On new multivariate cryptosystems with nonlinearity gap
The pair of families of bijective multivariate maps of kind Fn and Fn⁻¹ on affine space Kⁿ over finite commutative ring K given in their standard forms has a nonlinearity gap if the degree of Fn is bounded from above by independent constant d and degree of F⁻¹ is bounded from below by cⁿ, c>1. We...
Saved in:
Date: | 2017 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2017
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/156037 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On new multivariate cryptosystems with nonlinearity gap / V. Ustimenko // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 331-348. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | The pair of families of bijective multivariate maps of kind Fn and Fn⁻¹ on affine space Kⁿ over finite commutative ring K given in their standard forms has a nonlinearity gap if the degree of Fn is bounded from above by independent constant d and degree of F⁻¹ is bounded from below by cⁿ, c>1. We introduce examples of such pairs with invertible decomposition Fn=Gn¹Gn²…Gnk, i.e. the decomposition which allows to compute the value of Fⁿ⁻¹ in given point p=(p1,p2,…,pn) in a polynomial time O(n²).
The pair of families Fn, F′n of nonbijective polynomial maps of affine space Kn such that composition FnF′n leaves each element of K∗n unchanged such that deg(Fn) is bounded by independent constant but deg(F′n) is of an exponential size and there is a decomposition Gn¹Gn²…Gnk of Fn which allows to compute the reimage of vector from F(K*ⁿ) in time 0(n²). We introduce examples of such families in cases of rings K=Fq and K=Zm. |
---|