Quadratic residues of the norm group in sectorial domains
In the article the distribution of quadratic residues in the ring Gpn, in the norm subgroup En of multiplicative group G∗pn, is investigated. The asymptotic formula for the number R(x,ϕ) of quadratic residues in the sectorial domain of a special form has been constructed.
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2016
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/155736 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Quadratic residues of the norm group in sectorial domains / L. Balyas, P. Varbanets // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 153-170. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155736 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1557362019-06-18T01:25:39Z Quadratic residues of the norm group in sectorial domains Balyas, L. Varbanets, P. In the article the distribution of quadratic residues in the ring Gpn, in the norm subgroup En of multiplicative group G∗pn, is investigated. The asymptotic formula for the number R(x,ϕ) of quadratic residues in the sectorial domain of a special form has been constructed. 2016 Article Quadratic residues of the norm group in sectorial domains / L. Balyas, P. Varbanets // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 153-170. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC:11L05, 11L07, 11N25, 11S40. http://dspace.nbuv.gov.ua/handle/123456789/155736 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In the article the distribution of quadratic residues in the ring Gpn, in the norm subgroup En of multiplicative group G∗pn, is investigated. The asymptotic formula for the number R(x,ϕ) of quadratic residues in the sectorial domain of a special form has been constructed. |
format |
Article |
author |
Balyas, L. Varbanets, P. |
spellingShingle |
Balyas, L. Varbanets, P. Quadratic residues of the norm group in sectorial domains Algebra and Discrete Mathematics |
author_facet |
Balyas, L. Varbanets, P. |
author_sort |
Balyas, L. |
title |
Quadratic residues of the norm group in sectorial domains |
title_short |
Quadratic residues of the norm group in sectorial domains |
title_full |
Quadratic residues of the norm group in sectorial domains |
title_fullStr |
Quadratic residues of the norm group in sectorial domains |
title_full_unstemmed |
Quadratic residues of the norm group in sectorial domains |
title_sort |
quadratic residues of the norm group in sectorial domains |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155736 |
citation_txt |
Quadratic residues of the norm group in sectorial domains / L. Balyas, P. Varbanets // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 153-170. — Бібліогр.: 11 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT balyasl quadraticresiduesofthenormgroupinsectorialdomains AT varbanetsp quadraticresiduesofthenormgroupinsectorialdomains |
first_indexed |
2025-07-14T07:58:39Z |
last_indexed |
2025-07-14T07:58:39Z |
_version_ |
1837608384741769216 |
fulltext |
Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 22 (2016). Number 2, pp. 153–170
© Journal “Algebra and Discrete Mathematics”
Quadratic residues of the norm group in
sectorial domains
Lyubov Balyas and Pavel Varbanets
Communicated by D. Simson
Abstract. In the article the distribution of quadratic
residues in the ring Gpn , in the norm subgroup En of multiplicative
group G∗
pn , is investigated. The asymptotic formula for the number
R(x, φ) of quadratic residues in the sectorial domain of a special
form has been constructed.
1. Introduction
In 1918 I.M. Vinogradov and G. Polya built the asymptotic formula
for the number of quadratic residues modulo prime number on the seg-
ment 1 6 n 6 x < p, which was nontrivial for every x >
√
p log p. It
was the first result about incomplete residue system in analytic number
theory. Henceforth Vinogradov-Polya theorem was firstly sharpened by
D. Burgess [1]. After this on the assumption under extended Weil hypoth-
esis H. Montogomery and R. Vaughan [3] got the unimprovable result for
the theorem.
The research of analogous issue over the ring of Gaussian integers
is, evidently, a difficult problem by the virtue of the fact, that geometry
of points of a plane is richer than geometry of points on a line. In this
article the distribution of quadratic residues in the norm subgroup En
2010 MSC: 11L05, 11L07, 11N25, 11S40.
Key words and phrases: quadratic residue, the norm group, Hecke Z-function,the
gamma function, Dirichlet series,functional equation, Gaussian integers.
154 Quadratic residues
of multiplicative group G∗
pn , is investigated. Here p is a prime rational
number of the type p = 3 + 4k and En can be written in the form:
En := {α ∈ Gpn |N(α) ≡ ±1 (mod pn)} .
This subgroup is cyclic, its order is equal to 2(p+1)pn−1. The numbers
p = 2 and p ≡ 1 (mod 4) are not prime in G. Thus, for p ≡ 1 (mod 4) we
have p = π · π̄;π, π̄ ∈ Z[i], and the residue class rings in Z[i] modulo pn
(respectively, πn) are isomorphic. So, this case was investigated in the
works mentioned above. Similarly we have for p = 2. That is why we
don’t consider these p.
If (u0+iv0) is a generating element of the group En, then N(u0+iv0) ≡
−1 (mod pn). It follows that only the elements of the type (u0 + iv0)2a,
where a = 0, 1, . . . , (p+ 1)pn−1, are quadratic residues modulo pn in En.
Our aim is to prove Theorems 1 and 2 stated in Section 3, and to
obtain an asymptotic formula for the number R(x, φ) of quadratic residues
in the sectorial domain
S(x, φ) =
{
φ1 6 argw < φ2, 0 < N(w) 6 x, φ2 − φ1 = φ <
π
2
}
. (1)
The formula for R(x, ϕ) is contained in Theorem 2 and has the fol-
lowing form
R(x;φ) =
φ2 − φ1
2
· p+ 1
p
· x
pn
+O
(
3nx
1−s
pn
log x
)
.
The most interesting case is the case, when φ2 − φ1 → 0 with x → ∞,
because the case φ2 − φ1 > C, C > 0 is a fixed constant, follows from the
work [5] about the distribution of values of the function r(n) (the number
of representations of n by the sum of two squares) in the arithmetic
progression.
Notations. We will use the following notations:
• G :=
{
a+ bi|a, b ∈ Z, i2 = −1
}
is the ring of Gaussian integers;
• Gγ is the ring of residues of Gaussian integers modulo γ;
• G∗
γ = {α ∈ Gγ , (α, γ) = 1};
• for α ∈ G we denote N(α) = |α|2 ,Sp(α) = 2ℜ(α);
• En ⊂ Gpn is the norm group;
• χ stands for a character of the group En;
• for a ∈ Z (or α ∈ G) νp(a) (or νp(α)) stands that pνp(a)|a, pνp(a)+1
does not divide a;
L. Balyas, P. Varbanets 155
• s ∈ C, s = σ + it, σ = ℜs, t = ℑs;
• Γ(z) is the Euler gamma-function;
• by f ≪ g(f = O(g)) for x ∈ X, where X is an arbitrary set, on
which f and g are defined, we mean that there exists a constant
C > 0 such that |f(x)| 6 C · g(x) for all x ∈ X;
• exp (x) = ex for x ∈ C (sometimes, instead of ex we will use exp(x)).
Let us denote
E+
n :=
{
α ∈ G∗
pn |N(α) ≡ 1 (mod pn)
}
=
{
α ∈ En|α = (u0 + iv0)2a, a = 0, 1, . . . , (p+ 1)pn−1
}
.
Then
R(x, φ) =
∑
α∈E+
n
∑
w∈G
w≡α (mod pn)
w∈S(x,φ)
1. (2)
We consider Dirichlet series
Fm(s) =
∑
α∈E+
n
∑
w≡α (mod pn)
e4mi arg w
N(w)s
, ℜs > 1.
We have
Fm(s) =
∑
α∈E+
n
1
N(pn)s
ζm
(
s;
α
pn
, 0
)
, ℜs > 1, (3)
where ζm
(
s; α
pn , 0
)
is a special case of Hecke zeta-function ζm (s; δ0, δ)
with a shift. In the domain ℜs > 1 the last is defined by absolutely
convergent Dirichlet series
ζm (s; δ0, δ) =
∑
w∈G
e4mi arg (w+δ0)
N(w + δ0)s
eπiSp(δw),
where δ0, δ are Gaussian numbers from the field Q(i); Sp(β) is a trace of
an element β from Q(i) to Q.
2. Auxiliary results
In the following lemmas we bring necessary information about Hecke
zeta-function for the next steps.
156 Quadratic residues
Lemma 1. The Hecke zeta-function ζm (s; δ0, δ) satisfies the functional
equation
π−sΓ(2|m| + s)ζm (s; δ0, δ)
= π−(1−s)Γ (2 |m| + 1 − s) · ζ−m (1 − s; δ0,−δ) e−πi Sp(δδ̄0).
Moreover, ζm (s; δ0, δ) is an entire function if m 6= 0 or m = 0 and δ is
not a Gaussian integer. For m = 0 and δ ∈ G it is holomorphic except
for the point s = 1, where it has a simple pole with the residue π.
Proof. For δ0 = δ = 0 and m = 4m1, we get the well-known Hecke
zeta-function Zm(s) with the Hecke character of the first kind with the
exponent m (see, [2]). In [8] this lemma has been stated without a proof.
But for the completeness of treatment we restore a proof of this statement.
In the general case, for the proof of statement of the lemma we start
from the relation
Γ(s) |wδ0|−2s =
∞
∫
0
exp (−x|w + δ0|2)xs−1dx.
It is evident that for ℜs > 1 and m ∈ Z we can write
Γ(2|m| + s)Zm(s; δ0; δ) =
δ
∫
0
∑
w∈G
w 6=−δ0
e−x|w+δ0|2xs−1dx.
Let us denote δ0 = δ01 + δ02. Then a groundtruthing shows that the
functions
f(u1, u2) = exp (−x
(
u2
1 + u2
2
)
+ 2πi(δ01u1 + δ02u2)),
f̂(v1, v2) =
π
x
exp
(
−π2
x
[
(δ01 + v1)2 + (δ02 + v2)2
]
)
satisfy the conditions of Poisson summation formula (see, e.g. [6], Ch. VII,
Corollary 2.6).
Hence, denoting
Θm(x, δ0, δ) =
∑
w∈G
exp
(
−x|w + δ0|2
)
(w + δ0)4m exp
(
πiSp(δw)
)
and using Poisson summation formula, we find
Θ0(x, δ0, δ) =
π
x
Θ0
(
π2
x
, δ,−δ0
)
exp
(
−πiSp(δ0δ)
)
.
L. Balyas, P. Varbanets 157
Consider the operator
d
dδ0
:=
∂
∂δ01
+ i
∂
∂δ02
, δ0 = δ01 + δ02.
Then the following equalities for m > 0
(−2x)4mΘm(x, δ0, δ) =
dm
dδm
Θ0(x, δ0, δ)
and
π
x
(−2πi)4mΘm
(
π2
x
, δ0,−δ
)
exp
(
−πiSp
(
δ0δ
))
=
dm
dδm
0
(
π
x
Θ0
(
π2
x
, δ,−δ0
)
exp
(
−πiSp
(
δ0δ
))
)
hold.
So, for any m ∈ Z the following functional equation
Θm(x, δ0, δ) =
(
π
x
)4m+1
Θm
(
π2
x
, δ, δ0
)
exp
(
−πiSp
(
δ0δ
))
(4)
is true.
Now, applying reasoning used for the proof of the functional equa-
tion for Riemann zeta-function by the functional equation for a theta-
function Θm we easily infer
Γ(2|m| + s)ζm(s, δ0, δ) = π−(1−2s) exp
(
−πiSp
(
δ0δ
))
Im(δ0, δ),
where
Im(δ0, δ)
=
∫ ∞
0
∑
w
w 6=−δ0
exp (−x|w + δ0|2)(w + δ0)4m exp (πiSp(δw))xs+2m−1dx
=
π
∫
0
+
∞
∫
π
:= Im,1 + Im,2.
158 Quadratic residues
In the integral Im,1 we apply the functional equation (4) for Θm(x, δ0,δ)
and make the substitution x = π2y−1. This gives the equality
Γ(2|m| + s)ζm(s, δ0, δ) = π2s−1 exp (−πiSp(δ0δ))×
×
∫ ∞
π
∑
w∈G
w 6=−δ
exp (−x|w + δ|2)(w + δ)4m exp (−πiSp(δ0w))x−s+2mdx
+
∫ ∞
π
∑
w∈G
w 6=−δ0
exp (−x|w + δ0|2)(w + δ0)4m exp (−πiSp(δw))xs+2m−1dx
+ ε(m, δ)
πs
s− 1
− ε(m, δ0) exp (−πiSp(δ0, δ))
πs
s
,
(5)
where
ε(m, a) =
{
1 if m = 0 and a ∈ G
0 otherwise.
The equality (5) was obtained for ℜs > 1. However, the right part of
this equality is an analytic function in all complex s-planes except maybe
the points s = 0 and s = 1, which can be the poles.
Now, multiplying the equality (5) by exp(πiSp(δ0δ))π
−2s+1 and mak-
ing the substitution s → 1 − s, δ0 → δ, δ → δ0, we obtain that the right
part doesn’t vary, and hence, we have proved the following functional
equation
π−sΓ(2|m| + s)ζm(s; δ0, δ)
= π−(1−s)Γ(2|m| + 1 − s)ζm(1 − s; −δ, δ0) exp(−πiSp(δ0δ)).
If m = −m′, m′ > 0, we put δ0 = −δ′
0, δ = −δ′, and then we have
ζm(s, δ, δ0) = ζm′(s,−δ,−δ0) ⇒ ζm′(1 − s, δ0,−δ) = ζm(1 − s,−δ0, δ).
So, for any m ∈ Z,
π−sΓ(2|m| + s)ζm(s; δ, δ0) = π−(1−s)Γ(2|m| + 1 − s)ζ−m(1 − s,−δ0, δ)
= π−(1−s)Γ(2|m| + 1 − s)ζ−m(1 − s; δ0,−δ).
This completes the proof of Lemma 1.
Corollary 1. If δ is not a Gaussian integer, then ζ0(0; δ0, δ) = 0.
L. Balyas, P. Varbanets 159
Lemma 2. In the strip ε 6 ℜs 6 1 + ε, ε > 0, the following estimate
(s− 1) · ζm(s; δ0, δ) ≪ (|t| + 1)(t2 +m2)
(1−2σ)(1+ε−σ)
1+2ε |N(δ)|−
σ+ε
1+2ε
holds.
This lemma follows from Phragmen-Lindelof principle and the esti-
mates for ζm (s; δ0, δ) on the boundaries of the strip ε 6 ℜs 6 1+ε, which
can be received with the usage of the functional equation for ζm (s; δ0, δ)
and Stirling formula for Γ(z).
Lemma 3. Let y > k ∈ {0, 1, 2}. Let a be a real number, −1 < a 6
5
4 ,
η(a) = minj=0,1,...,k |a − j| 6= 0. Then for any real numbers u, v the
following estimate
a+iv
∫
a+iu
ysψ(s,m)
s(s+ 1) . . . (s+ k)
ds
≪ N(γ)
1
2M
(
(
y
N(γ)
· 1
M
)a
(η−1(a)+logM) +
(
y
N(γ)M
)
1
2
− 2k+1
4
)
,
holds, where ψ(s,m) =
(
1
π
N(γ)
1
2
)1−2s Γ(2|m|+1−s)
Γ(2|m|+s) , M = |m| + 10.
Proof. Apply [3, Lemma 8].
Lemma 4 ([7], Theorem 1). Upon the condition D
1
2 6 x < D2 the
asymptotic formula
∑
n≡1 (mod D)
n6x
r(n) =
πx
D
γ0
∏
p|D
(
1 − χ4(p)
p
)
+O
D
1
2 exp
c
(logD)
1
2
log logD
+O
(
x
1
2
D
1
2
τ(D)
)
,
γ0 =
{
1 if D 6≡ 0 (mod 4),
2 if D ≡ 0 (mod 4)
is true.
Lemma 5. Let p ≡ 3 (mod 4). Then for n = 1, 2, 3, . . . the estimate
∑
α∈E+
n
e
πi Sp α2
pn ≪ p
n
2
holds.
160 Quadratic residues
Proof. In the articles [5] and [9] the following description of elements
α ∈ E+
n , n > 2 was given:
α = (u0 + iv0)2(p+1)t+k ≡
n−1
∑
j=0
(Aj(k) + iBj(k)) tj (mod pn).
Here (u0 + iv0) is a generator of the group E+
n , t = 0, 1, . . . , pn−1,
k = 0, 1, . . . , 2p+ 1. Moreover,
A0(k) = u(k), B0(k) = v(k);
A1(k) ≡ −py0v(k) (mod p3), B1(k) ≡ py0u(k) (mod p3),
A2(k) ≡ −1
2
p2y2
0u(k) (mod p3), B2(k) ≡ −1
2
p2y2
0v(k) (mod p3),
(u0 + iv0)k ≡ u(k) + iv(k) (mod pn), (y0, p) = 1.
Furthermore,
u(k) ≡ 0 (mod p), when k =
p+ 1
2
, k =
3(p+ 1)
2
;
v(k) ≡ 0 (mod p), when k = 0, k = p+ 1;
Aj(k) ≡ Bj(k) ≡ 0 (mod p3), j = 3, 4, . . . ,m− 1, k = 0, 1, . . . , 2p+ 1.
Hence we easily conclude
ℜ(α2) ≡ (A2
0(k) −B2
0(k)) + 2(A0(k)A1(k) −B0(k)B1(k))t
+ (A2
1(k) −B2
1(k)) +A0(k)A2(k) −B0(k)B2(k)t2 (mod p3).
Then ℜ(α2) ≡ C0 + C1t+ C2t
2 (mod p3) with the coefficients
C1 ≡ −2py0u(k)v(k) (mod p3), C2 ≡ 1
2
p2y2
0(u2(k) − v2(k)) (mod p3)
or C2 ≡ 1
2
p2y2
0(1 − 2v2(k)) (mod p3).
Let us note that u(k)2 + v(k)2 ≡ (−1)k (mod p). Therefore, it follows
that u(k) and v(k) can not divide p simultaneously. It is obvious that
νp(C2) > 2 (the strict inequality holds for the cases k=0, p+1
2 ,
3(p+1)
2 , p+1).
That is why, when νp(C1) < νp(C2), S = 0. So, from the well-known
relation, for (b, p) = 1, f(x) ∈ Z[x],
∣
∣
∣
∣
∣
∣
∑
x∈Zpn
e
2πi
ax+pbx2+p2f(x)
pn
∣
∣
∣
∣
∣
∣
=
{
0 if (a, p) = 1,
2p
n−1
2 if a ≡ 0 (mod p)
L. Balyas, P. Varbanets 161
we get
∣
∣
∣
∣
∣
∣
∑
α∈E+
n
e
πi Sp α2
pn
∣
∣
∣
∣
∣
∣
6 4p
n
2 .
In case n = 1 we take into account that
E1 =
{
±1,±i, a− i
a+ i
, i
a− i
a+ i
∣
∣ a = 1, 2, . . . , p− 1
}
.
Thus, we conclude that Sp(α2) can be represented as the ratio of the
polynomials of degree 2. Then, following Weil [11], we have
∣
∣
∣
∣
∣
∣
∑
α∈E1
e
πi Sp α2
p
∣
∣
∣
∣
∣
∣
6 2
√
p.
Hence, the assertion of lemma follows.
Lemma 6 ([7], Lemma 5). Let p be a prime number, let u1, u2 be integers
and (u1, u2, p
n) = pm. Then
∣
∣
∣
∣
∣
∣
∣
∑
l21+l22≡1 (mod pn)
e
2πi
u1l1+u2l2
pn
∣
∣
∣
∣
∣
∣
∣
6 2p
n+m
2 .
Corollary 2. For m 6= 0 the following estimate
∑
α∈E+
n
ζm
(
0;
α
pn
, 0
)
≪ p
3
2
nM logM, M = |m| + 10,
holds.
This statement follows immediately from the functional equation for
ζm(s; δ0, δ) for m 6= 0 and Lemma 6.
The following Lemma was proved in [10] (see Lemma 11, pp. 259–260).
Lemma 7 (Vinogradov’s ‘glasses’). Let r ∈ N, Ω > 0, 0 < ∆ < 1
2Ω and
let φ1, φ2 be real numbers, ∆ 6 φ2 − φ1 6 Ω − 2∆. Then there exists a
periodic function f(φ) with the period Ω such that:
(i) f(φ) = 1, in the segment φ ∈ [φ1, φ2];
0 6 f(φ) 6 1 in the segments [φ1 − ∆, φ1] and [φ2, φ2 + ∆];
f(φ) = 0, in the segment [φ2 + ∆, φ1 + Ω − ∆];
162 Quadratic residues
(ii) f(φ) has the expansion in a Fourier series
f(φ) =
+∞
∑
m=−∞
ame
2πi
mφ
Ω ,
where a0 = 1
Ω(φ2 − φ1 + ∆), and for m 6= 0 and r ∈ N each of the
following inequalities holds
|am| 6
1
Ω(φ2 − φ1 + ∆),
2
π|m| ,
2
π|m|
(
rΩ
π|m|∆
)r
.
3. Main results
Let us consider the function of a natural argument
rm(k) =
∑
u,v∈Z
u2+v2=k
e4mi arg(u+iv).
In view of (3) we can write
Fm(s) =
∞
∑
k6x
k≡1 (mod pn)
rm(k)
ks
.
Theorem 1. Let m 6= 0, pn 6 x 6 p2n. Then
∑
k6x
k≡1 (mod pn)
rm(k) ≪
√
x
p
n
2
+ p
n
2 log x+ p
n
2M logM.
Proof. Our assertion is trivial for x ≪ pnM . That is why we will assume
that x > C ·Mpn, C > 0. It follows from Lemma 1 that ζm (s; δ0, δ) is an
entire function. In view of the fact
1
p2ns
ζm
(
s;
α
pn
, 0
)
=
∑
w∈G
w≡α (mod pn)
e
4mi arg w
N(w)s
for ℜs > 1 and every α ∈ G the usage of the theorem of the residues gives
1
2πi
∫ 2+i·∞
2−i·∞
xs+2ζm
(
s; α
pn , 0
)
p2nss(s+ 1)(s+ 2)
ds
=
x2
2
δm
(
s;
α
pn
, 0
)
+
1
2πi
a+i·∞
∫
a−i·∞
xs+2ζm
(
s; α
pn , 0
)
p2nss(s+ 1)(s+ 2)
(6)
L. Balyas, P. Varbanets 163
for every −1 < a < 0.
Let us denote
S2(x, α) =
1
2
∑
0<N(w)6x
w≡α (mod pn)
e4mi arg w(x−N(w))2. (7)
Using the relation
1
2πi
2+i·∞
∫
2−i·∞
ys+l
s(s+ 1) . . . (s+ k)
=
{
1
l!(y − 1)l if y > 1
0 if 0 < y < 1
and taking into account the uniform convergence of the series for zeta-
function ζm
(
s; α
pn , 0
)
in the semiplane ℜs > 1 + ε, ε > 0, we get
1
2πi
2+i·∞
∫
2−i·∞
xs+2ζm
(
s; α
pn , 0
)
p2nss(s+ 1)(s+ 2)
ds
=
∑
w
w≡α (mod pn)
e4mi arg w
N(w)−2
· 1
2πi
2+i·∞
∫
2−i·∞
(
x
N(w)
)s+2
s(s+ 1)(s+ 2)
ds
=
1
2
∑
w≡α (mod pn)
N(w)6x
e4mi arg w(x−N(w))2 = S2(x, α).
(8)
The application of the functional equation for ζm(s; δ0, δ) (see Lemma 1)
and the estimate ζm(s; δ0, δ) in critical strip (see Lemma 2) give
1
2πi
a+i·∞
∫
a−i·∞
xs+2ζm
(
s; α
pn , 0
)
p2nss(s+ 1)(s+ 2)
=
∑
w∈G\{0}
e−4mi arg we
πi Sp
(
αw
pn
)
N(w)−s 1
2πi
a+i·∞
∫
a−i·∞
(xN(w))s+2 Γ(2|m|+1−s)
Γ(2|m|+s)
π1−2ss(s+1)(s+2)p2ns
ds.
(9)
From (6)–(9) we deduce the formula:
S2(x, α) =
x2
2
ζm
(
0;
α
pn
, 0
)
+
∑
w∈G\{0}
e−4mi arg we
πi Sp
(
αw
pn
)
N(w)−sW
(
xN(w)
p2n
)
p2(n+1),
164 Quadratic residues
where
W (y) =
1
2πi
a+i·∞
∫
a−i·∞
ys+2Γ(2|m| + 1 − s)
s(s+ 1)(s+ 2)Γ(2|m| + s)
ds.
We consider the following operator
∆zF (x) =
2
∑
j=0
(−1)jF (x+ jz) =
x+z
∫
x
dy1
y1+z
∫
y1
F
′′
(y2)dy2.
Then
∆z
(
x2
2
ζm
(
0;
α
pn
, 0
)
)
= z2ζm
(
0;
α
pn
, 0
)
.
It is obvious that for every b, −1 < b < 0, we have
W (y) =
1
2πi
b+i·∞
∫
b−i·∞
ys+2Γ(2|m| + 1 − s)
s(s+ 1)(s+ 2)Γ(2|m| + s)
ds.
We put b = −1 + 1
log y
, if y > 1. Using Lemma 3, we conclude that
W (y) ≪ K(y,m), (10)
where
K(y,m) = p3nM3y (log y + logM) .
It means that
∆zW
(
xN(w)
p2n
)
≪ K
(
xN(w)
p2n
,m
)
, (11)
if only z ≪ xN(w)
p2n .
The value ∆zW
(
xN(w)
p2n
)
may be defined in a different way. We put
Φ(y) =
1
2πi
c+i·∞
∫
c−i·∞
ys+2Γ(2|m| + 1 − s)
s(s+ 1)(s+ 2)Γ(2|m| + s)
ds, c > 1.
Then
Φ(y) =
y2
2
Γ(2|m| + 1)
Γ(2|m|) +W (y).
L. Balyas, P. Varbanets 165
For all y > 0 the integrals
1
2πi
c+i·∞
∫
c−i·∞
ys+2Γ(2|m| + 1 − s)
s · . . . · (s+ 2 − j)Γ(2|m| + s)
ds, j = 0, 1, 2,
converge absolutely and uniformly. Hence, for the derivatives of Φ(y) we
have
Φ(j)(y) =
1
2πi
c+i·∞
∫
c−i·∞
ys+2−jΓ(2|m| + 1 − s)
s · . . . · (s+ 2 − j)Γ(2|m| + s)
ds, j = 0, 1, 2.
Thus,
W
′′
(y) = −Γ(2|m| + 1)
Γ(2|m|) +
1
2πi
c+i·∞
∫
c−i·∞
ys
s
Γ(2 |m| + 1 − s)
Γ(2|m| + s)
ds. (12)
Now we will take into account that the subintegral function doesn’t
have singularities in the semiplane ℜs > 0. Then, transfering the contour
of the integration in (12) to the line ℜs = 1
log y
and using Lemma 3,
Stirling formula for the gamma-function, we get
W
′′
(y) ≪ L(y,m),
where L(y,m) = pn(M logM + y
1
4 ). But then
∆z
(
W
(
N(w)x
p2n
))
=
N(w)
p2n (x+z)
∫
N(w)
p2n x
dy1
y1+
N(w)
p2n z
∫
y1
W
′′
(y2)dy2
≪ L
(
xN(α)
p2n
,m
)
z2N(w)2
p4n
.
(13)
Let us denote as S2(x) the following sum
S2(x) =
∑
α∈E+
n
S2(x, α).
166 Quadratic residues
We have
S2(x) =
x2
2
∑
α∈E+
n
ζm
(
0;
α
pn
, 0
)
+
∑
α∈E+
n
∑
w≡α (mod pn)
e4mi arg we
πi Sp
(
αw
pn
)W
(
xN(w)
p2n
)
N(w)3
=
x2
2
∑
α∈E+
n
ζm
(
0;
α
pn
, 0
)
+
∑
χEn
1
|En|
∑
α∈En
χ̄(α)
×
∑
N(w)≡1 (mod pn)
χ(w)e4mi arg w
N(w)3
· e
πi Sp
(
αw
pn
)
W
(
xN(w)
pn
)
.
(14)
Applying the operator ∆z to both parts of (14), we obtain
∆z (S2(x)) = z2
∑
α∈E+
n
ζm
(
0;
α
pn
, 0
)
+
∑
w∈G
N(w)≡1 (mod pn)
e−4mi arg wN(w)−3W
(
xN(w)
p2n
)
∑
α∈E+
n
e
πi Sp α2
pn .
In virtue of (10), (11) and (13), Lemma 5 and Corollary 2 we infer
∆z (S2(x))
≪ z2p
3
2
nM logM + p
n
2 z2
∑
N(w)6x
N(w)−1L
(
xN(w)
p2n
,m
)
+ p
n
2
∑
N(w)>x
N(w)−3K
(
xN(w)
p2n
,m
)
≪ z2p
n
2 pnM logM + z2p
n
2
∑
N(w)6x
pn
(
M logM+
N(w)
1
4x
1
4
p
n
2
)
N(w)−1
+ z2p
n
2
∑
N(w)>x
p3nM3N(w)−2p−2n logN(w).
(15)
From this we get
∆z (S2(x)) ≪
≪ p
3
2
{
z2M logM + z2M logM log x+ z2p− n
2
√
x+M3 log x
}
. (16)
L. Balyas, P. Varbanets 167
The application of the estimates (10), (14) requires that z ≪ xN(w)
p2n .
Thus the condition N(w) > x in the second sum of (15) allows to assume
z = pnM 6
x2
p2n for M ≪ x2
p2n . Then the following inequality
∆z (S2(x)) ≪ z2p
3
2
nM logM
holds.
Let H2(x) stands for the sum
H2(x) =
∑
α∈E+
n
∑
w∈G
w≡α (mod pn)
N(w)6x
e4mi arg w. (17)
Then from the definition of S2(x) we easily find
H2(x) =
d2
dx2
(S2(x)).
It is clear that
x+z
∫
x
dy1
y1+z
∫
y1
H2(y2)dy2 = ∆z (S2(x)) .
By x 6 y1 6 x+ 2z and Lemma 4 we have
|H2(y2) −H2(x)| = |E+
n | ·
∣
∣
∣
∣
∣
∑
x<N(w)6y2
N(w)≡1 (mod pn)
e4mi arg w
∣
∣
∣
∣
∣
6 (p+ 1)pn−1
∑
x<n6x+2z
n≡1 (mod pn)
r(n)
6
πz
pn
· p+1
p
+O
(√
x
p
n
2
)
+O
p
n
2 exp
c
(log pn)
1
2
log log pn
.
Consequently,
|H2(y2)−H2(x)| = O
(
z
pn
)
+O
(√
xp− n
2
)
+O
p
n
2 exp
c
(log pn)
1
2
log log pn
.
It follows that
H2(y2) = H2(x) +O
(
z
pn
)
+O
(√
xp− n
2
)
+O
p
n
2 exp
c
(log pn)
1
2
log log pn
.
(18)
168 Quadratic residues
Now from (17) and (18) we get
z2
H2(x) +O
(
z
pn
)
+O
(√
xp− n
2
)
+O
p
n
2 exp
c
(log pn)
1
2
log log pn
= O(z2p
n
2M logM).
Thus,
H2(x) = x
1
2 p− n
2 + p
n
2 exp
c
(log pn)
1
2
log log pn
+ p
n
2M logM.
So, the proof of Theorem 1 is completed.
Now we can investigate the distribution of quadratic residues mod-
ulo pn in narrow sectors.
Theorem 2. Let p
3
2
n
6 x 6 p2n, 0 6 φ1 < φ2 6
π
2 and let 0 < s 6
1
8 .
Then for φ2 − φ1 > x−s the asymptotic formula
R(x;φ) =
φ2 − φ1
2
· p+ 1
p
· x
pn
+O
(
3nx
1−s
pn
log x
)
holds.
Proof. It is known that the distribution of the arguments of Gaussian
integers (being considered up to the association) has the period π
2 . In view
of this fact the application of Lemma 7 with Ω = π
2 gives for every T > 1
∑
α∈E+
n
φ16α<φ2
N(α)6x
1 = Φ(φ1, φ2) + θ1Φ(φ1 − ∆, φ1) + θ2Φ(φ2, φ2 + ∆),
|θi| 6 1, i = 1, 2, Φ(φ1, φ2) =
1
4
∑
w∈E+
n
N(w)6x)
f(argw)
and f(φ) is the function from Lemma 7, 0 < ∆ = 1
2Ω.
Furthermore
Φ(φ1, φ2) =
∑
w∈E+
n
N(w)6x)
+∞
∑
m=−∞
ame4mi arg α =
+∞
∑
m=−∞
am
∑
k≡1 (mod pn)
k6x
rm(x),
where am is the Fourier coefficient from Lemma 7.
L. Balyas, P. Varbanets 169
We put δ = xs, 0 < s < 1 (we will find the more precise estimate for s
later). Let us use the estimates for the coefficients am (see Lemma 7 with
r = 2):
|am| ≪
1
|m| , |m| 6 δ = ∆−1;
1
|m|3∆2 , |m| > δ.
After simple calculations we get
Φ(φ1, φ2) =
φ2 − φ1
2
· p+ 1
p
· x
pn
+O
(
x1−s
pn
)
+O
(
s
√
x
p
n
2
log2 x
)
+O
(
sp
n
2 log2 x
)
+O
(
x
1
2
+s
p
n
2
)
+O
(
3np
n
2 xs log x
)
.
In view of the assumption of the theorem the following inequalities
x1−s
pn
≫ p
n
2 xs,
x1−s
pn
≫ x
1
2
+s
p
n
2
hold. Therefore,
Φ(φ1, φ2) =
φ2 − φ1
2
· p+ 1
p
· x
pn
+O
(
3nx
1−s
pn
log x
)
. (19)
It follows from (19) that
Φ(φ1 − ∆, φ1),Φ(φ2, φ2 + ∆) ≪ 3nx
1−s
pn
log x. (20)
The relations (19) and (20) show that Theorem 2 is proved for every s,
0 < s 6 1
8 .
Acknowledgment
The authors would like to thank the referee for useful remarks and
suggestions.
References
[1] D. Burgess, The Distribution of quadratic residues and non-residues, Mathematika,
N.4, 1957, pp.106–112.
[2] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung
der Primzahlen I-II, Math.Z., T.1, 1918, ss.357-376; T.6, 1920, pp.11–51.
170 Quadratic residues
[3] J. Kubilius, On one problem of multidimensional analytic number theory, Proc.
Vilnius Univ., N.4, 1955, pp.5–41 (in Lithuanian).
[4] H. Montgomery, R. Vaughan, Exponential sums with multiplicative coefficients,
Inventiones math., N.43, 1977, pp.69–82.
[5] S. Sergeev, P. Varbanets, Exponential sums over norm group, Siauliai Math.Seminar,
N.9(17), 2014, pp.83–92.
[6] Elias M. Stein, Guido Weiss, Introduction to Fourier analysis on Euclidian spaces,
Princeton, New Jersey, Princeton University Press, 1971, P.312.
[7] P. Varbanets, Problem of circle in aritmetic progression, Mat. Zametki, N.8(6),
1970, pp.787–798 (in Russian).
[8] P. Varbanec, P. Zarzycki, Divisors of the Gaussian integers in an Arithmetic
Progression, Journal of Number Theory, V.33, N.2, 1989, pp.152–169.
[9] S. Varbanets, General Klosterman sums over ring of Gaussian integers,
Ukr. Math. J., N.59(9), 2007, pp.1179–2000.
[10] I.M. Vinogradov, Selectas, Academic Press USSR, Moscow, 1952 (in Russian).
[11] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34, 1948,
pp. 204–207.
Contact information
L. Balyas,
P. Varbanets
Department of Computer Algebra and Dis-
crete Mathematics, I. I. Mechnikov Odessa Na-
tional University, Dvoryanskaya 2 65026 Odessa,
Ukraine
E-Mail(s): balyas@ukr.net,
varb@sana.od.ua
Web-page(s): onu.edu.ua
Received by the editors: 29.01.2016
and in final form 29.12.2016.
|