Diffusion approximation of the Wright-Fisher model of population genetics: Single-locus two alleles

We investigate an autoregressive diffusion approximation method applied to the Wright-Fisher model in population genetics by considering a Markov chain with Bernoulli distributed independent variables. The use of an autoregressive diffusion method and an averaged allelic frequency process lead to an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2000
1. Verfasser: Coad, R.W.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2000
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/156152
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Diffusion approximation of the Wright-Fisher model of population genetics: Single-locus two alleles / R.W. Coad // Український математичний журнал. — 2000. — Т. 52, № 3. — С. 336–345. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We investigate an autoregressive diffusion approximation method applied to the Wright-Fisher model in population genetics by considering a Markov chain with Bernoulli distributed independent variables. The use of an autoregressive diffusion method and an averaged allelic frequency process lead to an Orn-stein-Uhlenbeck diffusion process with discrete time. The normalized averaged frequency process possesses independent allele frequency indicators with constant conditional variance at equilibrium. In a monoecious diploid population of size N with r generations, we consider the time to equilibrium of averaged allele frequency in a single-locus two allele pure sampling model.