the set R̂I = {v ∈ Z
I ; q̂I(v) = 1} of
Tits roots of a finite poset I = (I, �) with positive quadratic Tits form
q̂I : ZI → Z, where Φ̂I : Z
I → Z
I is the Coxeter-Tits transformation
associated with I in [9, 28, 29, 34]. The reader is also referred to [14], [16],
and [30]-[34] for analogous existence mesh root system theorems in the
setting of positive edge-bipartite graphs and non-negative posets.
2010 MSC: 68R10, 05C50, 06A07, 15A63.
Key words and phrases: poset, combinatorial algorithm, Dynkin diagram, mesh
geometry of roots, quadratic form.
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 241
Our interest in the Φ̂I -mesh analysis of Φ̂I -orbits of the set R̂I of Tits
roots is motivated by applications of matrix representations of posets in
representation theory, where a matrix representation of a partially ordered
set T = {p1, . . . , pn}, with a partial order �, means a block matrix
M = [M1|M2| . . . |Mn]
(over a field K) of size d∗ × (d1, . . . , dn) determined up to all elemen-
tary row transformations, elementary column transformations within
each of the substrips M1, M2, . . . , Mn, and additions of linear combina-
tions of columns of Mi to columns of Mj , if pi ≺ pj , see Nazarova and
Roiter [22]. In [9], Drozd proves that T has only a finite number of
direct-sum-indecomposable representetions if and only if its quadratic
Tits form
q(x1, . . . , xn, x∗) = x2
1 + · · ·+x2
n +x2
∗ +
∑
pi≺pj
xixj −x∗(x1 + · · ·+xn) (1.1)
is weakly positive (i.e., q(a1, . . . , an, a∗) > 0, for all non-zero vectors
(a1, . . . , an, a∗) with integer non-negative coefficients). In this case, there
exists an indecomposable representation M of size d∗ × (d1, . . . , dn) if and
only if (d1, . . . , dn, d∗) is a root of q, i.e., q(d1, . . . , dn, d∗) = 1, see [10]
and [26, Chapter 10] for more details.
In [5,6], Bondarenko and Stepochkina give a complete list of posets
T with positive Tits form q(x1, . . . , xn, x∗); it consists of four infinite
series and 108 exceptional posets, up to duality (see also [11,12] for an
alternative proof).
Throughout this paper, we assume that
I = (I, �)
is a poset (i.e., a finite partially ordered set). We denote by max I the
set of all maximal elements of I and let I− = I \ max I. For i, j ∈ I, we
write i ≺ j if i � j and i 6= j. Moreover, for i, j ∈ I, we write i → j, if
i ≺ j and there is no s in I such that i ≺ s ≺ j. We denote by Z the ring
of integers and by MI(Z) the ring of I by I square matrices with integer
coefficients.
Usually we define a poset I by presenting its Hasse quiver H(I) =
(H0(I), H1(I)), with the set of vertices H0(I) = I and the set H1(I) of
arrows i → j defined earlier, for i, j ∈ I.
242 A horizontal mesh algorithm for posets
Following [26,28,29,34], with any poset I, we associate the incidence
matrix CI = [cij ] ∈ MI(Z) and the Tits matrix ĈI ∈ MI(Z), where
cij =
{
1 if i � j,
0 otherwise,
(1.2)
and
ĈI =
[
Ctr
I− U
0 E
]
, (1.3)
where U = [uiw]i∈I−;w∈max I and
uiw =
{
−1 if i � w,
0 otherwise,
(1.4)
Following [11,32,34], we call a poset I positive, if the symmetric Gram
matrix GI := 1
2(ĈI + Ĉtr
I ) is positive definite.
The following two sets of vectors associated with a poset I are playing
an important role in the representation theory of algebras: the set of Tits
roots
R̂I := {v ∈ Z
n; v · ĈI · vtr = 1} (1.5)
and the set of Euler roots
RI := {v ∈ Z
n; v · CI · vtr = 1} (1.6)
of a poset I, where
CI = C−1
I (1.7)
see [10, 21,24,26]. We recall from [30] that the sets of Tits roots R̂I and
Euler roots RI of I are finite, if I is positive. Moreover, if I is assumed to
be connected then the sets R̂I and RI are irreducible and reduced root
systems in the sense of Bourbaki, see [24, p. 40] and [16], for more details.
By [29, Corollary 1.8], given a positive poset I, the root systems R̂I
and RI are isomorphic, and we denote by DI the common Coxeter-Dynkin
type of these root systems. One should note that DI is one of the simply
laced Dynkin diagrams (see [24, p. 40] and [16])
Am : •1−−−−•2−−−−•3−−−− . . . −−−−•−−−−•m (m vertices, m > 1);
Dm :
•2
|
•1−−−−•3 −−−−•4−−−− . . . −−−−•−−−−•m (m vertices, m > 4);
E6 :
•4
|
•1−−−−•2−−−− •3 −−−−•5−−−−•6;
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 243
E7 :
•4
|
•1−−−−•2−−−− •3 −−−−•5−−−−•6−−−−•7;
E8 :
•4
|
•1−−−−•2−−−− •3 −−−−•5−−−−•6−−−−•7−−−−•8;
It follows from [16] that the Dynkin diagram DI can be determined
by applying the inflation algorithm constructed in [20] and [32].
We recall from [29] that the square matrix
ĈoxI := −ĈI · Ĉ−tr
I ∈ Mn(Z), (1.8)
is called the Coxeter-Tits matrix of I. Here Ĉtr
I is the transpose of ĈI ,
and we set Ĉ−tr
I := (Ĉtr
I )−1. The charactristic polynomial
coxI(t) := det(t · E − ĈoxI) ∈ Z[t], (1.9)
of ĈoxI is called the Coxeter polynomial of I, the group isomorphism
Φ̂I : Zn → Z
n, x 7→ Φ̂I(x) := x · ĈoxI , (1.10)
is called the Coxeter-Tits transformation of I, and the Coxeter number
cI of I is the minimal integer r > 1 such that Φ̂r
I is the identity map on
Z
n. If Φ̂r
I 6= id, for all r > 1, we set cI = ∞.
Recall also that the matrix
CoxI := −CI · C
−tr
I ∈ Mn(Z), (1.11)
is called the Coxeter-Euler matrix of I, and the group isomorphism
ΦI : Zn → Z
n, x 7→ ΦI(x) := x · CoxI , (1.12)
is called the Coxeter-Euler transformation of I.
Following an idea introduced in [30, 31], we study in the paper a
Φ̂I -mesh root system structure Γ(R̂I , Φ̂I) on the set of roots R̂I ⊆ Z
n of
any connected positive poset I, with n > 2 vertices, where Φ̂I : Zn → Z
n
is the Coxeter-Tits transformation defined by the Tits matrix ĈI ∈ Mn(Z)
of I.
One of the main aims of the paper is to present a combinatorial
algorithm that constructs a Φ̂I -mesh root system structure Γ(R̂I , Φ̂I)
(see Definition 2.13) on the finite set of all Φ̂I -orbits of the irreducible
root system R̂I . Moreover, in Corollary 4.6, we prove that the Coxeter
polynomial coxI(t) and the Coxeter number cI of such poset I depend
only on the simply laced Dynkin type DI of R̂I and coxI(t) coincides
244 A horizontal mesh algorithm for posets
with the Coxeter polynomial coxDI(t) of the Dynkin diagram DI, see
[29, Example 3.12].
The idea of construction of our horizontal mesh algorithm is inspired
by the method of a construction of postprojective component in some
categories of modules (see [7,8,15,26]). However, this well-known method
computes only a mesh quiver consisting of the positive vectors. In the
present paper we show that our modification of this algorithm computes
a Φ̂I -mesh root system structure Γ(R̂I , Φ̂I) for the set R̂I of all roots
(not only positive roots).
We recall that one of the motivations for the study of a Φ̂I -mesh root
system structure Γ(R̂I , Φ̂I) comes from the poset representation theory
(see [9, 10,21,24,26,28,29,34]).
The sets of roots and Tits roots are playing an important role in many
areas of mathematics. In the representation theory of finite dimensional
algebras over a field the roots control categories of indecomposable modules
for a large classes of algebras (see [1–3,24,25]), while in the theory of Lie
groups and Lie algebras they are connected with root spaces (see [4, 13]).
Moreover, they control linear bases, generators and relations of Ringel-Hall
algebras (see [18,19]).
Recall that in [17] the Tits roots were applied to get a classification
of two-peak sincere posets of finite prinjective type. Therefore, it is of
importance to have efficient combinatorial algorithms that compute roots,
Tits roots and Φ̂I -mesh root system structures.
2. Preliminaries
Throughout this paper all posets are assumed to be connected.
2.1. Unit quadratic forms associated with a poset
Let I be a poset. By a Tits quadratic form and an Euler quadratic
form of I we mean the unit quadratic forms
q̂I , qI : ZI → Z
defined by the formulae
q̂I(x) = x · ĈI · xtr, qI(x) = x · CI · xtr.
It is easy to see that
q̂I(x) =
∑
i∈I
x2
i +
∑
i≺j∈I−
xjxi −
∑
w∈max I
∑
i≺w
xixw. (2.1)
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 245
Note also that the Tits quadratic form q(x1, . . . , xn, x∗) (1.1) of a
partially ordered set T = {p1, . . . , pn} (defined by Drozd [9]) coincides with
the Tits form q̂I(x1, . . . , xn, x∗) (2.1) of the one-peak poset I = T ∗ ∪ {∗}
obtained from T by adding a unique maximal element ∗.
Recall from [29, Corollary 1.8] that one of the quadratic forms q̂I , qI
is positive if and only if both of them are positive. Moreover, in this case
we have
qI(x) =
∑
i∈I
x2
i −
∑
i→j
xixj +
∑
i◭j
c•
ijxixj , (2.2)
where the relation i ◭ j holds if there exists a minimal commutativity
relation w′ − w′′ in I, where w′, w′′ are paths with the source i and the
terminus j and c•
ij is the maximal number of linearly independent minimal
commutativity relations w′ − w′′ in I with the source i and the terminus
j, see Corollary 1.8, Remark 3.5 and Proposition 4.2 in [29].
Remark 2.3. Let I be a positive poset. The formula (2.2) implies that
the matrix CI = (cij) satisfies the non-cycle condition defined in [14].
Let us recall this definition. With a poset I we associate the biquiver
QI = (Q0, Q1) with the set of vertices Q0 = I. Moreover, there are
−cij solid arrows i // j , if cij < 0 and cij broken arrows i // j , if
cij > 0. Let Q = (Q0, Q1) be a biquiver.
(a) We say that a (unoriented) cycle (x1, x2, . . . , xn, x1) in Q is simple
if for all i, j ∈ {1, . . . , n}, i 6= j we have xi 6= xj .
(b) We say that a simple cycle (x1, x2, . . . , xn, x1) is chordless if for any
arrow (xi, xj) we have i = j ± 1 (wherein 1 ≡ n + 1).
(c) Further, consider a simple cycle in Q of the form
//
�� // //
OO (2.4)
The biquiver Q satisfies the non-cycle condition, if every simple
chordless cycle in Q containing a broken arrow has the form (2.4).
(d) Given a poset I the matrix CI = (cij) satisfies the non-cycle condi-
tion, if the biquiver QI satisfies this condition.
For all i ∈ I, denote by p̂i the Tits-projective vector associated with i,
i.e. p̂i is defined by the formula
p̂i(j) =
1 for i = j;
1 for i � j ∈ max I;
0 otherwise.
(2.5)
246 A horizontal mesh algorithm for posets
Let
P̂ = P̂(I) = {p̂i ; i ∈ I}
be the set of all Tits-projective vectors.
For all i ∈ I, denote by r̂i the Tits-radical vector associated with i,
i.e. r̂i is defined by the formula
r̂i(j) =
1 for all i → j;
1 for i ≺ j ∈ max I;
0 otherwise.
(2.6)
Let
R̂ad = R̂ad(I) = {r̂i ; i ∈ I}
be the set of all Tits-radical vectors.
Let i ∈ I and let r̂i be the corresponding Tits-radical vector. Consider
the convex subposet
I-supp(r̂i) = conv.hull{j ∈ I ; r̂i(j) 6= 0}
of I. Let I1, . . . , Iki
be the set of all connected components of the Hasse
quiver of I-supp(ri). We define the vectors r̂1
i , . . . , r̂ki
i by the following
formula:
r̂t
i(j) =
{
r̂i(j) if i ∈ It;
0 otherwise
(2.7)
for all t ∈ {1, . . . , ki}. We denote by R̂adcomp the set of vectors r̂1
i , . . . , r̂ki
i ,
where i ∈ I.
It is known that p̂i ∈ R̂I and r̂
j
i ∈ R̂I , for all i, j, see [23,26,27].
Denote by pi the Euler-projective vector associated with i, i.e. pi is
defined by the formula
pi(j) =
{
1 for all i � j;
0 otherwise.
(2.8)
Let
P = P(I) = {pi ; i ∈ I}
be the set of all Euler-projective vectors.
For all i ∈ I, denote by ri the Euler-radical vector associated with i,
i.e. ri is defined by the formula:
ri = pi − ei. (2.9)
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 247
Let
Rad = Rad(I) = {ri ; i ∈ I}
be the set of all Euler-radical vectors.
Let i ∈ I and let ri be the corresponding Euler-radical vector. Consider
the convex subposet
I-supp(ri) = {j ∈ I ; ri(j) 6= 0}
of I. Let I1, . . . , Iki
be the set of all connected components of the Hasse
quiver of I-supp(ri). We define the vectors r1
i , . . . , rki
i by the following
formula:
rt
i(j) =
{
ri(j) if i ∈ It;
0 otherwise
(2.10)
for all t ∈ {1, . . . , ki}. We denote by Radcomp the set of vectors r1
i , . . . , rki
i ,
where i ∈ I.
It is known that pi ∈ RI and r
j
i ∈ RI , for all i, j, see [14,23,26,27].
2.2. Mesh translation quivers in Z
n
We recall from [30,31] the following definitions (see also [14]). They
are inspired by the definition of the Auslander-Reiten quiver of an algebra
(see [1, 2]).
Let Φ : Zn → Z
n be a group automorphism (e.g. the Coxeter-Tits
transformation Φ̂I or the Coxeter transformation ΦI of a poset I). A Φ-
orbit Φ − Orb(v) = {Φk(v)}k∈Z of a vector v ∈ Z
n will be visualised as
an infinite graph:
. . . Φ(v) v Φ−1(v) Φ−2(v) . . .
Definition 2.11. Let Φ : Zn → Z
n be a non-trivial group automorphism
(e.g. the Coxeter-Tits transformation Φ̂I or the Coxeter transformation ΦI
of a poset I). We say that the vectors u, v1, . . . , vs, w ∈ Z
n form a Φ-mesh
starting from u and terminating at w, if the following two conditions are
satisfied:
(i) u = Φ(w) and u + w =
s∑
i=1
vi,
(ii) the vectors v1, . . . , vs are pairwise different, lie in pairwise different
orbits of Φ and none of them lies in the Φ-orbit of u.
248 A horizontal mesh algorithm for posets
A Φ-mesh we visualise as the following triangular quiver:
v1
��
v2
$$
Φ(w) = u
��
BB
99
w
vs
@@
(2.12)
Definition 2.13. Let n > 2, let Φ : Zn → Z
n be a non-trivial group
automorphism and let R be a Φ-invariant subset of Z
n (e.g. R = R̂I
if Φ = Φ̂I or R = RI if Φ = ΦI). We say that R admits a geometry
of Φ-mesh quiver if there exists a quiver ~R = ( ~R0, ~R1) with ~R0 = R,
such that ~R together with the bijection Φ : R → R induced by Φ is
a triangular translation quiver Γ(R, Φ) (see [1, IV.4.7]) with the following
property: for every vector w ∈ R, the full convex subquiver containing
the vertices w and Φ(w) is a Φ-mesh of the form (2.12), and if
v′
1
��
v′
2
##
Φ(w) = u
��
CC
::
w
v′
s′
@@
is a Φ-mesh, then s′ = s and v1 = v′
1, . . . , vs = v′
s, up to permutation of
the set {1, . . . , s}.
Definition 2.14. Let Γ(R, Φ) be a Φ-mesh quiver in Z
n as in Definition
2.13. A slice in Γ(R, Φ) is a full convex connected subquiver Σ = (Σ0, Σ1)
of Γ(R, Φ) such that for any v ∈ R the set Φ − Orb(v) ∩ Σ0 contains
exactly one element.
Example 2.15. Consider the posets I and I ′ defined by the following
Hasse quivers:
1
2
AA
3
OO
4,
^^ 1
2
OO
4
@@
3
^^
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 249
respectively. Note that the set R̂I ⊆ Z
4 of Tits roots of I consists of 24
vectors. One easily see that the set R̂I admits the following geometry of
Φ̂I -mesh quiver Γ(R̂I , Φ̂I) (we identify the vectors in frames):
1010
��
1101
��
0010
��
1̂0̂10
��
1̂̂10̂1
��
00̂10
��
1000
��
@@
��
2111
@@
��
��
1111
@@
��
��
1̂000
@@
��
��
2̂̂1̂1̂1
@@
��
��
1̂̂1̂1̂1
@@
��
��
1000
1100
@@
1011
@@
0100
@@
1̂̂100
@@
1̂0̂1̂1
@@
0̂100
@@
1001
GG
1110
GG
0001
GG
1̂00̂1
GG
1̂̂1̂10
GG
000̂1
GG
Moreover the set R̂I′ of Tits roots of I ′ consists of 24 vectors and admits
the following geometry of Φ̂I′-mesh quiver Γ(R̂I′ , Φ̂I′) (we identify the
vectors in frames):
1101
��
0010
��
0̂101
��
1̂00̂1
��
00̂10
��
010̂1
��
1100
��
@@
��
1011
@@
��
��
0̂111
@@
��
��
1̂̂100
@@
��
��
1̂0̂1̂1
@@
��
��
01̂1̂1
@@
��
��
1100
0101
@@
0001
@@
0̂110
@@
1̂0̂10
@@
000̂1
@@
01̂10
@@
1000
GG
0100
GG
1̂100
GG
1̂000
GG
0̂100
GG
1̂1̂1̂1
GG
1000
GG
Here we set â = −a, for a ∈ N.
In the algorithm presented in Section 3 first we look for a slice canditate
Σ in Γ(R̂I , Φ̂I). Then the remaining part of Γ(R̂I , Φ̂I) is easy to compute.
In Γ(R̂I , Φ̂I) presented in Example 2.15 the quiver
1010
1000
&&
88
��
1100
1001
is a slice. Applying definition of a Φ̂I -mesh we can construct now the
Φ̂I -mesh translation quiver Γ(R̂I , Φ̂I) by knitting Φ̂I -meshes as follows:
1010
$$
a
1000
&&
88
��
b
>>
��
e
@@
��
��
1100
::
c
>>
1001
DD
d
GG
Indeed, we have
250 A horizontal mesh algorithm for posets
b = (1 0 1 0) + (1 1 0 0) + (1 0 0 1) − (1 0 0 0),
a = b − (1 0 1 0),
c = b − (1 1 0 0),
d = b − (1 0 0 1),
e = a + c + d − b, and so on.
Note that Φ̂I(a) = (1010), Φ̂I(b) = (1000), Φ̂I(c) = (1100), Φ̂I(d) =
(1001), and Φ̂I(e) = b.
3. A horizontal mesh algorithm
The idea of construction of a horizontal mesh algorithm that we present
in this section is inspired by a construction of the postprojective component
of the Auslander-Reiten quiver of an algebra or a poset (see [7, 8, 15]).
We would like to stress that the algorithm
(I, P̂, R̂ad, R̂adcomp, k) 7→ Γ̂ := Γ(R̂I , Φ̂I)
presented below, called a horizontal mesh algorithm, associates to an arbi-
trary poset I, with initial data P̂, R̂ad, R̂adcomp, k, a Φ̂I -mesh translation
quiver Γ(R̃I , Φ̂I) such that Γ̂ defines a Φ̂I -mesh root system structure
Γ(R̂I , Φ̂I) on the set R̂I of Tits roots of I, in case when I is positive (see
Theorem 4.4 for a proof). The algorithm is a modification of a correspond-
ing horizontal mesh algorithm presented in [14], for positive edge-bipartite
graphs.
Algorithm 3.1. Input: A system (I, P̂, R̂ad, R̂adcomp, k), where
• I = (I, �) is a poset such that I = {1, . . . , n},
• P̂ = {p̂1, . . . , p̂n} is the set of Tits-projective vectors,
• R̂ad = {r̂1, . . . , r̂n} is the set of Tits-radical vectors,
• R̂adcomp = {r̂1
1, . . . , r̂k1
1 , . . . , r̂1
n, . . . , r̂kn
n }, where r̂
j
i are defined by
formula 2.7,
• k ∈ N.
Output: The quiver Γ̂ = Γ(R̂I , Φ̂I).
Step 1. Inductively, we construct the following data:
• ordered lists L̂[i], for any i = 1, . . . , n;
• quivers Ĝi = (Ĝi
0, Ĝi
1), for i = 0, 1, 2, . . .;
• quivers Γ̂i = (Γ̂i
0, Γ̂i
1), for i = 0, 1, 2, . . .;
• sets P̂0 ⊆ P̂1 ⊆ . . . ⊆ P̂k ⊆ P̂ = {p̂1, . . . , p̂n};
in the following way.
Step 1.1. For any i = 1, . . . , n, we put L̂[i] := [p̂i].
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 251
Step 1.2. Let
P̂0 = Ĝ0
0 = {p̂i ∈ P̂ ; i ∈ max I} and Γ̂0
0 = Γ̂0
1 = Ĝ0
1 = ∅.
Step 1.3. We put
Ĉ1 = {p̂i ; r̂i 6= 0 and r̂
j
i ∈ Ĝ0
0 for all j = 1, . . . , ki},
P̂1 := Ĝ1
0 := Ĝ0
0 ∪ Ĉ1 and Γ̂1
0 = Γ̂1
1 = ∅
Ĝ1
1 = {r̂
j
i → p̂i ; for all p̂i ∈ Ĉ1 and all j = 1, . . . , ki}.
Step 1.4. Assume that, for i = 0, . . . , m − 1, m > 2, data Ĝi, Γ̂i, P̂i
are constructed. We set
P̂ ′
m = {p̂i ∈ P̂ \ P̂m−1 ; r̂i 6= 0 and r̂
j
i ∈ Ĝm−1
0 for all j = 1, . . . , ki}
and
P̂m = P̂ ′
m ∪ P̂m−1.
We define
Ĉm = P̂ ′
m ∪ {z = −x +
∑
x→y
y ; y ∈ Ĉm−1},
Ĝm
0 = Ĝm−1
0 ∪ Ĉm
and
Ĝm
1 = {r̂
j
i → p̂i ; for all p̂i ∈ Ĉm and all j = 1, . . . , ki}∪
∪{y → z ; for all y such that z = −x +
∑
x→y
y}.
Moreover, if P̂m 6= P̂, z = −x +
∑
x→y y and x ∈ L̂[i], then we add z
at the end of the list L̂[i] and delete the first element of the list L̂[i]. If
P̂m 6= P̂, then we set Γ̂m
0 = Γ̂m
1 = ∅; otherwise we set
Γ̂m
0 = Γ̂m−1
0 ∪ Ĉm
and
Γ̂m
1 = Γ̂m−1
1 ∪ {y → z ; for all y → z ∈ Ĝm
1 such that y, z ∈ Γ̂m−1
0 ∪ Γ̂m
0 }.
Moreover, if P̂m = P̂, z = −x +
∑
x→y y and x ∈ L̂[i], then we add z at
the end of the list L̂[i].
Step 2. If m = k, we finish and set Γ̂ = Γ̂k.
252 A horizontal mesh algorithm for posets
Remark 3.2. In this algorithm the set P̂ of Tits-projective and the set
R̂ad of Tits-radical can be replaced by the set P of Euler-projective vectors
and the set Rad of Euler-radical vectors, respectively, i.e. as an input we
put (I, P, Rad, Radcomp, k). In this way, we obtain an algorithm that for
a positive poset I constructs a ΦI -mesh root system structure Γ(RI , ΦI),
see Theorem 4.4.
In the description of Algorithm 3.1 with input (I, P, Rad, Radcomp, k)
the data computed in Step 1 we denote by adding a dash over a corre-
sponding symbol (e.g. we replace L̂[i] by L[i], Γ̂k by Γ
k
etc.).
We illustrate Algorithm 3.1 by the following example.
Example 3.3. Consider the following poset
1
2
@@
3
^^
4
^^ @@
Note that
P̂ = {p̂1 = (1, 0, 0, 0), p̂2 = (1, 1, 0, 0), p̂3 = (1, 0, 1, 0), p̂4 = (1, 0, 0, 1)},
R̂ad = {r̂2 = (1, 0, 0, 0), r̂3 = (1, 0, 0, 0), r̂4 = (1, 1, 1, 0)}
and R̂adcomp = {r̂1
2 = r̂2, r̂1
3 = r̂3, r̂1
4 = r̂4}. We set k = 5. Applying
Algorithm 3.1 to (I, P̂, R̂ad, R̂adcomp, k) we get
1100
%%
0010
%%
00̂11
1000
99
��
1110
%%
99
��
0001
99
%%
��
1001
99
1̂000
1010
BB
0100
BB
0̂101
Indeed:
m=0: P̂0 = Ĝ0
0 = {p̂1 = (1, 0, 0, 0)}; Γ̂0
0 = Γ̂0
1 = Ĝ0
1 = ∅; L̂[1] =
[p̂1], L̂[2] = [p̂2], L̂[3] = [p̂3], L̂[4] = [p̂4].
m=1: Ĉ1 = {p̂2 = (1, 1, 0, 0), p̂3 = (1, 0, 1, 0)}, P̂1 = Ĝ1
0 = {p̂1, p̂2, p̂3},
Ĝ1
1 = {(p̂1, p̂2), (p̂1, p̂3)}, Γ̂1
0 = Γ̂1
1 = ∅. L̂[1] = [p̂1], L̂[2] = [p̂2],
L̂[3] = [p̂3], L̂[4] = [p̂4].
m=2: P̂ ′
2 = ∅, P̂2 = P̂1, Ĉ2 = {p̂2 + p̂3 − p̂1 = (1, 1, 1, 0)}, Ĝ2
0 = Ĝ1
0 ∪ Ĉ2,
Ĝ2
1 = {(p̂2, (1, 1, 1, 0)), (p̂3, (1, 1, 1, 0))}, Γ̂2
0 = Γ̂2
1 = ∅.
L̂[1] = [(1, 1, 1, 0)], L̂[2] = [p̂2], L̂[3] = [p̂3], L̂[4] = [p̂4].
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 253
m=3: P̂ ′
3 = {p̂4 = (1, 0, 0, 1)}, P̂3 = {p̂1, p̂2, p̂3, p̂4}, Ĉ3 = {p̂4, (0, 1, 0, 0),
(0, 0, 1, 0)}, Ĝ3
0 = Ĝ2
0 ∪ Ĉ3, Ĝ3
1 = {((1, 1, 1, 0), p̂4),
((1, 1, 1, 0), (0, 1, 0, 0)), ((1, 1, 1, 0), (0, 0, 1, 0))}, Γ̂3
0 = Ĉ3, Γ̂3
1 = ∅.
L̂[1] = [(1, 1, 1, 0)], L̂[2] = [(0, 0, 1, 0)], L̂[3] = [(0, 1, 0, 0)], L̂[4] =
[p̂4].
m=4: P̂ ′
4 = ∅, P̂4 = P̂, Ĉ4 = {(0, 0, 0, 1)}, Ĝ4
0 = Ĝ3
0 ∪ Ĉ3, Ĝ4
1 =
{(p̂4, (0, 0, 0, 1)), ((0, 1, 0, 0), (0, 0, 0, 1)), ((0, 0, 1, 0), (0, 0, 0, 1))}, Γ̂4
0
= Γ̂3
0 ∪ Ĉ3, Γ̂4
1 = Ĝ4
1. L̂[1] = [(1, 1, 1, 0), (0, 0, 0, 1)], L̂[2] =
[(0, 0, 1, 0)], L̂[3] = [(0, 1, 0, 0)], L̂[4] = [p̂4].
m=5: P̂ ′
5 = ∅, P̂5 = P̂ , Ĉ5 = {(0, 0, 1̂, 1), (1̂, 0, 0, 0), (0, 1̂, 0, 1)}, Ĝ5
0 = Ĝ4
0 ∪
Ĉ4, Ĝ5
1 = {((0, 0, 0, 1), (0, 0, 1̂, 1)), ((0, 0, 0, 1), (1̂, 0, 0, 0)), ((0, 0, 0, 1),
(0, 1̂, 0, 1))}, Γ̂5
0 = Γ̂4
0∪Ĉ4, Γ̂5
1 = Γ̂4
1∪Ĝ5
1. L̂[1] = [(1, 1, 1, 0), (0, 0, 0, 1)],
L̂[2] = [(0, 0, 1, 0), (0, 0, 1̂, 1)], L̂[3] = [(0, 1, 0, 0), (0, 1̂, 0, 1)], L̂[4] =
[p̂4, (1̂, 0, 0, 0)].
Now we apply Algorithm 3.1 to (I, P, Rad, Radcomp, k). Note that
P = {p1 = (1, 0, 0, 0), p2 = (1, 1, 0, 0), p3 = (1, 0, 1, 0), p4 = (1, 1, 1, 1)},
Rad = {r1 = (0, 0, 0, 0), r2 = (1, 0, 0, 0), r3 = (1, 0, 0, 0), r4 = (1, 1, 1, 0)},
and Radcomp = {r1
1 = r1, r1
2 = r2, r1
3 = r3, r1
4 = r4}. We set k = 5 and get
1100
&&
0010
&&
0101
1000
88
��
1110
%%
88
��
0111
88
%%
��
1111
99
1̂000
1010
BB
0100
BB
0011
Indeed:
m=0: P0 = G
0
0 = {p1 = (1, 0, 0, 0)}; Γ
0
0 = Γ
0
1 = G
0
1 = ∅; L[1] =
[p1], L[2] = [p2], L[3] = [p3], L[4] = [p4].
m=1: C1 = {p2 = (1, 1, 0, 0), p3 = (1, 0, 1, 0)}, P1 = G
1
0 = {p1, p2, p3},
G
1
1 = {(p1, p2), (p1, p3)}, Γ
1
0 = Γ
1
1 = ∅. L[1] = [p1], L[2] = [p2],
L[3] = [p3], L[4] = [p4].
m=2: P
′
2 = ∅, P2 = P1, C2 = {p2 + p3 − p1 = (1, 1, 1, 0)}, G
2
0 = G
1
0 ∪ C2,
G
2
1 = {(p2, (1, 1, 1, 0)), (p3, (1, 1, 1, 0))}, Γ
2
0 = Γ
2
1 = ∅.
L[1] = [(1, 1, 1, 0)], L[2] = [p2], L[3] = [p3], L[4] = [p4].
m=3: P
′
3 = {p4 = (1, 1, 1, 1)}, P3 = {p1, p2, p3, p4}, C3 = {p4, (0, 1, 0, 0),
(0, 0, 1, 0)}, G
3
0 = G
2
0 ∪ C3, G
3
1 = {((1, 1, 1, 0), p4),
((1, 1, 1, 0), (0, 1, 0, 0)), ((1, 1, 1, 0), (0, 0, 1, 0))}, Γ
3
0 = C3, Γ
3
1 = ∅.
L[1] = [(1, 1, 1, 0)], L[2] = [(0, 0, 1, 0)], L[3] = [(0, 1, 0, 0)], L[4] =
[p4].
254 A horizontal mesh algorithm for posets
m=4: P
′
4 = ∅, P4 = P, C4 = {(0, 1, 1, 1)}, G
4
0 = G
3
0 ∪ C3,
G
4
1 ={(p4, (0, 1, 1, 1)), ((0, 1, 0, 0), (0, 1, 1, 1)), ((0, 0, 1, 0), (0, 1, 1, 1))},
Γ
4
0 = Γ
3
0 ∪ C3, Γ
4
1 = G
4
1. L[1] = [(1, 1, 1, 0), (0, 1, 1, 1)], L[2] =
[(0, 0, 1, 0)], L[3] = [(0, 1, 0, 0)], L[4] = [p4].
m=5: P
′
5 = ∅, P5 = P, C5 = {(0, 1, 0, 1), (1̂, 0, 0, 0), (0, 0, 1, 1)},
G
5
0 = G
4
0 ∪ C4, G
5
1 = {((0, 1, 1, 1), (0, 1, 0, 1)), ((0, 1, 1, 1), (1̂, 0, 0, 0)),
((0, 1, 1, 1), (0, 0, 1, 1))}, Γ
5
0 = Γ
4
0 ∪ C4, Γ
5
1 = Γ
4
1 ∪ G
5
1.
L[1] = [(1, 1, 1, 0), (0, 1, 1, 1)], L[2] = [(0, 0, 1, 0), (0, 1, 0, 1)],
L[3] = [(0, 1, 0, 0), (0, 0, 1, 1)], L[4] = [p4, (1̂, 0, 0, 0)].
4. Correctness of Algorithm 3.1
Following [28,29], we define a group isomorphism
σ0
I : ZI → Z
I (4.1)
by the formula σ0
I (x) = x · C0
I , where C0
I is the reduced incidence matrix
C0
I =
[
CI− 0
0 E
]
, (4.2)
where E is the identity matrix. By [29, Proposition 3.13], σ0
I gives Z-
equivalence of q̂I and qI , i.e. qI(σ0
I (x)) = q̂(x).
Lemma 4.3. For any poset I and for all i ∈ I, we have (σ0
I )−1(pi) = p̂i
and (σ0
I )−1(ri) = r̂i, where p̂i, r̂i, pi and ri are projective and radical
vectors defined in Section 2.1, and σ0
I : ZI → Z
I is the isomorphism (4.1).
Proof. The proof is straightforward.
Theorem 4.4. Assume that I is a connected positive poset. Let Γ̂ be the
quiver constructed by Algorithm 3.1 with input (I, P̂, R̂ad, R̂adcomp, k)
with k large enough (e.g. k = |R̂I |). The following conditions are satisfied.
(a) P̂ =
⋃
k P̂k, in particular there exists m such that P̂m = P̂.
(b) The sequence Γ̂0 ⊆ Γ̂1 ⊆ . . . stabilizes.
(c) R̂I =
⋃
m Γ̂m
0 .
(d) L̂[1], . . . , L̂[n] are the Φ̂I-orbits in R̂I of the Coxeter-Tits transfor-
mation Φ̂I .
(e) The Φ̂I-mesh translation quiver Γ̂ = Γ(R̂I , Φ̂I) defines a Φ̂I-mesh
root system structure Γ(R̂I , Φ̂I) on the set R̂I of Tits roots of I.
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 255
Proof. Assume that I is a connected positive poset. We apply Algo-
rithm 3.1 to the system (I, P, Rad, Radcomp, k) defined in Remark 3.2.
The formula (2.2) implies that the Euler matrix CI = C−1
I satisfies the
non-cycle condition defined in [14], see Remark 2.3. Therefore, [14, Theo-
rem 4.13] and [14, Section 5] yield:
(ā) P =
⋃
k Pk, in particular there exists m such that Pm = P.
(b̄) The sequence Γ
0
⊆ Γ
1
⊆ . . . stabilizes.
(c̄) RI =
⋃
m Γm
0 .
(d̄) L[1], . . . , L[n] are the ΦI -orbits in RI of the Coxeter transformation
ΦI .
(ē) The ΦI -mesh translation quiver Γ = Γ(RI , ΦI) defines a ΦI -mesh
root system structure Γ(RI , ΦI) on the set RI of Euler roots of I.
By Lemma 4.3, we have (σ0
I )−1(pi) = p̂i and (σ0
I )−1(ri) = r̂i, see (4.1).
It is easy to verify that the automorphism (σ0
i )−1 sends P, Rad, Radcomp
to P̂, R̂ad, R̂adcomp, respectively. From [29, Proposition 3.13], it follows
that Φ̂I = (σ0
I )−1 ◦ ΦI ◦ σ0
I . Now, applying the linearity of σ0
I , it is easy
to deduce that the conditions (ā)-(ē) imply the conditions (a)-(e), and
the theorem follows.
Remark 4.5. It follows from the proof of Theorem 4.4 that the Φ̂I -
mesh quiver Γ(RI , Φ̂I) is the image of Γ(RI , ΦI) via the automorphism
(σ0
I )−1 : ZI → Z
I (4.1).
We refer also to [11,12] for a discussion of ΦI -mesh quivers of one-peak
posets.
Corollary 4.6. Let I be a positive connected poset and let DI be the
Coxeter-Dynkin type of the root system R̂I . The Coxeter polynomial
coxI(t) is equal to the Coxeter polynomial coxDI(t) of the Dynkin diagram
DI and the Coxeter number cI is equal to the Coxeter number cDI of the
Dynkin diagram DI; they are listed in [29, Example 3.12].
Proof. By [14, Theorem 1.10] there exists a Z-invertible matrix B ∈ MI(Z)
such that CoxDI = B · CoxI · B−1, where CoxDI is the Coxeter matrix
associated with the simply laced Dynkin diagram DI. Moreover by [29,
Proposition 3.13], we have ĈoxI = C0
I · CoxI · (C0
I )−1. Now it is easy to
deduce that coxI(t) = coxDI(t) and cI = cDI .
Example 4.7. Consider the poset I given by the Hasse quiver
1 2oo 3oo 4oo (4.8)
256 A horizontal mesh algorithm for posets
By applying Algorithm 3.1 to (I, P, Rad, Radcomp, k = 6) we get the
Φ̂I -mesh quiver Γ(RI , ΦI):
1111
��
1̂000
��
0̂100
��
00̂10
��
000̂1
��
1111
1110
��
AA
0111
AA
��
1̂̂100
AA
��
0̂1̂10
AA
��
00̂1̂1
AA
��
1110
AA
1100
��
AA
0110
AA
��
0011
AA
��
1̂̂1̂10
AA
��
0̂1̂1̂1
AA
��
1100
AA
1000
AA
0100
AA
0010
AA
0001
AA
1̂̂1̂1̂1
AA
1000
AA
where vectors in frames lying in the same orbit are identified.
Moreover, by applying Algorithm 3.1 to (I, P̂, R̂ad, R̂adcomp, k = 6)
we get the Φ̂I -mesh quiver Γ(R̂I , Φ̂I):
1001
��
1̂000
��
0̂100
��
01̂10
��
001̂1
��
1001
1010
��
AA
0001
AA
��
1̂̂100
AA
��
00̂10
AA
��
010̂1
AA
��
1010
AA
1100
��
AA
0010
AA
��
0̂101
AA
��
1̂0̂10
AA
��
000̂1
AA
��
1100
AA
1000
AA
0100
AA
0̂110
AA
00̂11
AA
1̂00̂1
AA
1000
AA
Note that the Φ̂I -mesh quiver Γ(RI , ΦI) is isomorphic with the Φ̂I -
mesh quiver Γ(R̂I , Φ̂I) via the authomorphism σ0
I : Z4 → Z
4 (4.1).
Example 4.9. Consider the poset I given by the Hasse quiver
1
2
@@
3
^^
4
OO 77
5
OO
(4.10)
By applying Algorithm 3.1 we get the Φ̂I -mesh quiver Γ(RI , ΦI):
00100
��
11111
��
1̂0000
��
00010
��
1̂̂1̂1̂10
��
00̂10̂1
��
0̂10̂10
��
11000
��
00100
11110
��
00101
��
01010
��
1̂̂1000
��
00̂100
��
1̂̂1̂1̂1̂1
��
10000
��
000̂10
��
11110
11100
��
CC
II
11211
��
CC
II
01111
��
CC
II
1̂0010
��
CC
II
1̂̂1̂100
��
CC
II
1̂̂1̂2̂1̂1
��
CC
II
0̂1̂1̂1̂1
��
CC
II
100̂10
��
CC
II
11100
CC
��
II
11101
��
CC
01110
��
CC
00111
��
CC
1̂0̂100
��
CC
1̂̂1̂10̂1
��
CC
0̂1̂1̂10
��
CC
00̂1̂1̂1
��
CC
10100
��
CC
11101
10101
CC
01000
CC
00110
CC
00001
CC
1̂0̂10̂1
CC
0̂1000
CC
00̂1̂10
CC
0000̂1
CC
10101
CC
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 257
and the Φ̂I -mesh quiver Γ(R̂I , Φ̂I):
00100
��
10̂111
��
1̂0000
��
0̂1̂110
��
1̂00̂10
��
0000̂1
��
001̂10
��
11000
��
00100
10010
��
00001
��
00̂110
��
1̂̂1000
��
00̂100
��
1̂01̂1̂1
��
10000
��
011̂10
��
10010
11100
��
CC
II
10011
��
CC
II
00̂111
��
CC
II
1̂̂1̂110
��
CC
II
1̂̂1̂100
��
CC
II
1̂00̂1̂1
��
CC
II
001̂1̂1
��
CC
II
111̂10
��
CC
II
11100
CC
��
II
11001
��
CC
00010
��
CC
0̂1̂111
��
CC
1̂0̂100
��
CC
1̂̂100̂1
��
CC
000̂10
��
CC
011̂1̂1
��
CC
10100
��
CC
11001
10001
CC
01000
CC
0̂1010
CC
00̂101
CC
1̂000̂1
CC
0̂1000
CC
010̂10
CC
0010̂1
CC
10001
CC
Note that the Φ̂I -mesh quiver Γ(RI , ΦI) is isomorphic with the Φ̂I -
mesh quiver Γ(R̂I , Φ̂I) via the authomorphism σ0
I : Z5 → Z
5 (4.1).
Example 4.11. Consider the poset I given by the Hasse quiver
1 3oo
yy
5oo 6oo
tt2 4oo
By applying Algorithm 3.1 to (I, P, Rad, Radcomp, k = 24) we get the
Φ̂I -mesh quiver Γ(RI , ΦI):
111111
!!
001000
!!
000010
!!
000101
!!
0̂10̂100
!!
1̂0̂1000
!!
0̂1̂10̂10
��
112111
==
��
001010
==
��
000111
==
��
0̂10001
==
��
1̂̂1̂1̂100
==
��
1̂̂1̂20̂10
==
��
101010
!!
011111
!!
0̂10000
!!
000011
!!
1̂̂1̂10̂10
!!
0̂1̂1̂100
!!
112110
FF
==
!!
112121
FF
==
!!
001111
FF
==
!!
0̂10011
FF
==
!!
1̂̂1̂1001
FF
==
!!
1̂̂2̂2̂1̂10
FF
==
!!
1̂̂1̂2̂1̂10
JJ
DD
��
011110
==
!!
101111
==
!!
001011
==
!!
1̂̂1̂1000
==
!!
0̂1̂1001
==
!!
1̂̂1̂1̂1̂10
==
!!
011010
==
000100
==
101011
==
1̂00000
==
0̂1̂1000
==
000001
==
1̂̂1̂1̂1̂1̂1
DD
��
000̂100
!!
1̂0̂10̂1̂1
!!
100000
!!
011000
!!
00000̂1
!!
111111
!!
0̂1̂1̂1̂10
==
��
1̂0̂1̂1̂1̂1
==
��
00̂10̂1̂1
==
��
111000
==
��
01100̂1
==
��
111110
==
��
112111
1̂0̂10̂10
!!
0̂1̂1̂1̂1̂1
!!
010000
!!
0000̂1̂1
!!
111010
!!
011100
!!
101010
JJ
DD
��
1̂̂1̂2̂1̂2̂1
FF
==
!!
00̂1̂1̂1̂1
FF
==
!!
0100̂1̂1
FF
==
!!
11100̂1
FF
==
!!
122110
FF
==
!!
112110
FF
==
!!
1̂̂1̂2̂1̂1̂1
==
!!
00̂10̂10
==
!!
000̂1̂1̂1
==
!!
01000̂1
==
!!
111100
==
!!
112010
==
!!
011110DD
00̂1000
==
0000̂10
==
000̂10̂1
==
010100
==
101000
==
011010
==
where vectors in frames lying in the same orbit are identified.
258 A horizontal mesh algorithm for posets
Moreover, by applying Algorithm 3.1 to (I, P̂, R̂ad, R̂adcomp, k = 24)
we get the Φ̂I -mesh quiver Γ(R̂I , Φ̂I):
110001
!!
001000
!!
00̂1010
!!
0000̂11
!!
0̂10̂100
!!
1̂0̂1000
!!
0̂100̂10
��
111001
==
��
000010
==
��
00̂1001
==
��
0̂10̂1̂11
==
��
1̂̂1̂1̂100
==
��
1̂̂1̂10̂10
==
��
100010
!!
010001
!!
0̂10000
!!
00̂1̂101
!!
1̂̂100̂10
!!
0̂1̂1̂100
!!
111110
FF
==
!!
110011
FF
==
!!
000001
FF
==
!!
0̂1̂1̂101
FF
==
!!
1̂̂1̂1̂1̂11
FF
==
!!
1̂̂2̂1̂1̂10
FF
==
!!
1̂̂1̂1̂1̂10
DD
JJ
��
010110
==
!!
100001
==
!!
000̂101
==
!!
1̂̂1̂1000
==
!!
0̂1̂1̂1̂11
==
!!
1̂̂10̂1̂10
==
!!
010010
==
000100
==
100̂101
==
1̂00000
==
0̂1̂1000
==
000̂1̂11
==
1̂̂1000̂1
DD
��
000̂100
!!
1̂0010̂1
!!
100000
!!
011000
!!
00011̂1
!!
110001
!!
0̂10̂1̂10
==
��
1̂0000̂1
==
��
00010̂1
==
��
111000
==
��
01111̂1
==
��
110110
==
��
111001
1̂000̂10
!!
0̂1000̂1
!!
010000
!!
00110̂1
!!
110010
!!
011100
!!
100010
JJ
DD
��
1̂̂100̂1̂1
FF
==
!!
00000̂1
FF
==
!!
01110̂1
FF
==
!!
11111̂1
FF
==
!!
121110
FF
==
!!
111110
FF
==
!!
1̂̂1̂100̂1
==
!!
0000̂10
==
!!
00100̂1
==
!!
01011̂1
==
!!
111100
==
!!
111010
==
!!
010110DD
00̂1000
==
0010̂10
==
00001̂1
==
010100
==
101000
==
010010
==
Note that the Φ̂I -mesh quiver Γ(RI , ΦI) is isomorphic with the Φ̂I -
mesh quiver Γ(R̂I , Φ̂I) via the authomorphism σ0
I : Z6 → Z
6 (4.1).
Example 4.12. Consider the poset I given by the Hasse quiver
1 3oo
xx
5oo
xx
6oo
2 4oo
By applying Algorithm 3.1 to (I, P, Rad, Radcomp, k = 24) we get
theΦ̂I -mesh quiver Γ(RI , ΦI):
111111
!!
001000
!!
000110
!!
101011
!!
1̂00000
!!
0̂1̂1000
!!
000̂100
��
112111
==
��
001110
==
��
101121
==
��
001011
==
��
1̂̂1̂1000
==
��
0̂1̂1̂100
==
��
011110
!!
101111
!!
001010
!!
000111
!!
0̂10̂100
!!
1̂0̂1000
!!
112110
FF
==
!!
112221
FF
==
!!
102121
FF
==
!!
001121
FF
==
!!
0̂10011
FF
==
!!
1̂̂1̂1̂100
FF
==
!!
1̂̂1̂2̂1̂10
JJ
DD
��
101110
==
!!
112121
==
!!
001111
==
!!
0̂10010
==
!!
000011
==
!!
1̂̂1̂1̂1̂10
==
!!
000100
==
101010
==
011111
==
0̂10000
==
000010
==
000001
==
1̂̂1̂1̂1̂1̂1
DD
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 259
��
1̂0̂10̂10
!!
0̂1̂1̂1̂1̂1
!!
010000
!!
0000̂10
!!
00000̂1
!!
111111
!!
1̂0̂1̂1̂10
==
��
1̂̂1̂2̂1̂2̂1
==
��
00̂1̂1̂1̂1
==
��
0100̂10
==
��
0000̂1̂1
==
��
111110
==
��
112111
0̂1̂1̂1̂10
!!
1̂0̂1̂1̂1̂1
!!
00̂10̂10
!!
000̂1̂1̂1
!!
010100
!!
101000
!!
011110
JJ
DD
��
1̂̂1̂2̂2̂2̂1
FF
==
!!
1̂0̂2̂1̂2̂1
FF
==
!!
00̂1̂1̂2̂1
FF
==
!!
0100̂1̂1
FF
==
!!
111100
FF
==
!!
112110
FF
==
!!
1̂̂1̂2̂1̂1̂1
==
!!
00̂1̂1̂10
==
!!
1̂0̂1̂1̂2̂1
==
!!
00̂10̂1̂1
==
!!
111000
==
!!
011100
==
!!
101110DD
00̂1000
==
000̂1̂10
==
1̂0̂10̂1̂1
==
100000
==
011000
==
000100
==
where vectors in frames lying in the same orbit are identified.
Moreover, by applying Algorithm 3.1 to (I, P̂, R̂ad, R̂adcomp, k = 24)
we get the Φ̂I -mesh quiver Γ(R̂I , Φ̂I):
110001
!!
001000
!!
00̂1010
""
100̂101
!!
1̂00000
!!
0̂1̂1000
!!
000̂100
��
111001
==
��
000010
==
��
10̂1̂111
<<
��
000̂101
==
��
1̂̂1̂1000
==
��
0̂1̂1̂100
==
��
010010
!!
100001
!!
000̂1100
""
00̂1001
!!
0̂10̂100
!!
1̂0̂1000
!!
111010
FF
==
!!
110011
FF
==
!!
100̂111
EE
<<
""
00̂1̂111
FF
==
!!
0̂1̂1̂101
FF
==
!!
1̂̂1̂1̂100
FF
==
!!
1̂̂1̂10̂10
DD
JJ
��
100010
==
!!
110̂111
==
!!
000001
<<
""
0̂1̂1̂110
==
!!
00̂1̂101
==
!!
1̂̂100̂10
==
!!
000100
==
100̂110
==
010001
<<
0̂10000
==
00̂1̂110
==
0000̂11
==
1̂̂1000̂1
DD
��
1̂001̂10
!!
0̂1000̂1
!!
010000
!!
0011̂10
!!
00001̂1
!!
110001
!!
1̂000̂10
==
��
1̂̂101̂1̂1
==
��
00000̂1
==
��
0111̂10
==
��
00110̂1
==
��
1̂10010
==
��
111001
0̂100̂10
!!
1̂0000̂1
!!
0001̂10
!!
00100̂1
!!
010100
!!
101000
!!
010010
JJ
DD
��
1̂̂100̂1̂1
FF
==
!!
1̂001̂1̂1
FF
==
!!
0011̂1̂1
FF
==
!!
01110̂1
FF
==
!!
111100
FF
==
!!
111010
FF
==
!!
1̂̂1̂100̂1
==
!!
0000̂10
==
!!
1̂011̂1̂1
==
!!
00010̂1
==
!!
111000
==
!!
011100
==
!!
100010DD
00̂1000
==
0010̂10
==
1̂0010̂1
==
100000
==
011000
==
000100
==
Note that the Φ̂I -mesh quiver Γ(RI , ΦI) is isomorphic with the Φ̂I -
mesh quiver Γ(R̂I , Φ̂I) via the authomorphism σ0
I : Z6 → Z
6 (4.1).
References
[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory
of Associative Algebras, Volume 1. Techniques of Representation Theory, London
Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006.
[2] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras,
Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, 1995.
260 A horizontal mesh algorithm for posets
[3] M. Barot, A characterization of positive unit forms, II, Bol. Soc. Mat. Mexicana
(3) 7 (2001), 13–22.
[4] M. Barot, D. Kussin and H. Lenzing, The Lie algebra associated to a unit form, J.
Algebra 296 (2007), 1–17.
[5] V. M. Bondarenko and M. V. Stepochkina, On posets of width two with positive
Tits form, Algebra and Discrete Math. 2 (2005), 20–35.
[6] V. M. Bondarenko and M. V. Stepochkina, (Min, max)-equivalence of partially
ordered sets and quadratic Tits form (in Russian, English Summary), Zb. Pr. Inst.
Mat. NAN Ukr. 2, No. 3, 2005, 18–58 (Zbl. 1174.16310).
[7] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984),
1–12.
[8] S. Brenner, Unfoldings of algebras, Proc. London Math. Soc. (3) 62 (1991), 242–274.
[9] J. A. Drozd, Coxeter transformations and representations of partially ordered sets,
Funct. Anal. Appl. 8(1974), 219–225.
[10] P. Gabriel and A. V. Roiter, Representations of Finite Dimensional Algebras, in:
Algebra VIII, Encyclopaedia of Math. Sci., vol. 73, Springer-Verlag, 1992.
[11] M. Ga̧siorek and D. Simson, One-peak posets with positive Tits quadratic form,
their mesh quivers of roots, and programming in Maple and Python, Linear Algebra
Appl. 436 (2012), 2240–2272.
[12] M. Ga̧siorek and D. Simson, A computation of positive one-peak posets that are
Tits sincere, Colloq. Math. 127 (2012), 83–103.
[13] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-
Verlag, New York-Heilderberg-Berlin, 1972.
[14] M. Kaniecki, J. Kosakowska, P. Malicki and G. Marczak, A horizontal mesh
algorithm for a class of edge-bipartite graphs and their matrix morsifications, Fund.
Inform. 136 (2015), 345–379.
[15] S. Kasjan and J. A. de la Peña, Constructing the preprojective components of an
algebra, J. Algebra 179 (1996), 793–807.
[16] S. Kasjan and D. Simson, Mesh algorithms for Coxeter spectral classification of
Cox-regular edge-bipartite graphs with loops, I. Mesh root systems, Fundam. Inform.
139 (2015), 153-184.
[17] J. Kosakowska, A classification of two-peak sincere posets of finite prinjective type
and their sincere prinjective representations, Colloq. Math. 87 (2001), 27–77.
[18] J. Kosakowska, A specialization of prinjective Ringel-Hall algebra and the associated
Lie algebra, Acta Mathematica Sinica, English Series, 24 (2008), 1687–1702.
[19] J. Kosakowska, Lie algebras associated with quadratic forms and their applications
to Ringel-Hall algebras, Algebra and Discrete Math. 4 (2008), 49–79.
[20] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs
and unit quadratic forms, Fund. Inform. 119 (2012), 149–162.
[21] J. Kosakowska and D. Simson, On Tits form and prinjective representations of
posets of finite prinjective type, Comm. Algebra, 26 (1998), 1613–1623.
[22] L. A. Nazarova and A.V. Roiter, Representations of partially ordered sets, in Zap.
Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 28(1972), 5–31 (in
Russian); English version: J. Soviet Math. 3 (no. 5) (1975), 585–606.
M. Kaniecki, J. Kosakowska, P. Malicki, G. Marczak 261
[23] J. A. de la Peña and D. Simson, Prinjective modules, reflection functors, quadratic
forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992),
733–753.
[24] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in
Math. 1099, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
[25] M. Sato, Periodic Coxeter matrices and their associated quadratic forms, Linear
Algebra Appl. 406 (2005), 99–108.
[26] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space
Categories, Algebra Logic Appl. 4, Gordon & Breach, London (1992).
[27] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl.
Algebra 90 (1993), 71-103.
[28] D. Simson, Incidence coalgebras of intervally finite posets, their integral quadratic
forms and comodule categories, Colloq. Math. 115 (2009), 259–295.
[29] D. Simson, Integral bilinear forms, Coxeter transformations and Coxeter polyno-
mials of finite posets, Linear Algebra Appl. 433 (2010), 699–717.
[30] D. Simson, Mesh geometries of root orbits of integral quadratic forms, J. Pure
Appl. Algebra 215 (2011), 13–34.
[31] D. Simson, Mesh algorithms for solving principal Diophantine equations, sand-glass
tubes and tori of roots, Fund. Inform. 109 (2011), 425–462.
[32] D. Simson, A Coxeter-Gram classification of positive simply laced edge-bipartite
graphs, SIAM J. Discrete Math. 27 (2013), 827–854.
[33] D. Simson, A framework for Coxeter spectral analysis of edge-bipartite graphs,
their rational morsifications and mesh geometries of root orbits, Fund. Inform. 124
(2013), 309-338.
[34] D. Simson and K. Zając, A framework for Coxeter spectral classification of finite
posets and their mesh geometries of roots, Intern. J. Math. Mathematical Sciences,
Volume 2013, Article ID 743734, 22 pages, doi: 10.1155/2013/743734.
Contact information
M. Kaniecki,
J. Kosakowska,
P. Malicki,
G. Marczak
Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, ul. Chopina
12/18, 87-100 Toruń, Poland
E-Mail(s): kanies@mat.umk.pl,
justus@mat.umk.pl,
pmalicki@mat.umk.pl,
lielow@mat.umk.pl
Web-page(s): www.mat.umk.pl/∼justus,
www.mat.umk.pl/∼pmalicki,
www.mat.umk.pl/∼lielow
Received by the editors: 22.12.2015
and in final form 05.01.2016.
|