On colouring integers avoiding t-AP distance-sets

In this paper, we investigate the structure of sets with bounded number of pairs with certain gaps.

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Ahmed, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155741
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On colouring integers avoiding t-AP distance-sets / T. Ahmed // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 1-10. — Бібліогр.: 1 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155741
record_format dspace
spelling irk-123456789-1557412019-06-18T01:25:17Z On colouring integers avoiding t-AP distance-sets Ahmed, T. In this paper, we investigate the structure of sets with bounded number of pairs with certain gaps. 2016 Article On colouring integers avoiding t-AP distance-sets / T. Ahmed // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 1-10. — Бібліогр.: 1 назв. — англ. 1726-3255 2010 MSC:Primary 05D10. http://dspace.nbuv.gov.ua/handle/123456789/155741 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, we investigate the structure of sets with bounded number of pairs with certain gaps.
format Article
author Ahmed, T.
spellingShingle Ahmed, T.
On colouring integers avoiding t-AP distance-sets
Algebra and Discrete Mathematics
author_facet Ahmed, T.
author_sort Ahmed, T.
title On colouring integers avoiding t-AP distance-sets
title_short On colouring integers avoiding t-AP distance-sets
title_full On colouring integers avoiding t-AP distance-sets
title_fullStr On colouring integers avoiding t-AP distance-sets
title_full_unstemmed On colouring integers avoiding t-AP distance-sets
title_sort on colouring integers avoiding t-ap distance-sets
publisher Інститут прикладної математики і механіки НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/155741
citation_txt On colouring integers avoiding t-AP distance-sets / T. Ahmed // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 1-10. — Бібліогр.: 1 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT ahmedt oncolouringintegersavoidingtapdistancesets
first_indexed 2025-07-14T07:58:59Z
last_indexed 2025-07-14T07:58:59Z
_version_ 1837608406102310912
fulltext Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 22 (2016). Number 1, pp. 1–10 © Journal “Algebra and Discrete Mathematics” On colouring integers avoiding t-AP distance-sets Tanbir Ahmed Communicated by V. A. Artamonov Abstract. A t-AP is a sequence of the form a, a + d, . . . , a+(t−1)d, where a, d ∈ Z. Given a finite set X and positive integers d, t, a1, a2, . . . , at−1, define ν(X, d) = |{(x, y) : x, y ∈ X, y > x, y − x = d}|, (a1, a2, . . . , at−1; d) = a collection X s.t. ν(X, d ·i) > ai for 1 6 i 6 t − 1. In this paper, we investigate the structure of sets with bounded number of pairs with certain gaps. Let (t − 1, t − 2, . . . , 1; d) be called a t-AP distance-set of size at least t. A k-colouring of inte- gers 1, 2, . . . , n is a mapping {1, 2, . . . , n} → {0, 1, . . . , k − 1} where 0, 1, . . . , k − 1 are colours. Let ww(k, t) denote the smallest posi- tive integer n such that every k-colouring of 1, 2, . . . , n contains a monochromatic t-AP distance-set for some d > 0. We conjecture that ww(2, t) > t2 and prove the lower bound for most cases. We also generalize the notion of ww(k, t) and prove several lower bounds. 1. Introduction A t-AP is a sequence of the form a, a + d, . . . , a + (t − 1)d, where a, d ∈ Z. For example, 3, 7, 11, 15 is a 4-AP with a = 3 and d = 4. Given a finite set X and positive integers d, t, a1, a2, . . . , at−1, define ν(X, d) = |{(x, y) : x, y ∈ X, y > x, y − x = d}|, (a1, a2, . . . , at−1; d) = a collection X s.t. ν(X, d · i) > ai for 16 i6 t−1. 2010 MSC: Primary 05D10. Key words and phrases: distance sets, colouring integers, sets and sequences. 2 On colouring integers avoiding t-AP distance-sets The t-AP {x, x + d, . . . , x + (t − 1)d} (say T ) has ν(T, d · i) = t − i for 1 6 i 6 t − 1. On the other hand, a set (t − 1, t − 2, . . . , 1; d) (say Y ) has ν(Y, d · i) > t − i for 1 6 i 6 t − 1, but not necessarily contains a t-AP. A k-colouring of integers 1, 2, . . . , n is a mapping {1, 2, . . . , n} → {0, 1, . . . , k − 1} where 0, 1, . . . , k − 1 are colours. Let ww(k, t) denote the smallest integer n such that every k-colouring of 1, 2, . . . , n contains a monochromatic set (t − 1, t − 2, . . . , 1; d) for some d > 0. Here, (t − 1, t − 2, . . . , 1; d) is a t-AP distance-set of size at least t. The existence of ww(k, t) is guaranteed by van der Waerden’s theorem [1]. Given positive integers k, t, and n, a good k-colouring of 1, 2, . . . , n contains no monochromatic t-AP distance set. We call such a good k-colouring, a certificate of the lower bound ww(k, t) > n. We write a certificate as a sequence of n colours each in {0, 1, . . . , k − 1}, where the i-th (i ∈ {1, 2, . . . , n}) colour corresponds to the colour of the integer i. A certificate of lower bound ww(k, t) > n that avoids a monochro- matic arithmetic progression, may still be invalid, since it may contain a monochromatic distance set. For example, while looking for a certificate of lower bound of ww(2, 4), if the set X = {1, 2, 3, 5, 9, 10} (which does not contain a 4-AP) is monochromatic, then the colouring is “bad” as ν(X, 1) = 3, ν(X, 2) = 2, and ν(X, 3) = 1. In this paper, we perform computer experiements to observe the patterns of certificates of ww(k, t) > n. We conjecture that ww(2, t) > t2 and prove the lower bound for most cases. We also generalize the notion of ww(k, t) and provide several lower bounds. 2. Some values and bounds With a primitive computer search algorithm, we have computed the following values and bounds of ww(k, t). Theorem 1 gives a lower bound for ww(k, t). A computed lower bound is presented only if it improves over the bound given by Theorem 1. Theorem 1. Given k > 2, t > 3, if t 6 2k + 1, then ww(k, t) > k(t − 1)(t − 2). Proof. Let n = k(t − 1)(t − 2) and consider the colouring f : {1, 2, . . . , n} → {0, 1, . . . , k − 1}. Let Xi = {x ∈ X : f(x) = i}. Take the certificate (0t−11t−1 · · · (k − 1)t−1)t−2. T. Ahmed 3 Table 1. ww(k, t) k/t 3 4 5 6 7 8 2 9 19 33 43 64 85 3 17 39 > 56 > 67 > 97 > 121 4 33 > 70 > 85 > 102 > 134 5 > 44 > 86 > 135 > 141 > 181 > 242 6 > 56 > 106 > 175 > 221 > 254 > 287 7 > 73 > 142 > 214 > 278 > 298 > 380 8 > 91 > 168 > 246 > 338 > 390 > 484 9 > 115 > 198 > 302 > 398 > 478 > 567 10 > 127 > 233 > 365 > 464 > 558 > 691 11 > 146 > 275 > 417 > 581 > 672 > 806 12 > 157 > 315 > 474 > 649 > 769 > 927 13 > 174 > 337 > 550 > 760 > 840 > 1085 14 > 198 > 405 > 594 > 828 > 949 > 1220 15 > 229 > 434 > 666 > 904 > 1087 > 1334 16 > 230 > 493 > 784 > 1015 > 1236 > 1517 17 > 270 > 525 > 849 > 1082 > 1375 > 1676 18 > 298 > 589 > 932 > 1211 > 1509 > 1841 19 > 337 > 629 > 988 > 1338 > 1635 > 2027 20 > 348 > 689 > 1098 > 1445 > 1850 > 2249 21 > 364 > 756 > 1179 > 1561 > 2014 > 2487 22 > 401 > 824 > 1288 > 1701 > 2153 > 2632 23 > 422 > 890 > 1354 > 1868 > 2249 > 2820 24 > 476 > 948 > 1459 > 1952 > 2563 > 3107 25 > 500 > 1033 > 1592 > 2125 > 2746 > 3284 We show that for each d, there exists j with 1 6 j 6 t − 1 such that ν(Xi, d · j) < t − j for each i ∈ {0, 1, . . . , k − 1}. The largest difference between two monochromatic numbers in the certificate is n − (k − 1)(t − 1) − 1 = (t − 1)(k(t − 2) − k − 1) − 1 < k(t − 1)(t − 3). Since the existence of a monochromatic set (t − 1, t − 2, . . . , 1; d) in X requires ν(Xi, d · (t − 1)) > 1, we have d < k(t − 3). We have the following cases: (a) 1 6 d 6 k − 1: Take x, y ∈ {1, 2, . . . , n} such that y = x + d(t − 1). But by our choice of d, we have f(y) = (f(x) + d) mod k 6= f(x), that is, x and y cannot be monochromatic. So, ν(Xi, (t − 1) · d) = 0 < 1 for each i ∈ {0, 1, . . . , k − 1}. (b) k 6 d 6 t − 3: Take x, y ∈ {1, 2, . . . , n} such that y = x + d(t − a) where a is such that (t − 3)(t − a) 6 (t − 1)(k − 1) and k(t − a) > k, which 4 On colouring integers avoiding t-AP distance-sets gives us a bound t − (t − 1)(k − 1) t − 3 6 a 6 t − k. Such an a exists since (t − 1)(k − 1) t − 3 = k − 1 + 2(k − 1) t − 3 > k − 1 + 2(k − 1) (2k + 1) − 3 > k. (c) d = t − 2: In each block of t − 1 colours, there is one pair of integers at distance t − 2, and there are t − 2 such blocks for each colour. So, ν(Xi, 1 · d) = ν(X, t − 2) = t − 2 < t − 1 for each i ∈ {0, 1, . . . , k − 1}. (d) (t − 1) 6 d 6 (k − 1)(t − 1): Take x, y ∈ {1, 2, . . . , n} such that y = x + d = x + q(t − 1) + r where 1 6 q 6 k − 1 and 0 6 r 6 t − 2. Suppose x = qx(t − 1) + rx with 0 6 rx 6 t − 2. Then f(x) = qx mod k; f(y) = (f(x) + q + ⌊(r + rx)/(t − 1)⌋) mod k. If r > 0, then q 6 k−2, which implies q+⌊(r+rx)/(t−1)⌋ 6 (k−2)+1 = k − 1. If r = 0, then q 6 k − 1, which implies q + ⌊(0 + rx)/(t − 1)⌋ 6 (k − 1) + 0 = k − 1. Therefore, f(y) 6= f(x); and x and y cannot be monochromatic. So, ν(Xi, d · 1) = 0 < t − 1 for each i ∈ {0, 1, . . . , k − 1}. Since t 6 2k + 1, we have d < k(t − 3) = kt − 3k = (kt − k − 2k) 6 (kt − k − (t − 1)) = (k − 1)(t − 1). Hence, we are done and there is no monochromatic t-AP distance set in X. Conjecture 1. For t > 3, ww(2, t) > t2. Lemma 1. For t > 3 and t 6= 2u with u > 2, ww(2, t) > t2. Proof. Let t = 2u + v with 1 6 v 6 2u − 1. Let n = t2 − 1 and X = {1, 2, . . . , n}, and consider the colouring f : X → {0, 1}. Let m = n − 1 − (t − 1) = q · 2u + r with 0 6 r 6 2u − 1. Now, take the certificate { 01t−1(02u 12u )q/20r, if q ≡ 0 (mod 2); 01t−1(02u 12u )⌊q/2⌋02u 1r, if q ≡ 1 (mod 2). T. Ahmed 5 We need to show that for each d, there exists j with 1 6 j 6 t − 1 such that ν(X, d · j) < t − j. Since the existence of a monochromatic set (t − 1, t − 2, . . . , 1; d) in X requires ν(X, d · (t − 1)) > 1, we have d(t − 1) < t2 − 1, that is, 1 6 d 6 t. Let Xi = {x ∈ X : f(x) = i}. Suppose q ≡ 0 (mod 2). Then we have the following two cases: (a) d ≡ 1 (mod 2): Take x, y ∈ X such that y = x + d · 2u. (a1) v + 1 6 x < y 6 n − r: Since f(x) ∈ {0, 1} and f(x + 1 · 2u) = (f(x) + 1) mod 2 6= f(x), we have f(y) = f(x + d · 2u) 6= f(x). So, two monochromatic integers cannot both be in {v + 1, v + 2, . . . , n − r}. (a2) 2 6 x 6 v and y 6 n − r: Since f(x) = 1 and f(x + 1 · 2u) = 1 = f(x), we have f(y) = (x + d · 2u) = f(x). So, there are exactly v − 1 pairs of integers with colour 1 at distance d · 2u. (a3) x = 1 and y 6 n − r: Since f(x) = 0, f(x + 1 · 2u) = 1 6= f(x), and 1 + 2u > v, using case (i) we have 0 pair of integers with colour 0 at distance d · 2u. (a4) x > 1 and n − r + 1 6 y 6 n: Since f(y) = 0 and r < 2u, we have f(y − 1 · 2u) = 1, which implies f(y − d · 2u) = 1 6= f(y). That is, adding r trailing zeros does not change the number of monochromatic pairs at distance d · 2u. Therefore, for each i ∈ {0, 1}, we have ν(Xi, d·2u) 6 v−1 < v = t−2u. (b) d ≡ 0 (mod 2): Let d = 2w · do, with do being an odd num- ber and w > 1. Then ν(Xi, d · 2u−w) = ν(Xi, do · 2u) 6 v − 1 < v = t − 2u (by case (i)) for each i ∈ {0, 1}. The case q ≡ 1 (mod 2) is similar. Lemma 2. Suppose t = 2u for some u > 2 and t − 1 is prime. Then for each r ∈ {1, 2, . . . , u} and for each do ∈ {1, 3, . . . , 2u−r − 1}, there exists s ∈ {1, 2, 3, . . . , do − 1} such that do divides s(t − 1) − 2u−r. Proof. Since t − 1 is prime, we have gcd(t − 1, do) = 1, and hence the linear congruence (t − 1)s ≡ 2u−r (mod do) has a solution. Extended Euclid Algorithm yields x, y ∈ Z such that (t − 1) · x + do · y = 1. Then s = (x · 2u−r) mod do. Since do 6 |x and do 6 |2u−r, we have s 6= 0. Hence s ∈ {1, 2, . . . , do − 1}. Lemma 3. If t = 2u for u > 2 with t − 1 prime, then ww(2, t) > t2. Proof. Take the certificate 0(1t−10t−1)t/21t−2. We have the following two cases: (a) d ≡ 1 (mod 2): Take x, y ∈ X such that y = x + d · (t − 1). 6 On colouring integers avoiding t-AP distance-sets (a1) 2 6 x 6 t2 − t + 1 = n − (t − 2): Since f(x) ∈ {0, 1} and f(x + 1 · (t − 1)) = (f(x) + 1) mod 2 6= f(x), we have f(y) = f(x + d · (t − 1)) 6= f(x). So, two monochromatic integers cannot both be in {2, 3, . . . , n − (t − 2)}. (a2) x = 1 and y 6 n− (t−2): Since f(x) = 0, f(x+1 · (t−1)) = 1 6= f(x), using case (i) we have 0 pair of integers with colour 0 at distance d · (t − 1). (a3) x > 1 and n − (t − 2) + 1 6 y 6 n: Since f(y) = 0, we have f(y − 1 · (t − 1)) = 1, which implies f(y − d · (t − 1)) = 1 6= f(y). That is, adding t − 2 trailing ones does not change the number of monochromatic pairs at distance d · (t − 1). Therefore, for each i ∈ {0, 1}, we have ν(Xi, d · (t − 1)) = 0 < 1. (b) d ≡ 0 (mod 2): For d ∈ {2, 4, . . . , t} and j ∈ {1, 2, . . . , t − 1}, 2 6 d · j 6 t(t − 1) = t2 − t. For a given d ∈ {2, 4, . . . , t}, we show that there exists (j, w) with j ∈ {1, 2, . . . , t−1} and w ∈ {1, 3, 5, . . . , t−1} such that d·j = w(t−1)−1. In that case, since d ·j 6 t(t−1), we have w 6 t; and also since d ·j is even, w(t − 1) is odd, which implies w is odd, that is, w ∈ {1, 3, 5, . . . , t − 1}. Let d = 2rdo with 1 6 r 6 u and odd number do ∈ {1, 3, . . . , 2u−r −1} (since d 6 t = 2u). For a w to exist and satisfy d ·j = w(t−1)−1, we need 2rdo · j = w(t − 1) − 1 = wt − (w + 1), that is, 2r divides w + 1 (since 2r divides wt = w2u). Let w = s · 2r − 1 with s ∈ {1, 2, . . . , do −1}. The chosen s requires to satisfy that do divides (w(t − 1) − 1)/2r = s(t − 1) − 2u−r. By Lemma 2, such an s exists. It can be observed that for a given d ∈ {2, 4, . . . , t}, if d · j1 = w1 · (t − 1) − 1 for some j1 ∈ {1, 2, 3, . . . , t − 1} and w1 ∈ {1, 3, 5, . . . , t − 1}, then d · j2 = w2 · (t − 1) + 1, with j1 + j2 = t − 1 and w1 + w2 = d. We claim that ν(X1, d · ti) < t − ji for at least one i ∈ {1, 2}. If ν(X1, d · j1) < t − j1, then we are done. Suppose ν(X1, d · j1) = ν(X1, w1(t − 1) − 1) = t 2 − w1 − 1 2 > t − j1, which implies t/2 + (w1 − 1)/2 6 j1. Now, ν(X1, d · j2) = ν(X1, w2(t − 1) + 1) = t 2 − w2 − 1 2 = t 2 − d − w1 − 1 2 = t 2 + w1 − 1 2 +1− d 2 6 j1+1− d 2 = t−1−j2+1− d 2 < t−j2. T. Ahmed 7 Similarly, we can show that ν(X0, d·j)<t−j for some j ∈{1, 2, . . . , t − 1}. 3. Generalized distance-sets Here we consider variants of ww(k, t) with different variations of parameters in a distance set. Let gww(k, t; a1, a2, . . . , at−1) (with ai > 1) denote the smallest posi- tive integer n such that any k-colouring of 1, 2, . . . , n contains monochro- matic set (a1, a2, . . . , at−1; d) for some d > 0. In this definition, gww(k, t; t − 1, t − 2, . . . , 1) = ww(k, t). Observation 1. Let us write gww(2, t; a1, a2, . . . , at−1) as gww(2, t, r), where ai = r for 1 6 i 6 t − 1. It is trivial that gww(2, t, t−1) > ww(2, t). Table 2 contains a few computed values of gww(2, t, r). Table 2. gww(2, t, r) t/r 1 2 3 4 5 6 7 8 3 9 13 4 13 21 29 5 33 37 41 49 6 41 45 57 65 74 7 49 53 69 85 92 > 96 8 57 61 85 105 114 > 118 > 123 9 129 133 137 > 140 > 144 > 148 > 152 > 156 10 145 149 153 11 161 165 169 12 177 181 185 13 193 197 > 200 14 209 213 > 216 15 225 229 > 232 16 241 245 > 248 17 513 > 516 33 > 2048 > 2052 65 > 8192 Lemma 4. For u > 1 and 1 6 v 6 2u, gww(2, 2u + v, 1) > (2u + v − 1)2u+1 + 1. Proof. Consider t = 2u+v (t > 5) and let n = (2u+v−1)2u+1 = (t−1)2u+1 and X = {1, 2, . . . , n}. Consider the colouring f : X → {0, 1} and take the certificate (02u 12u )t−1. 8 On colouring integers avoiding t-AP distance-sets Let Xi = {x ∈ X : f(x) = i}. We claim that this 2-colouring of X does not contain a monochromatic set (1, 1, . . . , 1; d) for any d > 0, that is, for each d with 1 6 d < 2u+1 and for each i ∈ {0, 1}, there exists j ∈ {1, 2, . . . , t − 1} such that ν(Xi, d · j) = 0. (a) d ≡ 1 (mod 2): Take x, y ∈ X such that y = x + d · 2u. Since d is odd, if f(x) = 0, then f(x + d · 2u) = 1 and vice-versa. Hence, ν(Xi, d · 2u) = 0 for each i ∈ {0, 1} (b) d ≡ 0 (mod 2): Let d = 2w · do, with do being an odd number and w > 1. Then for each i ∈ {0, 1}, ν(Xi, d · 2u−w) = ν(Xi, do · 2u) = 0 (by case (a)). So, X does not contain a monochromatic set (1, 1, . . . , 1; d) for any d > 0. Conjecture 2. For u > 1 and 1 6 v 6 2u, gww(2, 2u + v, 1) = (2u + v − 1)2u+1 + 1. Lemma 5. For u > 2 and 1 6 v 6 2u, gww(2, 2u + v, 2) > (2u + v − 1)2u+1 + 5. Proof. Let t = 2u + v (t > 5), n = (2u + v − 1)2u+1 + 4 = (t − 1)2u+1 + 4, and X = {1, 2, . . . , n}. Consider the colouring f : X → {0, 1} and take the certificate 000(102u−311012u−300)t−2(102u−311)(012u−3)011. We show that this colouring of X does not contain a monochromatic set (2, 2, . . . , 2; d) for any d > 0, that is, for each d with 1 6 d 6 2u+1 and for each i ∈ {0, 1}, there exists j ∈ {1, 2, . . . , t − 1} such that ν(Xi, d · j) 6 1. Note that the largest difference between two integers with colour 0 in the colouring is (n − 2) − 1 = n − 3 = (t − 1) · 2u+1 + 1 = p (say); and the largest difference between two integers with colour 1 in the colouring is n − 4 = (t − 1) · 2u+1 = p − 1. (a) d = 2u+1: Note that d · (t − 1) = (t − 1)2u+1 = n − 4 = p − 1. The only pair (x, y) with f(x) = f(y) = 0 and y = x + d · (t − 1) is (1, n − 3) and the only pair (x, y) with f(x) = f(y) = 1 and y = x + d · (t − 1) is (4, n). Hence, we have ν(Xi, d · (t − 1)) = 1 for each i ∈ {0, 1}. (b) d ≡ 1 (mod 2): Write the certificate as 000A0A1 . . . A2t−5, A2t−4C11, where Ai = 102u−311 if i ≡ 0 (mod 2), Ai = 012u−300 if i ≡ 1 (mod 2), and C = 012u−30. Take x, y ∈ {4, 5, . . . , n−2u −2} such that y = x+d ·2u T. Ahmed 9 for some odd d < 2u+1 + 1. Suppose x = 3 + i · 2u + j, that is, f(x) is the j-th (1 6 j 6 2u) bit in Ai. Then y = 3 + (i + d) · 2u + j, that is, f(y) is the j-th bit in Ai+d. If i ≡ 1 (mod 2), then (i + d) ≡ 0 (mod 2) (since d is odd), and vice-versa. Therefore, f(x) 6= f(y). So, two monochromatic integers at distance d · 2u cannot both be in {4, 5, . . . , n − 2u − 2}. Now, take x, y ∈ {4, 5, . . . , n−2} such that y = x+d ·2u and y ∈ {n− 2u−1, n−2u, . . . , n−2}. Since |C| < 2u, x must be in {4, 5, . . . , n−2u−2}. With similar reasoning as above, it can be shown that two monochromatic integers at distance d · 2u cannot both be in {4, 5, . . . , n − 2}. Following are the remaining cases: (b1) If x = 1, then x+d·2u = 3+d·2u−2 = 3+(d−1)·2u+(2u−2) = y (say). We have f(x) = 0. Again (2u − 2)-th bit in Ad−1 is also zero since d is odd and Ad−1 = 102u−311. (b2) If x = 2, 3 (where f(x) = 0), then with similar reasoning as above, f(x + d · 2u) = 1. (b3) If y = n − 1 (where f(y) = 1), then y − d · 2u = (t − 1)2u+1 + 3 − d · 2u = 3 + (2t − 3 − d)2u + 2u = x (say). Since d is odd, 2t − 3 − d is even, that is, A2t−3−d = 102u−311. The 2u-th element in A2t−3−d is one, that is f(x) = 1. (b4) If y = n (where f(y) = 1), then y − d · 2u = (t − 1)2u+1 + 4 − d · 2u = 3 + (2t − 2 − d)2u + 1 = x (say). Since d is odd, 2t − 2 − d is odd, that is, A2t−2−d = 012u−300. The 1-st element in A2t−2−d is zero, that is f(x) = 0. Hence ν(Xi, d · 2u) 6 1 for each i ∈ {0, 1}. (c) Otherwise (d 6= 2u+1 and d ≡ 0 (mod 2)): Let d = 2w · do, with do being an odd number and w > 1. Then for each i ∈ {0, 1}, ν(Xi, d · 2u−w) = ν(Xi, do · 2u) 6 1 (by case (b)). Therefore, X does not contain a monochromatic set (2, 2, . . . , 2; d) for any d > 0. Conjecture 3. For r > 2 and t > 2r + 1, gww(2, t, r) = (t − 1)2⌊log 2 (t−1)⌋+1 + 2r + 1. 10 On colouring integers avoiding t-AP distance-sets Observation 2. We observe the following experimental results: (a) Primitive search gives gww(2, 10, 9) > 186; (b) Using the certificate { 01t+1(0t−11t−1)t/2+1, if t ≡ 0 (mod 2); 01t+1(0t−11t−1)⌊t/2⌋+10t−1, if t ≡ 1 (mod 2), we obtain the following lower bounds with 12 6 t 6 48: gww(2, 12, 11) > 168, gww(2, 14, 13) > 224, gww(2, 17, 16) > 323, gww(2, 18, 17) > 360, gww(2, 20, 19) > 440, gww(2, 24, 23) > 624, gww(2.30, 29) > 960, gww(2, 32, 31) > 1088, gww(2, 33, 32) > 1155, gww(2, 38, 37) > 1520, gww(2, 42, 41) > 1848, gww(2, 44, 43) > 2024. (c) 035(118018)2120017(119018)511901712001014 proves gww(2, 19, 18) > 399. (d) 041121021(122021)10115 proves gww(2, 22, 21) > 528. Conjecture 4. For t > 4, gww(2, t, t − 1) > (t + 1)2. Conjecture 5. For t > 5, gww(2, t, t − 1) < 2t+1. We do not have enough data to make stronger upper bound conjecture for gww(2, t, t − 1), but it may be possible that gww(2, t, t − 1) < t3. Acknowledgements The author would like to thank Hunter Snevily (deceased) for sug- gesting the problem, Clement Lam and Srecko Brlek for their support, and Andalib Parvez for carefully reading the manuscript. References [1] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde, 15 (1927), 212–216. Contact information T. Ahmed Laboratoire de Combinatoire et d’Informatique Mathématique, UQAM, Montréal, Canada E-Mail(s): tanbir@gmail.com Received by the editors: 05.10.2015 and in final form 15.01.2016.