Full cascades of simple periodic orbits on the interval

Any continuous interval map of type greater than 2∞ is shown to have what we call a full cascade of simple periodic orbits. This is used to prove that, for maps of any types, the existence of such a full cascade is equivalent to the existence of an infinite ω-limit set. For maps of type 2∞, this is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1996
Hauptverfasser: López V. Jiménez, Snoha, L.
Sprache:English
Veröffentlicht: Інститут математики НАН України 1996
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/156038
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Full cascades of simple periodic orbits on the interval / López V. Jiménez, L. Snoha // Український математичний журнал. — 1996. — Т. 48, № 12. — С. 1628–1637. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Any continuous interval map of type greater than 2∞ is shown to have what we call a full cascade of simple periodic orbits. This is used to prove that, for maps of any types, the existence of such a full cascade is equivalent to the existence of an infinite ω-limit set. For maps of type 2∞, this is equivalent to the existence of a (period doubling) solenoid. Hence, any map of type 2∞ which is either piecewise monotone (with finite number of pieces) or continuously differentiable has both a full cascade of simple periodic orbits and a solenoid.