Influence of anisotropic ion shape, asymmetric valency, and electrolyte concentration on structural and thermodynamic properties of an electric double layer

Grand canonical Monte Carlo simulation results are reported for an electric double layer modelled by a planar charged hard wall, anisotropic shape cations, and spherical anions at different electrolyte concentrations and asymmetric valencies. The cations consist of two tangentially tethered hard sph...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Kaja, M., Lamperski, S., Silvestre-Alcantara, W., Bhuiyan, L.B., Henderson, D.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2016
Series:Condensed Matter Physics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/155788
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Influence of anisotropic ion shape, asymmetric valency, and electrolyte concentration on structural and thermodynamic properties of an electric double layer / M. Kaja, S. Lamperski, W. Silvestre-Alcantara, L.B. Bhuiyan, D. Henderson // Condensed Matter Physics. — 2016. — Т. 19, № 1. — С. 13804: 1–10 . — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Grand canonical Monte Carlo simulation results are reported for an electric double layer modelled by a planar charged hard wall, anisotropic shape cations, and spherical anions at different electrolyte concentrations and asymmetric valencies. The cations consist of two tangentially tethered hard spheres of the same diameter, d. One sphere is charged while the other is neutral. Spherical anions are charged hard spheres of diameter d. The ion valency asymmetry 1:2 and 2:1 is considered, with the ions being immersed in a solvent mimicked by a continuum dielectric medium at standard temperature. The simulations are carried out for the following electrolyte concentrations: 0.1, 1.0 and 2.0 M. Profiles of the electrode-ion, electrode-neutral sphere singlet distributions, the average orientation of dimers, and the mean electrostatic potential are calculated for a given electrode surface charge, σ, while the contact electrode potential and the differential capacitance are presented for varying electrode charge. With an increasing electrolyte concentration, the shape of differential capacitance curve changes from that with a minimum surrounded by maxima into that of a distorted single maximum. For a 2:1 electrolyte, the maximum is located at a small negative σ value while for 1:2, at a small positive value.