One class of solutions of Volterra equations with regular singularity
The Volterra integral equation of the second order with a regular singularity is considered. Under the conditions that a kernel K(x,t) is a real matrix function of order n×n with continuous partial derivatives up to order N+1 inclusively and K(0,0) has complex eigenvalues ν±i μ (ν>0), it is shown...
Gespeichert in:
Datum: | 1997 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
1997
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/156280 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | One class of solutions of Volterra equations with regular singularity / S.G. KreinI, I.V. Sapronov // Український математичний журнал. — 1997. — Т. 49, № 3. — С. 424–432. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | The Volterra integral equation of the second order with a regular singularity is considered. Under the conditions that a kernel K(x,t) is a real matrix function of order n×n with continuous partial derivatives up to order N+1 inclusively and K(0,0) has complex eigenvalues ν±i μ (ν>0), it is shown that if ν>2|‖K|‖ C -N-1, then a given equation has two linearly independent solutions. |
---|