Ab initio molecular dynamics study of collective excitations in liquid H₂O and D₂O: Effect of dispersion corrections

The collective dynamics in liquid water is an active research topic experimentally, theoretically and via simulations. Here, ab initio molecular dynamics simulations are reported in heavy and ordinary water at temperature 323.15 K, or 50oC. The simulations in heavy water were performed both with and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Bryk, T., Seitsonen, A.P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2016
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/155810
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ab initio molecular dynamics study of collective excitations in liquid H₂O and D₂O: Effect of dispersion corrections / T. Bryk, A.P. Seitsonen // Condensed Matter Physics. — 2016. — Т. 19, № 2. — С. 23604: 1–14. — Бібліогр.: 57 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The collective dynamics in liquid water is an active research topic experimentally, theoretically and via simulations. Here, ab initio molecular dynamics simulations are reported in heavy and ordinary water at temperature 323.15 K, or 50oC. The simulations in heavy water were performed both with and without dispersion corrections. We found that the dispersion correction (DFT-D3) changes the relaxation of density-density time correlation functions from a slow, typical of a supercooled state, to exponential decay behaviour of regular liquids. This implies an essential reduction of the melting point of ice in simulations with DFT-D3. Analysis of longitudinal (L) and transverse (T) current spectral functions allowed us to estimate the dispersions of acoustic and optic collective excitations and to observe the L-T mixing effect. The dispersion correction shifts the L and T optic (O) modes to lower frequencies and provides by almost thirty per cent smaller gap between the longest-wavelength LO and TO excitations, which can be a consequence of a larger effective high-frequency dielectric permittivity in simulations with dispersion corrections. Simulation in ordinary water with the dispersion correction results in frequencies of optic excitations higher than in D₂O, and in a long-wavelength LO-TO gap of 24 ps⁻¹ (127 cm⁻¹).