Transgenic plants as edible vaccines — reality and future prospects

This review describes the recent progress in the construction of transgenic plants for vaccine production Transgenic plants are an attractive and cost-effective alternative to microbial systems for the production of proteins with pharmaceutical value. Advances in biotechnology are enabling plants to...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автор: Domansky, N.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 1999
Назва видання:Биополимеры и клетка
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155869
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Transgenic plants as edible vaccines — reality and future prospects / N.N. Domansky // Биополимеры и клетка. — 1999. — Т. 15, № 1. — С. 5-9. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155869
record_format dspace
spelling irk-123456789-1558692019-07-05T17:12:30Z Transgenic plants as edible vaccines — reality and future prospects Domansky, N.N. Обзоры This review describes the recent progress in the construction of transgenic plants for vaccine production Transgenic plants are an attractive and cost-effective alternative to microbial systems for the production of proteins with pharmaceutical value. Advances in biotechnology are enabling plants to be exploited the expression of candidate vaccine antigens with the goal of using the edible plant organs for economical delivery of oral vaccines. It has recently been shown that genes encoding antigens of bacterial and viral pathogens can be expressed in plants in a form in which they retain native immunogenic properties. Transgenic potato tubers expressing bacterial antigens stimulated humoral and mucosal immune response; when they were provided as a food. Although the utility of «edible vaccines» to prevent disease remains to be established, the successful implementation of this strategy can be the first step on the way to modern vaccines of new generation. Огляд сучасних літературних даних про створення трансген­них рослин для виробництва вакцин. Трансгенні рослини ни є дуже привабливою та дешевою альтернативою існуючим мікро­біологічним системам виробництва білків для фармацевтики. Успіхи сучасної біотехнології відкрили можливість експерсувати у рослинах різні антигени, що використовуються для вакцинації, з метою використання їстівних частин рослий длятранспорту оральних вакцин. Було продемонстровано, що гени, котрі кодують антигени бактеріальних та вірусні – патогенів, можуть бути експресовані у рослинах із збереженням їхніх природних імунологічних властивостей. Гак, бульби трансгенної картоплі, що експресували бактеріальні антиге­ни, стимулювали гуморальну та мукозну імунні відповіді при використанні їх у їжу. Хоча використання їстівних вакцин для запобігання хвороб ще не доведене, подальшій розробок цього напряму може стати першим кроком на шляху до вакцин нової генерації Обзор современных литературных данных о создание трансгенных растений для производства вакцин. Трансгенные растения являются весьма привлекательной и дешевой альтернативой существующим микробиологическим системам произ­водства белков для фармацевтики. Успехи современной био­технологии открыли возможность экспрессировать в расте­ниях различные антигены, используемые при вакцинации, для применения съедобных частей растений при транспорте ора­льных вакцин. Было продемонстрировано, что гены, кодирую­щие антигены бактериальных и вирусных патогенов, могут быть эспрессированы в растениях с сохранением их природ­ных иммунологических свойств. Так, клубни трансгенного картофеля, экспрессировавшие бактериальные антигены, сти­мулировали гуморальный и мукозный иммунные ответы при употреблении их в пищу. Хотя использование съедобных вак­цин для предотвращения болезней еще не доказано, дальнейшее развитие этого направления может стать первым шагом на пути к созданию вакцин нового поколения. 1999 Article Transgenic plants as edible vaccines — reality and future prospects / N.N. Domansky // Биополимеры и клетка. — 1999. — Т. 15, № 1. — С. 5-9. — Бібліогр.: 15 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.0004FD http://dspace.nbuv.gov.ua/handle/123456789/155869 en Биополимеры и клетка Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Обзоры
Обзоры
spellingShingle Обзоры
Обзоры
Domansky, N.N.
Transgenic plants as edible vaccines — reality and future prospects
Биополимеры и клетка
description This review describes the recent progress in the construction of transgenic plants for vaccine production Transgenic plants are an attractive and cost-effective alternative to microbial systems for the production of proteins with pharmaceutical value. Advances in biotechnology are enabling plants to be exploited the expression of candidate vaccine antigens with the goal of using the edible plant organs for economical delivery of oral vaccines. It has recently been shown that genes encoding antigens of bacterial and viral pathogens can be expressed in plants in a form in which they retain native immunogenic properties. Transgenic potato tubers expressing bacterial antigens stimulated humoral and mucosal immune response; when they were provided as a food. Although the utility of «edible vaccines» to prevent disease remains to be established, the successful implementation of this strategy can be the first step on the way to modern vaccines of new generation.
format Article
author Domansky, N.N.
author_facet Domansky, N.N.
author_sort Domansky, N.N.
title Transgenic plants as edible vaccines — reality and future prospects
title_short Transgenic plants as edible vaccines — reality and future prospects
title_full Transgenic plants as edible vaccines — reality and future prospects
title_fullStr Transgenic plants as edible vaccines — reality and future prospects
title_full_unstemmed Transgenic plants as edible vaccines — reality and future prospects
title_sort transgenic plants as edible vaccines — reality and future prospects
publisher Інститут молекулярної біології і генетики НАН України
publishDate 1999
topic_facet Обзоры
url http://dspace.nbuv.gov.ua/handle/123456789/155869
citation_txt Transgenic plants as edible vaccines — reality and future prospects / N.N. Domansky // Биополимеры и клетка. — 1999. — Т. 15, № 1. — С. 5-9. — Бібліогр.: 15 назв. — англ.
series Биополимеры и клетка
work_keys_str_mv AT domanskynn transgenicplantsasediblevaccinesrealityandfutureprospects
first_indexed 2025-07-14T08:05:24Z
last_indexed 2025-07-14T08:05:24Z
_version_ 1837608809384640512
fulltext ISSN 0233-7657. Биополимеры и клетка. 1999. Т. 15. № 1 ОБЗОРЫ Transgenic plants as edible vaccines — reality and future prospects Nickolay N. Domansky International Institute of Cell Hiology 148 Acad. Zabolotnoho str., Kyiv, 252143, Ukraine This review describes the recent progress in the construction of transgenic plants for vaccine producti,v Transgenic plants are an attractive and cost-effective alternative to microbial systems for the productior о proteins with pharmaceutical value. Advances in biotechnology are enabling plants to be exploitea /· expression of candidate vaccine antigens with the goal of using the edible plant organs for economical delivery of oral vaccines. It has recently been shown that genes encoding antigens of bacterial and vira< pathogens can be expressed in plants in a form in which they retain native immunogenic properties. Transgenic potato tubers expressing bacterial antigens stimulated humoral and mucosal immune response, when they were provided as a food. Although the utility of «edible vaccines» to prevent disease remains t< be established, the successful implementation of this strategy can be the first step on the way to modern vaccines of new generation. Introduction. Research on new vaccines has used molecular biology to identify the antigenic deter- minants of infectious disease agents and to develop genetic engineering approaches to produce and deliver these antigens as subunit vaccines. In recent studies, tools of plant biotechnology have been added to these efforts. It has been found that transgenic plants provide a novel system for production of recombinant proteins that act as oral immunogens when the plant products are consumed as food. Many infectious agents colonize or invade epi- thelial membranes; these include bacteria and viruses that are transmitted via contaminated food or water or by sexual contact. Vaccines that are effective against these in- fections must stimulate the mucosal immune system to produce secretory IgA (S-IgA) at mucosal surface such as the gut and respiratory epithelia. In general, a mucosal immune response is more effectively achi- eved by oral, rather then parenteral, antigen delivery. Several particulate antigens have proven to be effec- tive oral immunogens, including live and killed micro- organisms. By comparison with parenteral immu- nization, oral immunization using subunit or soluble antigens is often inefficient at stimulating an immune © N. N. DOMANSKYt 1998 response, and requires largeramounts (mg versus μ%> of antigen. Subunit vaccines based upon recombinant cell- culture expression systems are feasible but, for con- mercial-scale production, these systems require fei mentation technology and stringent purification pro tocols so that sufficient amounts of recombinan protein can be obtained for oral delivery. Even witK technological improvements, fermentation-based su bunit vaccine production may be prohibitively ex pensive technology for developing countries where novel oral vaccines are urgently needed Transgenic plants that express antigens in their edible tissue might be possible simply through consumption of a «edible vaccine». The concept of vaccine production in transgenic plants was introduced about 6 years ago by Charles Arntzen and Hugh Mason at Texas A&M University [1 ] greatly stimulating research in this directio! [ 2 - 8 ]. In general, research in this field falls into t>)u: general categories. First, experiments have been cc - ducted to determine the capacity of plants to produce foreign proteins that retain antigenic determinants necessary for effective immunization. Second, the oral immunogenicity of plant-derived proteins has beer· evaluated with special emphasis on th< <c DOMANSKY Ν. Ν. immunogenicity of food samples. Third, research has been conducted Io find an appropriate food crop that could be used for both production and distribution of vaccines, with special emphasis on the developing world. Hepatitis B surface proteins. The first studies of candidate vaccine expression in transgenic plants have been carried out using the gene encoding hepatitis B surface antigen (HBsAg) [1, 3]. This protein was chosen because the commercially available vaccine and the associated human immune response have been very well characterized, because the structure of the immunogenic form of that protein was known, and because the availability of a cost-effective recombinant HBV vaccine is a high priority especially for the developing countries. Moreover, the existence of com- mercially available test systems for HBV detection substantially simplified the procedure of HBsAg de- tection in plant tissues. The envelope of hepatitis B virus (HBV) consists of three polypeptides which comprise the large (L), middle (M) and major or small (S or HBsAg) protein components. These three proteins are encoded in a large open reading frame, which is divided into preSl, preS2 and the S gene. The S protein or HBsAg is a major component of the: hepatitis B virions and contains 226 amino acids. The HBV M protein contains additional 55 amino acid residues at the N-terminal of the S protein, usually called the preS2 antigen. Similarly, the L protein contains additional 108—119 amino acids, depending on the serotype of the virion, at the N-terminal of the M protein [9]. The S gene was introduced into cells of tobacco [1] and potato [3] plants and individual trans- formants were regenerated. When extracts from tran- sgenic plant tissues were examined the presence of HBsAg were revealed by ELlSA using monoclonal antibodies directed against human-serum-derived HBsAg. Further examination of plant-derived HBsAg purified by immunoaffinity chromatography revealed the presence of spherical virus-like particles with an average size of 22 nm. These particles exhibited properties that were very similar to the subvi^al particles obtained from human serum and to the recombinant HBsAg which is formulated in the com- mercial vaccine produced in yeast cells [1 ]. Im- portantly, HBsAg in the particle form was found to be much more immunogenic than that in the form of the peptide alone [10]. To evaluate the immunogenicity of plant-derived HBsAg it was used for parenteral immunization of mice. Anti-HBsAg antibodies were recovered which reacted with authentic HBsAg from human serum. This was the first indication, that antigenic properties of the protein were maintained in transgenic plants Subsequently, T cells were isolated from mice im- munized with plant-derived HBsAg. When grown in culture, these T cells could be activated using со α mercial vaccine as well as a synthetic peptide which mimics the «а» epitope determinant of HBsAg. in total, the immunology studies conducted to date show that the recombinant HBsAg recovered from plant cells retain both B and T cell epitopes [5]. Although recombinant HBV vaccines have shown that HBsAg alone is sufficient to induce a highly protective immunity, experiments in animals have highlighted the potential benefits which might resui* from the inclusion of the preS2 domain in anti-HBV vaccines [11 J. The preS2 domain is also immunogenic in humans and elicit anti-preS2 responses during natural HBV infection, which often occur prior to a ; other anti-HBV response [12]. For this reason, me HBV M protein gene (preS2 containing H BsAgj - been recently expressed in plants 18 ] and physical and immunological properties of this protein wen- evaluated [13]. These studies have demonstrated th^i plant cells have the capacity to not only synthesize M protein but also to allow it to be assembled in ar immunologically active form. To evaluate the immune response to plant-de rived M protein and to compare it to the response ic HBsAg from serum (preS2 containing HBsAg), HBV vaccine and plant-derived HBsAg, Balb/c mice were immunized intraperitoneally with corresponding an- tigens. Kinetics of antibody responses were studies j to 14 weeks after primary immunization. The results presented in Fig. 1 indicate that both plant-derived HBV proteins can elicit the anti-HBsAg antibodies in mice and that the plant-derived M protein is nearly as immunogenic as the control preS2 containing HBsAg isolated from serum. Moreover, the presence of anti-preS2 antibodies in the sera of immunized Balb/c mice was detected in mice immunized with the preS2 containing proteins (Fig. 2). These result suggest that plant system can provide an alternative method of producing the HBV M protein suitable f.v vaccination. Recently, it was also shown that the plant- derived HBV M protein given to mice by oral intu- bation (gavage) stimulated serum antibody response and corresponding specific antibodies were dt tecu . [14]. Escherichia coli heat-labile enterotoxin B su bunit. The choice of which antigens to use in ih initial studies has been strongly influenced by desire to determine if transgenic plant materia ? containing foreign antigens will result in oral immu- nization and stimulate a mucosal immune response 6 TRANSGENIC PLANTS AS EDIBLE VACCINhS Fig. 1. Kinetics of anti-HBsAg antibody responses in Balb/c mice: 1 — serum HBsAg; 2 - М protein; 3 — vaccine; 4 — S protein; 5 — negative control. Mice were immunized intraperitoneally with the same amounts of plant-derived M and S proteins, HBsAg from serum and Engerix vaccine. Solid arrows indicate the time of vaccination (0, 2nd and 6th week). The presence of anti-HBsAg antibody were monitored by ELISA Fig. 2. Comparison of anti-preS2 antibody responses in mice. 12 weeks post-immunization sera from individual mice immunized with plant-derived M protein (Ml—M6), plant-derived S protein (Si — S5), Engeruc vaccine (VI — V5) and HBsAg from serum (SRI — SR5) were tested for (he presence of anti-preS2 antibody by ELISA Thus, antigens with the high mucosal immune res- ponse have been the early targets for plant based expression. The binding subunit of the heat-labile ente- rotoxin of E. coli (LT-B) was an obvious candidate for evaluation in plant expression system since it has been extensively characterized in structural and im- munological studies. The heat-labile enterotoxin (LT) from E. coli is a multimeric protein that is structurally, functionally and antigenically very similar to cholera toxin (CT). It was found that LT has one A subunii (LT-A) and a pentamer of B subunits (LT-B). Specific binding oi the nontoxic LT-B pentamer to the Gmi gangliosioes present on epithelial cell surfaces allows entry of th toxic LT-A subunit into cells [15]. Antibody Iil terference with binding of the B subunit ίο cells, lhir blocking toxin activity, is the basis of attempts to u < the B subunit as a vaccine component. Because L t is very similar in structure and immunological pro- perties to the CT-B, immunization with CT-B lcaas to cross-protection against enterotoxigenic E. coli LT-B and CT-B are both potent strong oral im- munogens. LT-B also has recently been expressed in plan s although the levels of expression were low [2 j Th* oral immunogenicity of recombinant LT-B was tesuc in mice and compared with bacterial LT-B. Vvh'к given orally to mice by gastric intubation, the plani- derived antigen stimulated humoral and mucosa; immune responses with titers comparable to the bacteria-derived LT-B. In addition, the antibodies produced against the tobacco-derived LT-B were abl to neutralize LT activity, indicating the potentia' protective value of the immune response. The oral immunogenicity of unpurified recom- binant LT-B was also assessed by feeding raw transgenic potato tubers to mice. After only four feedings of 5 g tuber samples to mice, mucosal and serum antibodies were recovered. No immune res- ponse was observed in animals that were fed non- transformed tubers. It should be also noted that CT and LT are excellent oral adjuvants, which stimulate immune responses against co-fed antigens at concentration., well below those that cause diarrhea. Norwalk virus capsid protein. Further evidence to support the concept of edible vaccines have recently been obtained in experiments with plant-derived Not walk virus capsid protein (NVCP). Norwalk virus is a member of the Caliciviridae family and causes epi- demic acute gastroenteritis in humans. As in the case of HBV, expression of NVCP in plant cells yields .. protein that self-assembles in plant cells into virut 7 DO MANS KY N. N. like particles. The plant-derived NVCP was orally immunogenic in mice. Extiacts of tobacco leaf exp- ressing NVCP were given to CDl mice by gavage and the treated mice developed both serum IgG and secretory IgA specific for Norwalk virus-like particles. Furthermore, when potato tubers expressing NVCP were fed directly to mice, they developed serum IgA specific for Norwalk virus [7 ]. Vaccines for animal diseases. Edible vaccines can also provide efficient and humane strategies for disease prevention in production of companion ani- mals, as well as feral populations. It is practically possible to generate vaccines against viral and bac- terial infections by expressing corresponding antigens in plant tissues edible for animals. The already mentioned LT-B subunit is the most likely candidate for the first commercial vaccine, as enterotoxigenic E. coli strains readily infect animals as well. Admittedly, vaccines for animals are a more likely target for edible-vaccine technology in the near future than vaccines for human as the latter need more detailed inspections for safety. Recently, transgenic plants have been generated that expressed the gene encoding the glycoprotein (G-protein) that coats the outer surface of the rabies virus [6, 14 |. Although the immunogenicity of these material has yet to be evaluated, it is encouraging, to note that ba t containing some G~protein produced in a more traditional in vitro system was effective in immunizing raccoons orally, providing protection against «street virus» challenge. Future prospects. The research conducted to date has demonstrated that transgenic plants have the capacity to synthesize and accumulate subunit anti- genic proteins that retain immunological properties of their native counterparts. In the case of HBV proteins and NVCP, virus-like particles accumulated in plant cells. It is very significant as the particulate form is very important in determining immunogenic pro- perties and has greater oral immunogenicity than soluble proteins. Studies remaining to be conducted will involve the evaluation of dosage requirements for plant- delivered vaccines. Successful experiments conducted thus far have used proteins (LT-B and NVCP) with very high oral immunogeniciity. It will be necessary to determine if other proteins, which may not be nor- mally transmitted orally, will be as effective in inducing an oral response. From this point of view the results of the oral immunization with the plant- derived HBV M protein are rather encouraging. Multi-subunit vaccines, including oral adjuvants such as LT or CT (or derivatives thereof), and various fused proteins could be also used for enhancing the oral response. It is well recognized that most food proteins do not trigger an immune response. In general it is due to the induction of a state of immune tolerance. It will be necessary to determine if food-based vaccines also would induce oral tolerance to the desired antigen If so, controlled use and dosage will be a requirement for edible vaccines. The type of plant material that would best serve as an edible vaccine also has yet to be determined First studies has focused primarily on tobacco and potato, but other plants such as corn, soybean- bananas and others are currently under research. Lastly, a thorough study of the safety oi the future edible vaccines needs to be undei'cken. Rc searches in this area are likely to nci ease oui understanding of the basic mechanisms, which can be applied to the development of the new generation o. vaccines. M. M. Доманський Трансгенні рослини як їстівні вакцини — реальність та перспективи Резюме Огляд сучасних літературних даних про створ тя трансген них рослин для виробництва вакцин. Трансгенні рослини є дух привабливою та дешевою альтернативою існуючим мікря біологічним системам виробництва білків б.гя фармацевтики. Успіхи сучасної біотехнології відкрили можливість експресуво ти у рослинах різні антигени, що використовуються с:,я вакцинації, з метою використання їстівних частин рослин для транспорту оральних вакцин. Було продемонстровано, що гени, котрі кодують антигени бактеріальних та віруїні. • патогенів, можуть бути експресовані у рослинах із збережен- ням їхніх природних імунологічних властивостей. Tак, бульби трансгенної картоплі, що експресували бактеріальні антигі ни, стимулювали гуморальну та мукозну імунні відповіді к<« використанні їх у їжу. Хоча використання їстівних вакцин для запобігання хвороб ще не доведене, подальшій розвиток цюго напряму може стати першим кроком на шляху до векцин нової генерації. Η. Н. Доманский Трансгенные растения как съедобные вакцины — реальность и перспективы Резюме Обзор современных литературных данных о создании тра генных растений для производства вакцин Трансгенные ρ тения являются весьма привлекательной и дешевой альтерна тивой существующим микробиологическим системам произ- водства белков для фармацевтики. Успехи современной био- технологии открыли возможность экспрессировать в расте- ниях различные антигены, используемые при вакцинации, для применения съедобных частей растений при транспорте ора- льных вакцин. Было продемонстрировав, что гены, кодирую- щие антигены бактериальных и вирусных патогенов, могут 8 TRANSGENIC PLANTS AS EDIBLE VACCINES быть экспрессировапы в растениях с сохранением их природ- ных иммунологических свойств. Так, клубни трансгенного картофеля, жспрессировавиїие бактериальные антигены, сти- мулировали гуморальный и мукозный иммунные ответы при употреблении их в пищу. Хотя использование съедобных вак- цин для предотвращения болезней еще не доказано, дальнейшее развитие этого направления может стать первым шагом на пути к созданию вакцин нового поколения. REFERENCES 1. Mason Η. S., Імт D. Μ.-K., Arntzen С. J. Expression of hepatitis B surface antigen in transgenic plants / / Proc. Nat. Acacl. Sci. USA.—1992.—89.—P. 1174.5 — 11749. 2. Hoq Τ. A., Mason H. S., Clements J. D., Arntzen C. J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants 11 Science.—1995.—268.—P. 714—715. 3. Domansky N. N.. Ehsani P., Salmanian A-H., Medvedeva T. Organ-specific expression of hepatitis B surface antigen in potato / / Biotectmol. Lett.—1995.—17.—P. 863—866. 4. Mason H. S., Arntzen C. .1. Transgenic plants as vaccine production systems Il Trends Biotechriol.—1995.—13.— P. 388—392. 5. Thanavala Y., Yang Y.-F., Lyons: P. et al. Immunogenicity of transgenic plant-derived hepatitis B surface antigen / / Proc. Nat. Acad Sci. USA —1995.—92,—P. 3358—2261. 6. McGarvey P. B., Hammond J., Dienelt et al. Expression of the rabies virus glycoprotein in transgenic tomatoes / / Bio/Tech- nology 1995.—13.—P. 1484— 1487. 7. Mason H. S., Ball J. M., Shi J-J. et al. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice / / Proc. Nat. Acad. Sci. USA — 1996.—93 —P. 5335—5340. 8. Ehsani P., Khabiri A., Domansky N. N. Polypeptides of hepatitis B surface antigen produced in transgenic potato / / Gene.—1997.—190.—P. 107—111. 9. Tiollais P., Pourcel C., Dejean S. The hepatitis B virus 11 Nature.—1985.—317.—P. 489—495. 10. Cabral G. A., Marciano-Cabral F., Funk G. R. et al. Cellular and humoral immunity in guinea pigs to two major polypeptides derived from hepatitis B surface antigen Hi. Gen. Virol.— 1978.—38 —P. 339—350. 11. Millich D. R., Thornton G. B., Neurath et al. Enhanced immunogenicity of the pre-S region of hepa iis B surface antigen / / Science.—1985,—228.—P. 1195—1198. 12. Petre J., Rutgers T., Hauser P. Properties of arecombinam yeast-derived hepatitis B surface antigen containing S preSZ and preSl antigenic domains / / Arch. Virol. (Suppl.).— 1992,—24 —P. 137—141. 13. Khabiri A., Ehsani P., Domansky N. Characterisation of the hepatitis B middle (M) surface protein synth чігел in trans genie potato plants I l Manuscript submitted. 14. Domansky N., Khabiri A., Ehsani P. et al. Enhanced immune genicity of transgenic plant-derived hepatitis B middle surfaa antigen Il 5th Int. Congr. of Plant Мої. Biol. (Singapore, 21—27lh September 1997).—P. 1257. 15. Sixma T. K., Pronk S. E., Kalk K. H. et al. Crystal structure of a cholera toxin-related heatlabile enterotoxin from E. coli // Nature.—1991.—351.—P. 371—377. Received 26.01.98 9