A note on Hall S-permutably embedded subgroups of finite groups

Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
1. Verfasser: Sinitsa, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2017
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/156024
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersection of all such S-permutable subgroups of G which contain H. We say that H is Hall S-permutably embedded in G if H is a Hall subgroup of the S-permutable closure HsG of H in G. We prove that the following conditions are equivalent: (1) every subgroup of G is Hall S-permutably embedded in G; (2) the nilpotent residual GN of G is a Hall cyclic of square-free order subgroup of G; (3) G=D⋊M is a split extension of a cyclic subgroup D of square-free order by a nilpotent group M, where M and D are both Hall subgroups of G.