The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements
The HBV genome is a circular partially double-stranded DNA molecule. It contains four overlapping open reading frames (ORFs) genes. The S (preS1, preS2) region(s) encodes the major (small), middle and large proteins (HBsAg). The C and pre-C regions encode HBcAg and HBeAg. The X region encodes a poly...
Збережено в:
Дата: | 1999 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут молекулярної біології і генетики НАН України
1999
|
Назва видання: | Биополимеры и клетка |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156323 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements / F. Adjamian // Биополимеры и клетка. — 1999. — Т. 15, № 2. — С. 109-121. — Бібліогр.: 156 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-156323 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1563232019-07-05T17:11:38Z The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements Adjamian, F. Обзоры The HBV genome is a circular partially double-stranded DNA molecule. It contains four overlapping open reading frames (ORFs) genes. The S (preS1, preS2) region(s) encodes the major (small), middle and large proteins (HBsAg). The C and pre-C regions encode HBcAg and HBeAg. The X region encodes a polypeptide expressed during HBV infection. The P region codes for a protein with several, functions in replication. Four classes of HBV mRNAs have been identified, in the HBV genome the pre-S1 promoter expresses the large protein. The pre-S2/S promoters produce both major and middle proteins. The X promoter produces 0.7 and 0.9 kb transcripts. The C and pre-C promoters produce the Core, pol(HBcAg), and the HBeAg proteins. Enhancer I and II are key regulatory elements in the transcriptional regulation of HBV. The activity of enhancer II is highly the liwr specific. Enhancer II activates the transcriptional activity of both the pre-S1 and preS2/S promoters. Two HBV enhancers strongly affect the activity of all three major HBV promoters. A box-α in the II-A and box-β in II-B elements of HBV genome, are necessary for the enhancer II function. Either box-α or box-β can regulate the activity of the Core promoter, a, b, f proteins and c, d proteins bind to box-α and box-β, respectively, and mediate the enhancer function. Геном вірусу гепатиту В людини (HBV) існує у вигляді дволанцюгових кільцевих молекул ДНК Він містить чотири фланкуючі відкриті рамки зчитування (ORFs) генів, S (preSl, preS2) регіоні и) кодує головний, середній та великий білки (HBsAg). С і preC регіони кодують HBcAg і HBeAg, X регіон кед у є поліпептид, який експресується за час HBV інфекції Р регіон кодує білок з різноманітними функціями у реплікації. Ідентифіковано чотири класи HBV мРНК. У геномі HBV pre-S1 промотор продукує великий білок, pre-S2/S виробляє головний і середній білки. X промотор кодує 0,7 і 0,9 трагскрипти. С і пре-С промотори кодують Core і pol(HBVcAg) і HBeAg білки. Ключовими регуляторними елементами HBV є енхансери І і II. Активність енхансера II є специфічною для печінки. Він активує транскрипцію обох пре-S1 і пре-S2/S промоторів. Два HBV енхансери активують основні промотори HBV. Бокс-α в І 1-А і бокс-β в ІІ-В елементах у геномі HBV необхідні для функції енхансера II. Бокси а і р можуть регулювати активацію промотора Core, білки a, b, f і білки с, d прикріплюються у боксах а і р відповідно і впливають на енхансерну функцію. Геном вируса гепатита В человека (HBV) существует в виде двухцепочных кольцевых молекуул ДНК Он содержит четыре фланкирующие открытые рамки считывания (ORF8) генов. S (преS1, преS2) регион/ы) кодирует главный, средний и большой белки (HBsAg). С и пре-С регионы кодируют HBсAg и HBeAg. X регион кодирует полипептид, экспрессирующийся в течение HBV инфекции. Р регион кодирует белок с разнообразными функциями в репликации. Идентифицированы четыре класса HBV мРНК. В геноме HBV npe-Sl промотор продуцирует большой белок, пpe-S2/S промотор производит оба (главный и средний) белка. X промотор кодирует 0,7 и 0,9 транскрипты. С и пре-С промоторы кодируют Core и pol(HBcAg) и HBeAg белки. Ключевыми регуляторными элементами в HBV являются энхансеры I и II. Активность энхансера II очень специфична для печени, Энхансер II активирует транскрипционную активность пре-S1 и пре-S2/S про моторов. Два HBV энхансера активируют основные промоторы HBV. Вокс-α в НА и бокс-β в П-В элементах в геноме HBV необходимы для функции энхансера II. Воксы α и β могут регулировать активацию Core промотора, белки a, b, f и белки с, d прикрепляются в боксах α и β соответственно и действуют на энхансерную функцию. 1999 Article The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements / F. Adjamian // Биополимеры и клетка. — 1999. — Т. 15, № 2. — С. 109-121. — Бібліогр.: 156 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00050E http://dspace.nbuv.gov.ua/handle/123456789/156323 578.2 en Биополимеры и клетка Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Обзоры Обзоры |
spellingShingle |
Обзоры Обзоры Adjamian, F. The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements Биополимеры и клетка |
description |
The HBV genome is a circular partially double-stranded DNA molecule. It contains four overlapping open reading frames (ORFs) genes. The S (preS1, preS2) region(s) encodes the major (small), middle and large proteins (HBsAg). The C and pre-C regions encode HBcAg and HBeAg. The X region encodes a polypeptide expressed during HBV infection. The P region codes for a protein with several, functions in replication. Four classes of HBV mRNAs have been identified, in the HBV genome the pre-S1 promoter expresses the large protein. The pre-S2/S promoters produce both major and middle proteins. The X promoter produces 0.7 and 0.9 kb transcripts. The C and pre-C promoters produce the Core, pol(HBcAg), and the HBeAg proteins. Enhancer I and II are key regulatory elements in the transcriptional regulation of HBV. The activity of enhancer II is highly the liwr specific. Enhancer II activates the transcriptional activity of both the pre-S1 and preS2/S promoters. Two HBV enhancers strongly affect the activity of all three major HBV promoters. A box-α in the II-A and box-β in II-B elements of HBV genome, are necessary for the enhancer II function. Either box-α or box-β can regulate the activity of the Core promoter, a, b, f proteins and c, d proteins bind to box-α and box-β, respectively, and mediate the enhancer function. |
format |
Article |
author |
Adjamian, F. |
author_facet |
Adjamian, F. |
author_sort |
Adjamian, F. |
title |
The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements |
title_short |
The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements |
title_full |
The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements |
title_fullStr |
The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements |
title_full_unstemmed |
The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements |
title_sort |
hepatitis в virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
1999 |
topic_facet |
Обзоры |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156323 |
citation_txt |
The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements / F. Adjamian // Биополимеры и клетка. — 1999. — Т. 15, № 2. — С. 109-121. — Бібліогр.: 156 назв. — англ. |
series |
Биополимеры и клетка |
work_keys_str_mv |
AT adjamianf thehepatitisvvirusgeneraldescriptionphysicalstructuregeneticorganizationgenetranscriptsandgenomicregulatoryelements AT adjamianf hepatitisvvirusgeneraldescriptionphysicalstructuregeneticorganizationgenetranscriptsandgenomicregulatoryelements |
first_indexed |
2025-07-14T08:24:10Z |
last_indexed |
2025-07-14T08:24:10Z |
_version_ |
1837611340712116224 |
fulltext |
ISSN 0233-7657. Биополимеры и клетка. 1999. Т. 15. № 2
The hepatitis В virus: general description, physical
structure, genetic organization, gene transcripts and
genomic regulatory elements
Farzam Adjamian
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
150 Zabolotnoho vul., 250143, Kyiv, Ukraine
The HBV genome is a circular partially double-stranded DNA molecule. It contains four overlapping open
reading frames (ORFs) genes. The S (preSJ, preS2) region(s) encodes the major (small), middle and
large proteins (HBsAg). The C and pre-C regions encode HBcAg and HBeAg. The X region encodes a
polypeptide expressed during HBV infection. The P region codes for a protein with several functions in
replication. Four classes of HBV mRNAs have been identified. In the HBV genome the pre-Sl promoter
expresses the large protein. The pre-S2/S promoters produce both major and middle proteins. The X
promoter produces 0.7 and 0.9 kb transcripts. The C and pre~C promoters produce the Core, pol(HBcAg),
and the HBeAg proteins. Enhancer I and II are key regulatory elements in the transcriptional regulation
of HB V. The activity of enhancer II is highly the liver specific. Enhancer II activates the transcriptional
activity of both the pre-Sl and preS2/S promoters. Two HBV enlmncers strongly affect the activity of all
three major HBV promoters. A box-α in the II-A and box-β in II-B elements of HBV genome, are
necessary for the enhancer II function. Either box-α or box-β can regulate the activity of the Core promoter,
a, b, f proteins and c, d proteins bind to box-α and box-β, respectively, and mediate the enhancer function.
The study of human HBV which is one of the smallest
known for animal virus, has been severaly limited
because it only infects humans and because a tissue
culture system in which this virus can be propagated
is not available. (HBV can not be propagated in vitro).
The hepatitis B surface antigen (HBsAg) transcription
has been studied only in cell lines containing HBV
DNA integrated into chromosomes, and HBsAg-rela-
ted mRNAs 2.0 to 2.5 kb long have been described
[1—5 J.
The hepatitis B viruses, also called Hepadna-
viruses [6], represent a small group of primarily
hepatotropic enveloped DNA viruses that proceed
through reverse transcription of a RNA intermediate
[7, 8 ] in a manner analogous to that of retroviruses.
Beside the HBV of man [9 ], this family (Hapad-
naviridae) includes woodchuck hepatitis virus (WHV)
of Marmota топах [10], ground squirrel hepatitis B
virus (GSHV) of Spermophilus beecheyi [11 ], the tree
squirrel hepatitis B virus [12], duck hepatitis B virus
© F ADJAMIAN, 1999
(DHBV) of Anas domesticus [13] and other ducks,
heron hepatitis B virus in gray herons [14] and
probably others. This taxonomy is derived from the
relative hepatotropism of virus family members, their
common virion morphology, genome size, structure
and organization, and common mechanism of genome
replication. All the viruses exhibit a strict host
specificity; the human virus replicating only in man
and a small number of higher apes.
The disease state induced by infection with HBV
is manifest in varying ways characterized by the
extent of liver inflammation and damage arid viral
persistence. In a small percentage of cases, primary
infection leads to fulminant hepatitis resulting in
severe liver dysfunction with very high mortality.
Primary infection is most often resolved by complete
clearance ol the virus and development of immune
memory to counter reinfection, but 5—10 % of
infected adults develop chronic infection characterized
by the persistence of viral antigens in the serom and
accompanied by varying degrees of hepatic injury.
This disease state may continue after integration of
HBV DNA into the hepatocyte genome from which
109
ADiAMIAN F.
transcription of viral antigen genes may continue in
the absence of virion production. H BV can be detec-
ted in the hepatocyte either as a free DNA molecules
or in an integrated form [15]. ChiOnically infected
patients are predisposed to developing hepatocellular
carcinoma (HCC) [16—19] with more than 100-fold
greater probability than non-infected individuals
[20]. The presence of integrated HBV DNA in
hepatocellular carcinoma has led to the hypothesis
that viral integration may contribute to the process of
hepatocarcinogenesis [21, 22]. In hepatocytes that
have undergone malignant transformation, part of
HBV DNA are integrated into chromosomes of the
host [23—31].
However, the mechanisms of integration, res-
ponsible for Iumorigenesis and for the shutdown of
HBV gene expression and replication in hepatocellular
carcinoma remain unclear [32], but the integrated
HBV subgenomes are suspected to be carcinogenic [3,
33—37]. Hepatitis B constitutes a major worldwide
health problem with the number of chronically in-
fected people currently estimated in excess of 250
million [38—40].
HBV has a partially double stranded, open-
circular genome of 3.2 kb which contains four open
reading frames (ORFs) including the S-gene encoding
the suiiace antigen (HBsAg) and the C-gene encoding
the Core antigen (HBcAg) (Fig. I). A large ORF
encompassing most of the viral genome encodes the
viral polymerase while the fourth ORF encodes a
protein of 154-amino acid residues which has been
termed the X antigen (HBAg). Because the function
of this product in the viral life cycle is still under
intensive investigation.
Although the viral genome and RNA transcripts
can be detected in extra-hepatic tissues of HBV-
infected chimpanzees and in transgenic mice carrying
the HBV DNA [39, 41—43], liver is still the principal
site of clinical disease in which HBV actively repli-
cates.
Infected plasma contains viral particles of dif-
ferent sizes and forms. During infection of humans,
the virus (Dane particle) and the two prominent
subviral particles (filaments and 22-nm particles) are
observed in the sera of infected individuals. The
virion has a diameter of approximately 42 nm (Dane
particle) with a 27-nm core. The 22 nm diameter
particles consist of empty viral envelopes that bears
the hepatitis B surface antigen (HBsAg). Filaments
and 22 nm particles consist only of the HBsAg and
cellular lipid. Careful examination of the surface
antigen [44, 45] has indicated that it is composed of
at least three pairs of proteins: p24 and gp27; gp33
and gp36; p39 and gp42 (p: protein, gp: glycoprotein),
where the second protein in each pair is a gly-
cosylated from of the first. It is apparent from the
work of a number of investigators [5, 31, 46] that
these proteins are derived from a large open reading
frame (one of OR Fs) and originate from the first
three strongly conserved ATGs in that region. This
particular ORF consists of an «S» region that is
preceded by an in-phase reading frame, which has
been designated as «pre-surface» or «рге-S». The
pre-S region may be further subdivided into «pre-Sl»
and «pre-S2» [46—48]. The 42 nm HBV particles
(Dane particle = virion) contains three different sur-
face proteins which are referred to as «major (small)»
protein, «middle» protein and «large» protein. (The
outer envelope of the virion is arrayed by three
surface S proteins; the major (small) S, the middle S,
and the large S [17, 44, 49, 50—53)). The large
surface protein (LS) is translated from the first ATG
codon of the surface open reading frame, while the
middle and small (major) forms are translated from
in-frame ATG codons further downstream. Inside the
viral envelope, there is the 27-nm «Core» particle
formed by subunits of core proteins referred to as
HBcAg. It contains the viral polymerase and the
partially double stranded DNA molecule to which a
protein is covalently linked (for a review see [54]).
All three forms of the surface (envelope) proteins
(antigens) which are co-linear in the carboxyl-ter-
minal protein, are needed for virion production and
cotranslationally inserted into the Endoplasmic Reti-
culum (ER) as transmembrane proteins and, together
with envelope cytoplasmic core (nucleocapsid) par-
ticles, form mature virions that are secreted via the
constitutive secretory pathway [53], but an over-
production of the large form can result abnormal
particle formation that becomes inspissated in the ER
and damages the host cell [55, 56]. In addition, the
middle and/or small forms, in the absence of other
viral proteins, can bud into the lumen and be secreted
in the form of spherical and filamentous subviral
particles. LS, in contrast cannot be secreted when
expressed alone but instead is retained within the cell
in the form of intraluminal particles [55, 57, 58—60,
102 ].
If LS is coexpressed with the other forms of
surface protein, they form heteromultimers whose
phenotype depends on the relative amounts of the
various surface proteins: a small relative amount of LS
results in secretion, while a large amount results in
retention. This retention affects the secretion not only
of noninfectious subviral particles but also of the
infectious virion particles and, therefore, is delete-
rious to the viral life cycle [61 ]. Not surprisingly, in
the infected cell, LS is usually synthesized in much
110
THE HEPATITIS B VIRUS: GENERAL DESCRIPTION
Fig. 1. HBV genome organization and viral transcripts (in ayw subtype): Open reading frames are represented by arrows, and Iwxes
represented transcriptional control regions. The stars correspond to the ATG codons and the position given at the end of the arrows correspond
to those of the stop codons. Abbreviation: GRE - Glucocorticoid Responsive Element, DRI and DRIT - primary site for replication
smaller amounts than the middle and small surface
proteins. This differential regulation is achieved by
the presence of two independent promoters [62 ]. The
upstream pre-Sl promoter gives rise to transcripts
that are translated mainly into LS, while the down-
stream S promoter gives rise to transcripts capable of
translation into only the middle and small surface
protein. Since the amount of pre-Sl mRNA is nor-
mally much smaller than the amount of S mRNA,
there is insufficient LS to prevent secretion. Because
the relative ratio of LS to the middle and small
surface proteins synthesized by HBV is crucial to its
replication, it was found, that there is a feedback
mechanism to ensure a balanced synthesis of these
proteins, in that LS significantly activates the S
promoter [63]. This activation is con-elated whit the
intracellular retention of LS and is mimicked by
agents that induce ER stress [63 ], Conversely, LS
111
ADiAMIAN F.
also activates cellular promoters known to respond to
ER stress, but not irrelevant promoters. Therefore,
overexpression of LS and subsequent intracellular
particle retention appear to activate the S promoter by
an intracellular signalling pathway induced by ER
stress. This activation would in turn lead to increased
synthesis of the middle and small surface proteins
and, hence, allow secretion of both subviral and virion
particles [63]. (The pre Sl and S promoters will
explaind in other part of litis review.)
The investigation of the HBV life cycle has been
hampered by the lack of a system for HBV replication
in vitro. However, in vitro culture systems whit human
hepatoma cells that are capable of producing HBV
particles by DNA transfection have been successfully
established by various groups of investigators [64—
67, 71]; cloning and sequencing [47, 48], the use of
animal model systems [7, 68], and eukaryotic exp-
ression system [69, 70], however, have brought some
insight into the HBV gene organization and life cycle.
Different systems are now available to study HBV
gene expression. Virus multiplication and production
of surface antigens have been obtained in hepatoma
cell lines transfected by cloned HBV DNA [71 ], in
adult [72] and fetal [73] primary human hepatocytes
cultures by direct infection, This has been clone also
in vivo with the transgenic mouse system [38, 39, 43,
74, 75]. By using eukaryotic vectors, expression of
HBsAg has been demonstrated in various cultured
cells [4, 76 ]. Synthesis of HBsAg in mammalian cells
has uniformly resulted in production of this gene
product and its secretion in the form of 22 nm
particles into the culture medium, which facilitates
detection and purification [5]. So that knowledge of
the virus cycle and of its molecular biology is in
progress.
The viral surface antigen has a common group
specific determinant a and carries one member of
each of the two pairs of mutually exclusive subtype
determinants d and у [68 ] and w and r [78 ]. Thus
there are four major subtypes of HBsAg: adw,' adr,
ayw, and ayr [79]. These subtypes have been recently
classificated into group A, B, C' and D by Okamoto et
al. [80]. The groups A, B and D are homogenous
while group C is not [80]. In this later group the adw
genome is closely related to the ayr and adr genomes.
Two by two analysis of the nucleotide sequences show
some degree of divergence. The divergence is about
10 % for viruses of different subtypes and about 2 %
for viruses of the same subtype except for the ayr
subtype which diverges only 2 % from the adr
subtype. Occasionally mixed subtypes have been re-
ported in adwr, adyw, adywr and aywr. Both appa-
rently excluded determinants map to the same mole-
cule. It is not known if this represents a double
infection or an uncommon HBV strain.
Virion DNA: It has been mentioned above, that
the HBV genome is a small circular partially double-
stranded DNA molecule. This genome is accompanied
by a single stranded region of variable length (Fig.
1). The minus (-) strand is linear and of fixed length
of about 3200 nucleotides. It is the coding strand from
which the viral mRNA and the viral pregenomic RNA
are transcribed. At its 5' end, there is a protein that
serves as primer for reverse transcription. The plus
strand (+) is of variable length ranging from 50 to
100 % that of the minus strand. The maintenance of
the circular structure is assured by a short cohesive
overlap region of about 200 nucleotides at the 5' end
of the two strands. A 12 bp direct repeats (DRI and
DRII) located near the 5' end of both strands seems
to serve as a primary site for replication (Fig. 1).
The first «Т» of the sequence 5'GAATTC in the
plus strand corresponding to the unique EcoRI site
which exists in most genomes is used as reference
origin of physical map. Nucleotides numbering is from
5' to 3' in the plus strand. When the EcoRI site dose
not exist the base occupying the same position is
taken as position 1.
Physical structure and genetic organization of the
HBV genome: As a remind and completion, it is
pointing out that the hepatitis B virus genome con-
tains four overlapping open reading frames genes
encoding all known proteins of this virus. The enve-
lope open reading frame, or S region (S gene),
contains three in phase translation start codons
(ATG) defining the N-termini of three envelope
polypeptides; pre-Sl, pre-S2 and S protein (The
hepatitis B surface antigen [HBsAg]) [54, 81, 82].
Referring to the ayw subtype [47], the shortest
polypeptide (226 aa) (aa = amino acid) that contains
the group a and the subtypes ( d / у , w/r) determinants
is also called major (small) protein (HBsAg) because
of in relative abundance. It is encoded by the S region
starting from the ATG at position 158 (in the adw
subtype [83 ]). The middle envelope polypeptide con-
tains the entire amino acid sequence of the major
polypeptide plus 55 aa at the N-terminus containing
the pre-S2 antigen, starting from the ATG at position
3214 ([The P31 ATG] in adw subtype [83]). The
large protein is composed by the entire amino acid
sequence of the middle envelope polypeptide plus 158
aa at the N-terminus and bears the pre-Sl antigen
[52, 82]. The two pre-S antigens are highly immuno-
genic neutralizing epitopes, the larger one being
involved in the virus binding to cell receptors and in
the entry in the hepatocytes [82 ]. Many trans-
criptional factors are able to bind to specific sites in
112
the pre-S region of HBV DNA and could be somehow
responsible for the hepatotropism i. e. HNFl and API
[83, 84].
A glucocorticoid responsive element (GRE) has
been mapped within the S gene between positions 351
and 366 (in ayw subtype) [85 ]. This element has no
enhancer activity but act synergettically with the viral
enhancer [86 ]. Steroid hormones have been shown to
positively regulate the S gene expression in transgenic
mice [87]. (The Enhancer activity will discussed in
other part of this review.) The capside open reading
frame or region C (C gene) contains two in frame
ATG and encodes a nucleic acid binding protein,
HBcAg, that encapsidate the viral nucleic acids and a
29 aa longer polypeptide (pre-C) that is secreted as
HBeAg [88 ]. The X region (X gene) encodes a
polypeptide expressed during HBV infection and in
hepatocellular carcinoma [89]. This polypeptide has
transactivating properties on HBV and other viral and
cellular promoters [90—92 ]. The P region (P = Pol
gene) overlaps all the others. It codes for a protein
with several function in replication; (DNA poly-
merase, RNAse H, primer for DNA synthesis and
reverse transcriptase [93]). This protein as well as
reverse transcriptase activity [94, 95], binds to the
viral DNA 5' terminus of the minus strand [96 ].
Three major classes of HBV-specific message are
detected in infected hepatocytes, and 5' ends of the
RNAs are heterogeneous (Fig. 2) [41, 54, 97]: the
3.5-kb RNAs, which are slightly larger than the 3.2
kb unit length of HBV genome serve as the mRNAs
THE HEPATITIS B VIRUS: GENERAL DESCRIPTION
for expression of the core protein. It is also used for
the synthesis of viral DNA polymerase [7, 8, 98].
Because these RNAs are the only species containing
the full complement of viral genetic information, they
also serve as templates for reverse transcription
during HBV replication [8, 97, 99]. Two other
mRNAs are subgenomic in size: the 2.4 kb RNAs
encode the large envelope protein HBV surface ,anti-
gen (S-protein), and the 2.1 kb RNAs encode the
middle and major HEiV surface antigens. Expression
of these HBV-specific mRNAs is controlled by four
different promoters in the HBV genome [54]: the
Core promoter regulates expression of the 3.5 kb
RNAs, whereas the; pre-S promoter (The distal
TATA-Iike promoter (SPI)) [4, 100, 101] and the S
promoter (The proximal Simian virus 40 (SV40)-like
promoter (SPII)) regulate expression of the 2.4 and
2.1 RNAs, respectively [44, 102, 103]. Both the SPI
and the SPII promoters display a preference for
differentiated hepatoma cell lines [104]. The liver-
and differentiated state-specific transcriptional acti-
vities of the SPI promoter are controlled by the
combined action of a HNF-I binding element, lying
between 68 and 95 bp upstream of the; RNA cap site
in the SPI promoter region [98], and the HBV
enhancer, which is located downstream of the coding
sequence of the S gene [104, 105].
The liver- and differentiated state-specific trans-
criptional activities of the SPII promoter are contri-
buted mainly by the upstream flanking sequence in
the promoter region [83, 104, 106]. In addition (0.7
Fig. 2. Linear representation of the HBV genome. The numbering system of Pasek et al. [481 is used. Transcriptional control regions are
shown as boxes and are abbreviated as follows: SPJ - pre-SI promoter; SPIJ- pre-S2/S promoter, enh(I)/Xp - enhancer X/I promoter,
CpIenh(II) - Core promoter/enhancer Π
AD JAMlAM F.
[113]) 0.8 to 0.9 kb mRNA has been detected in the
in vitro expression system by the DNA transfection of
HBV DNA [107]. This transcript may be related in
some way to the expression of the X gene [99],
controlled by X-promoter. One of the two major
HBV-specific poly (A+) RN As characterized in infec-
ted livers of chimpanzees is 2.1 kb long [4, 41 ]. This
transcript codes for the major S protein and appare-
ntly for pre-S2 protein. Thus, four classes of mRNAs
have been identified so far in the process of HBV
propagation and are known to use the single poly-
adenylation signal for their termination [99 ].
Two similar major transcripts were also observed
in the infection of other hepadnaviruses, the wood-
chuck hepatitis virus (WHV) and ground squirrel
hepatitis virus (GSHV). Analysis of Ihe 5' ends of the
two major transcripts from infected woodchucks and
ground squirrels indicated that they were hetero-
geneous for all transcripts [108, 109]. For the two
major transcripts of HBV, however, use of the tran-
sient expression system of transfected HBV DNA
with HuH-7 cell made possible a similar analysis of
the heterogeneity of 5' ends of two major transcripts
[67]. It is mentioned above, thai in human, the
principal site of clinical pathology after HBV infec-
tions is the liver because HBV actively replicates only
in hepatocytes [17, 41]. Consistent with this obser-
vation, the 3.5 kb genomic transcript has been detec-
ted primarily in well-differentiated human hepatoma
cell lines transfected by the cloned HBV genome [67,
71 ], suggesting that liver-specific factors are needed
for efficient transcription of the genomic transcripts
from the core promoter, but although HBV DNA has
been found in non hepatic tissues in infected patients
and in transgenic mice [38, 39, 42, 43, 110].
Gene Transcripts: All the transcripts already
described have the same 3' end consisting on a
polyadenylation site 1916-TATAAA- 1921(111). As a
result and completion, there are four promoters that
regulate the expression of the different HBV genes;
two Surface promoters, one Core promoter, and one
X promoter. The given positions correspond to that of
the adw [48 ] HBV genome.
The pre-Sl promoter: This promoter which con-
tains a TATA box sequence was defined by in vitro
[101] and in vivo [112] studies; this promoter
initiates transcription at position 2810 (in adw),
upstream from the pre-Sl region. Low activity of this
promoter was found in the human hepatoma Ale-
xander ceil line [31 ] and in the liver of an infected
chimpanzee [4]. Using stable transformation with
cloned HBV DNA, it was shown that this TATA
box-containing promoter is not essential for the
expression of hepatitis B surface antigen [76]. Thus
the pre-Sl promoter, which is a canonical TATA
sequence, located upstream the ATG of the pre-Sl
region and, produces 2.4 kb transcripts. However, this
promoter is less functional that the other viral pro-
moters [82].
The S promoter; as a second promoter termed
the S promoter and was characterized and mapped at
the pre-S2 region. This promoter induces initiation of
transcription at three major sites, spanning some
30 bp) around the EcoRI site [4, 5, 76 ]. The position
of these three initiation sites are 5 nucleotides down-
stream from and 5 and 25 nucleotides upstream from
the EcoRI site (designated as a, b, and c, respec-
tively). Since the ATG of the pre-S2 region is
positioned between the b and с initiation sites, only
the two longest RNA species may code for p31 protein
with an extra 55 amino acids of the pre-S2 region.
The shorter species lack the p31 ATG so that the first
available ATG, at position 158 (in adw subtype), is
the transcriptional start point of the major S protein.
It was proposed that the expression of these trans-
cripts in vivo is directed by a sequence positioned
around the Fnu4HI restriction site (3165 in adw
subtype) [4] at the region where sequence similarity
to the SV40 late promoter was been shown. Thus the
S promoter is located round position 3155 (in ayw
subtype) just upstream to the translation site of the
middle protein and produces 2.1 kb transcripts [4'
The 5' ends of these transcripts are heterogeneous
and encodes both the major (small) and middle
protein. Despite the extensive mapping of S gsne
mRNA initiation sites, little is known about regu-
latory elements which modulate the S promoter.
Transient expression studies revealed that ibis
promoter is highly active in the Alexander
(PLC/PRF/5) hepatoma cell line but not in SK-Hepl
and HeLa cells. It has been determined that a distal
element of the promoter (-103 to -48) confers this
cell-type-specific behavior through a mechanism in
which the promoter activity repressed in HeLa and
SK-Hepl cell but increased in Alexander cells [83].
It has been also found an enhancer like activity
associated with a small DNA segment of the S
promoter (-27 to +30) [83]. This proximal element
actives in HeLa and SK-Hepl cells only in the
absence of the distal negative element. Finally, ana-
lysis of S promoter deletion mutants demonstrated
that the -27 to -17 region of the S promoter is crucial
for its activity [83 ].
The X promoter; has not been precisely located
[107]. It is weakly active in vivo and represent less
than 1 % of the viral transcripts. In in vitro system,
0.7 kb and 0.9 kb transcripts have been reported
[113]. This promoter seem to be more efficient out of
114
THE HEPATITIS B VIRUS: GENERAL DESCRIPTION
the whole HBV genome context. Since the HBV X
protein (pX) trans-activates many promoters [114],
including the HBV Core promoter [91 ], it is deter-
mined that pX not regulates the pre-Sl or S promoter
(pX has not trans-effect on the Surface gene pro-
moters).
The Core promoter; regulates the replication of
the virus, as the 3.5 kb C mRNA/pregenome not only
serves for translation of the Core and Pol proteins but
also represents the template for reverse transcription
[97, 115, 116]. From the second Core promoter
transcript, the pre-C mRNA, only the HBeAg precur-
sor is translated [115, 116]. The Core promoter is
composed of a minimal or basic Core promoter <BCP)
sufficient to initiate transcription and of upstream
regulatory sequences (URS) [117—119]. A short
TA-rich sequence in the BCP serves as both the
initiator and TATA box for transcription initiation of
the pre-C mRNA and C mRNA/pregenome, respec-
tively [120].
An important activating URS element is the alpha
box (see part of Regulatory Elements of HBV genome
in this review), which binds hepatocyte nuclear factor
4 (HNF4), C/EBP, or other liver-specific trans-
cription factors [110, 117, 118, 121—124]. In addi-
tion, binding sites for HNF3 and ubiquitous factors
like SPI were identified in this promoter [125, 126].
Unlike the pre-Sl promoter, the Core promoter of
wild-type HBV does not contain an HNFl binding
site [127].
Because of its crucial role in the viral life cycle,
naturally occurring sequence variation in the Core
promoter of HBV in patients is under intense inves-
tigation. Specific point mutations in the BCP were
found in HBV from patients with fulminant hepatitis
[128—131]. Similar mutation as well as different
short deletions or insertions were found in viremic
HBeAg-negative patients with chronic hepatitis B
[129—134].
Since for these patients no mutation in the C
gene could explain the lack of HBeAg expression, it
was speculated that promoter mutation may be res-
ponsible. Specific types of short deletions in the Core
promoter region were found in patients with extre-
mely low-level viremia, in some cases without any
serological marker for HBV infection [135—138].
Thus, a particular phenotype may be caused by
specific mutations in the Core promoter. However,
this speculation has not previously been substantiated
by experimental evidence [93]. At last the Core
promoter, produces transcripts of 3.5 kb. Three 5'
ends have been located upstream of the C gene: two
of them initiating downstream of the ATG of pre-C
region, coding for the major capsid antigen (HBcAg)
and the genomic viral DNA, and another one starting
ups tream region pre-C coding for the HBeAg [67 |. A
C gene specific 2.1 kb spliced transcript that represent
the 2.1 kb S transcripts has been described [1391.
A polymerase gene promoter has not been iden-
tified. The 3.5 kb transcripts that have heterogeneous
5' ends [108] could also encode the polymerase gene
products.
Regulatory Elements of HBV genome: Eukarvotic
gene expression is in large part regulated at the
transcription, level. Such regulation is governed by the
constellation of trans-acting cellular factors that bind
to specific as-acting elements and act in either a
positive or negative manner [140]. Cell-type-specific
gene activation a primary' determinant of cellular
differentiation, represents a more complex type of
interplay, as both constitutive arid tissue-restricted
trans-acting regulatory factors are involved [1,41].
The differential sequence-specific recognition of these
cis-acting elements in promoters and/or enhancer s by
their cognate factors provides a mechanistic basis for
the tissue- and differentiation-specific regulation of
gene expression. The study of model viral genes
which display distinct tissue tropism can provide
valuable insight into the intricate effects of cell-type-
specific transcription regulation on differentiation. It
has been mentioned above, that control of gene
transcription in part regulated by the presence of
cis-acting DNA elements that interact with specific
nuclear transcription factors. Enhancers, which act in
a position- and orientation-independent mannner, are
key regulatory elements in the transcriptional regu-
lation of viral and cellular genes [142, 143 ]. The
72-bp repeat of simian virus 40 (SV40) is the best-
characterized enhancer.
The SV40 72-bp enhancer, which is composed of
multiple regulatory cis-acting elements via the inter-
action whit ubiquitous and cell-type-specific trans-
criptional factors, orchestrates the expression of viral
genes in many cells [144—146]. Two regions of the
HBV genome are known to display properties of a
transcriptional enhancer (Fig. 2) [147—149]. A
transcriptional region, Enhancer I, is located between
the open reading frames of the surface antigen, within
the region P, and upstream the X region (position
1074—1234 in ayw subtype) and partially overlaps the
X promoter [147, 150]. Because activation of trans-
cription by this enhancer is greater in several cultured
hepatoma cells than in nonhepatic cells, it has lieen
suggested that this enhancer is responsible for liver-
specific gene expression of HBV [150]. It is described
the identification of a second enhancer sequence
(enhancer II) in the HBV genome: Enhancer II is
situated downstream of the previously identified en-
115
АШAMLAN F.
hancer (enhancer I), immediately upstream from the
coding region of the Core gene (initiation site of viral
major transcript) [152], overlaps with the Core pro-
moter [93], within the X open reading frame [98,
152].
Enhancer II has been mapped to nt 1636 to 1741
[123] in HBV genome. It furnishes a unique model of
use in investigating the structure and function of an
enhancer. Unlike enhancer I, the activity of enhancer
II is highly liver specific, functioning only in highly
differentiated human hepatoma cells. Furthermore,
enhancer II activity varies in different hepatoma lines,
suggesting that this enhancer is regulated according
to the differentiation state of the hepatoma line used.
Because enhancers have been shown to play a pivotal
role in the regulation of mammalian and viral gene
expression and because HBV gene expression is
tightly coupled to the step of reveres transcription in
this replication cycle, a mechanism for regulation of
HBV enhancer activity may clarify the molecular
basis for the absence of HBV replication and gene
expression in hepatocellular carcinoma [22]. With
various deletions at the 5' end of enhancer II, a
positive regulatory element was identified at nt 1636
to 1690 (the II-A element), with the 5' boundary
between nt 1636 and 1671. The II-A Element alone
did not have an enhancer function, but the enhancer
activity was been achieved by the concomitant pre-
sence of the sequence from nt 1704 to 1741 (the II-B
element). The II-B Element alone did not have
enhancer activity. These facts indicate that coope-
ration between the II-A and II-B elements is required
to exhibit the enhancer activity of enhancer II [98 ].
Two functional constituents, a 23-bp sequence box-α
in the II-A element and a 12-bp sequence box-β in
II-B element, were identified as being both necessary
and sufficient for enhancer II function [123]. Interes-
tingly, either box-a or box-/? in an upstream position
can regulate the activity of the nearly Core promoter
[119].
Examination of the box-α and box-β sequences
reveals a weak homology to the extended consensus
for a C/EBP binding site. Gel shift and footprinting
analyses indicate that multiple proteins bind to these
sequences and thus are candidate transcription factors
that mediate the enhancer function. One heat-resis-
tant protein, protein a, and one heat-sensitive pro-
tein, protein b, bind to box-α. Protein a, which bind
to box-α in a way indistinguishable from that seen
with a recombinant C/EBP, appears not to be iden-
tical to C/EBP in that the binding of protein a
requires a minimal sequence larger than the canonical
C/EBP sites.
Two box-/?-binding proteins с and d, show gre-
ater affinity for the C/EBP consensus than for
Ъох-β. However, both proteins с and d are relatively
heat sensitive and display a distinct sequence prefe-
rence from the recombinant C/EBP protein. Since the
function of enhancer II is strictly dependent on a
bipartite architecture, this system provides a unique
model for studies of how the interactions of its
binding proteins lead to the enhancer function. Fur-
thermore, proteins that display binding activities to
box-α and box-/? are found to be present in nuclear
extracts of the differentiated human hepatoma cell
line HepG2 by DNAse I footprinting and gel shift
analyses [123]. Using DNA transfection to bypass
viral entry into cells, it has been demonstrated that
the expression of HBV genes exhibits liver cell and
differentiation state specificity in the infective process
in vivo [64, 66, 67, 71, 104, 153—155]. Previous
studies show that only in the human hepatoma cell
lines HepG2 and HuH-7, which have the feature of
well-differentiated liver cells, does enhancer II have
strong enhancing activity on the simian virus 40
(SV40) early promoter [1101. In contrast, this is not
seen in the poorly differentiated HA22T/VGH cells
or the nonliver HeLa cells [98 ]. These results also
apply to the upstream regulatory effect on the bast.
Core promoter (BCP) [119]. These differentiateo
actions, therefore, may contribute at least in part to
the observed hepatotropism of HBV. It has been
mentioned above that gel shift experiments reveal a
unique box-a-binding protein, protein a, which is
present only in differentiated liver cells, where en-
hancer II is functional. The converse is true for
another box-a-binding protein, protein /, which is
present only in poorly differentiated liver cells and
nonliver cells. The simplest hypothesis that explains
these results is that protein a activates and/or protein
/ suppresses the enhancer and upstream regulator
functions.
Although C/EBP is a candidate for a trans-
cription factor that interacts with box-α or box-β,
none of the binding factors identified in the gel shift
assays, including protein a and protein /, is likely to
be C/EBP because they differ from C/EBP in heat
liability and sequence preference [117]. In addition,
enhancer II consists an upstream negative regulatory
element [98, 110, 122, 124, 152, 156]. Enhancer II
activates the transcriptional activity of both the SPl
and SPII promoters in a liver- and differentiated
state-specific manner [98 ].
It has been shown that the two HBV enhancers
strongly effect the activity of all three major HBV
promoters in human hepatoma cells and that the
activity of HBV enhancers is differentially regulated,
depending on the state of hepatocyte differentiation.
116
THE HEPATITIS B VIRUS: GENERAL DESCRIPTION
Ф. Аджаміян
Вірус гепатиту В: загальний опис, фізична структура, генетична
організація, транскрипція генів та геномні регулюючі елементи
Резюме
Геном вірусу гепатиту В людини (HBV) існує у вигляді
дволанцюгових кільцевих молекул ДНК. Він містить чотири
фланкуючі відкриті рамки зчитування (ORFs) генів. S (preSl,
preS2) регіон(и) кодує головний, середній та великий білки
(HBsAg). C і ргеС регіони кодують HBcAg і HBeAg. X регіон
кодує поліпептид, який експресується за час HBV інфекції. P
регіон кодує білок з різноманітними функціями у реплікації.
Ідентифіковано чотири класи HBV мРНК. У геномі HBV
pre-Sl промотор продукує великий білок, pre-S2/S виробляє
головний і середній білки. X промотор кодує 0,7 і 0,9 траі с-
крипти. C і пре-С промотори кодують Core і pol(HBVcAg) і
HBeAg білки. Ключовими регуляторними елементами HBV є
енхансери І і II. Активність енхансера II є специфічною для
печінки. Він активує транскрипцію обох npe-Sl і npe-S2/S
промоторів. Два HBV енхансери активують основні промото-
ри HBV. SoKC-a в II-A і бокс-β в II-B елементах у геномі HBV
необхідні для функції енхансера II. Бокси а і β можуть
регулювати активацію промотора Core, білки a, b, f і білки с,
d прикріплюються у боксах а і β відповідно і впливають на
енхансерну функцію.
Ф. Аджамиян
Вирус гепатита В: общее описание, физическая структура,
генетическая организация, транскрипция генов и геномные
регулирующие элементы
Резюме
Геном вируса гепатита В человека (HBV) существует в виде
двухцепочных кольцевых молекуул ДНК. Он содержит четыре
фланкирующие открытые рамки считывания (ORFs) генов. S
(npeSl, npeS2) регион/ы) кодирует главный, средний и боль-
шой белки (HBsAg). С и пре-С регионы кодируют HBcAg и
HBeAg. X регион кодирует полипептид, репрессирующийся в
течение HBV инфекции. P регион кодирует белок с разнообраз-
ными функциями в репликации. Идентифицированы четыре
класса HBV мРНК. В геноме HBV npe-Sl промотор продуци-
рует большой белок, npe-S2/S промотор производит оба
(главный и средний) белка. X промотор кодирует 0,7 и 0,9
транскрипты. С и пре-С промоторы кодируют Core и
Pol(HBcAg) и HBeAg белки. Ключевыми регуляторными эле-
ментами в HBV являются энхансеры I и II. Активность
энхансера II очень специфична для печени. Энхансер II активи-
рует транскрипционную активность npe-Sl и npe-S2/S про-
моторов. Два HBV энхансера активируют основные промото-
ры HBV. Бокс-α в II -A и бокс-β в Il-B элементах в геноме HBV
необходимы для функции энхансера II. Боксы а и β могут
регулировать активацию Core промотора, белки a, b, f и белки
с, d прикрепляются в боксах а и β соответственно и дейст-
вуют на энхансерную функцию.
REFERENCES
1. Pourcel С., Louise Α., Geravis M., Chnciner N., Dubais Μ.
F., Tiollais P. Transcription of the hepatitis B surface antigen
gene in mouse cells transformed with cloned viral DNA / / J.
Virol.—1982.—42 —P. 100—105.
2. Gough N. M. Core and E antigen synthesis in rodent cells
transformed with hepatitis B virus DNA is associated with
greater than genome length viral messenger RNAs / / J, Мої.
Biol.—1983.—165.—P. 683—699.
3. Chakraborty P. R., Ruiz-Opazo N., Shouval D., Shafritz D. A.
Identificaition of Integrated hepatitis B virus DNA and expres-
sion of viral RNA in an HBsAG-producing human hepatocel-
lular carcinoma cell line Il Nature.—1980.—286.—P. 531.
4. Cattaneo R., Will H., Hernandez N., Scalier H. Signals
regulating hepatitis B surface antigen transcription / / Na-
ture.—19,S3.—305.—P. 336—338.
5. Slddiqqui A., Jameel S., Mapoles J. Transcriptional control
elements of hepatitis B surface antigen gene / / Proc. Nat.
Acad. Sci. USA.—1986.—S3.—P. 566—570.
6. Galibert F., Chen T. N., Mandart E. Nucleotide, sequence of a
cloned woodchuck hepatitis virus genome: comparison with the
hepatitis B virus sequence / I J. Virol.—1982,—41.—P. 51 —
56.
7. Summers J., Mason W. S. Replication of the proteins of a
hepatitis B-Iike virus by revers transcription of an RNA
intermediate H Cell.—1982.—29.—P. 403—415.
8. Seeger C., Ganem D, Varmus Η. E. Biochemical and genetic
evidence for the hepatitis B virus replication strategy / /
Science—1986 —232 —P. 477—484,
9. Bayer M. E., Blumberg B. S., Werner B. Particles associated
with Australia antigen in the sera, of patients with leukaemia,
Down's syudrome and hepatitis / / Nature.—1968 —218.—
P. 1057—1059.
10. Summers J., Smolec J. M., Suyder R. A virus similar to human
hepatitis І8 virus associated with hepatitis and hepatocyte in
woodchucks Il Proc. Nat. Acad. Sci. USA.—197:3.—75.—
P. 4533—4537.
11. Marion P. L1 Oshiro L S., Regnery D. C., Scullard G. H.,
Robinson W. S. A virus in Bcechy ground squirrels which is
related to hepatitis B virus of human 11 Prtx;. Nat. AcacL Sci.
USA.—1980.—77,—P. 2941—2944.
12. Feitelson Μ. A., Millnuin I., Blumberg S. Tree; squirrel
hepatitis B virus; antigenic and structural characterization / /
Proc. Nat. Acad. Sci. USA.—1986.—83.—P. 2994—2997.
13. Mason W. S., Seal G1., Summers J. Virus of Pekin duck; with
structural and biological relatedness to human hepatitis B virus
/ / J. Virol.—1980.—36.—P. 829—836.
14. Sprengel R., Kaleta E. F., Will H. Isolation and charac-
terization of a hepatitis B virus endemic in herons Il J.
Virol.—1988 —62.—P. 3832—3839.
15. Skelly /., Copeland J. A., Howard C. R., Zuckerman A. J.
Hepatitis B surface antigen produced by a human hepatoma
cell line / / Nature.—1979.—282,—P. 617—618.
16. Szmuness W. Hepatocellular carcinoma and the hepatitis B
virus: evidence for a casual associated progress in medical
virology / / Progr. Med. Virol —1978.—24 —P. 40—69
17. Tiollais P., Pourcel C., Dejeari A. The hepatitis B virus / /
Nature.— 1985'.—317. —P. 489—495.
18. Aspinall S., Alexander J., Bos P. Comparative expression of
hepatitis B virus antigens in several cell model system / / J.
Gen. Virol.-1986.— 67.—P. 2315—2323.
19. Johnson P. F., Landschulz W. H., Graves B. J., McKnight S.
L. Identification of a rat liver nuclear protein that binds to the
enhancer core element of three animal viruses / / Genes
Dev.—1987.—I.—P. 133—146,
20. Beasley R. P., Hwang L Y., Lin C. C., Chien C. S.
Hepatocellular Mrcinoma and hepatitis B virus: a prospective
study of 22,707 men in taiwan I l Lancet.—1981.—ii.—
P. 1129—1133.
21. Moroy T., Marchio A., Etiemble J., Trepo, C., Tiollais P.,
Buendia M. Rearrangement and enhanced expression of e-myc
in hepatocellular carcinoma of hepatitis virus infected wood-
chucks / / Nature.—1986.—324,—P. 276—279.
117
ADiAMIAN F.
7,2. Fourel G., Trepo C., BougtAeleret L, Henglein В., Ponzetto Α.,
Tiollais P., Buendia Μ. Frequenl activation of N-myc genes by
hepadnavirus insertion in woodchuck liver tumours / / Na-
ture.—1990.—347.—P 294—298.
23. Dejean A., Brechot C., TioIJais P., Waln-Hobson S. Charac-
terization of integrated hepatitis B viral DNA cloned from a
human hepatoma and the hepatoma-derived cell line
PLC/PRF/5 / / Proc. Nat. Acad. Sci. USA.—1983.—80.—
P. 2505—2509.
24. Fowler M. J. F., Tlwmas H. C., Monjardino J. Cloning and
analysis of integrated hepatitis B virus DNA of the adr subtype
derived from a human primai-y liver cell carcinoma / / J . Gen.
Virol.—1986.—67.— P. 771—775.
25. Koshy R., Koch S., Freytag von Loringhoven A., Kahmann R.,
Murray K., Hofschneider P. H. Integration of hepatitis B virus
DNA: evidence for integration in the single-stranded gap Il
Cell.—1983.—34.—P. 215—223.
26. Mizusawa H., TairaM., Yaginoma K., Kobayashi M., Yoshida
E., Koike K Inversely repeating integrated hepatitis B virus
DNA and cellular flanking sequences in the human hepatoma-
derived cell line huSP / / Proc. Nat. Acad. Sci. USA.—1985.—
82—P. 208—212.
27. Rogler C. E., Sherman M., Su C. Y., Shafritz D. A., Summers
J., Shows Τ. B , Henderson A., Kew M. Deletion in chromo-
some l i p associated with a hepatitis B integration site in
hepatocellular carcinoma / / Science.— 1985.—230.—P. 319.
28. Shaul Y., Ziemer M., Garcia P. D., Cmwford R., Hsu H.,
Valeruuela P., Rutter W. J. Cloning and analysis of integrated
hepatitis B virus sequences from a human hepatoma cell line / /
J. Virol.—1984.—51.—P. 776—787.
29. Yaginuma XL, Kobayashi M., Yoshida E., Koike K. Hepatitis
B virus integration in hepatocellular carcinoma DNA: duplica-
tion of cellular flanking sequences at the integration site / /
Proc. Nat. Acad. Sci. USA. — 1985.—82.—P. 4458—4462.
30. Ziemer M., Garcia P., Slwul Y., Rutter W. J. Sequence of
hepatitis B virus DNA incorporated into the genome of a human
hepatoma cell line / / J. Virol.—1985.—53.—P. 885—892.
31. Ou S., Rutter W. J. Hybrid hepatitis B virus-host transcripts in
a human hepatoma cell / / Proc. Nat. Acad. Sci. USA.—
1985.—82.—P. 83—87.
32. Su H., Yee J-K. Regulation of hepatitis B virus gene expression
by its two enhancers / / Proc Nat. Acad. Sci. USA.—1992.—
89.—P. 2708—2712.
33. Brechot C., Hadshouel M., Scotto /., Fonck M., Potet F.,
Руда G. N., Tiollais P. State of hepatitis B virus DNA in
hepatocytes of patients with hepatitis B surface antigen-positive
and negative liver diseases II Proc. Nat. Acad. Sci. USA.—
1981.—78,—P. 3906—3910.
34. Brechot C., Pourcel C., Louise A., Rain B., Tiollais P.
Presence of integrated hepatitis B virus DNA sequences in
cellular DNA of human hepatocellular carcinoma Il Nature.—
1980.—286,—P. 533—535.
35. Chen D. S., Hoyer B H., Nelson /., Purcell R. H., Gerin J.
L Detection and properties of hepatitis B viral DNA in liver
tissues from patients with hepatocellular carcinoma / / Hepatol-
ogj .—1982,—2,— P. 42—46,
36. Edman J. C., Gray P., Valenzuela P., Rail L B., Rutter W.
J. Integration of hepatitis B virus sequences and their expres-
sion in a human hepatoma cell / / Nature.—1980.—286.—
P. 535—538.
37. Shafritz D. A., Shauval D., Sherman H. J., Hadziyannis S. J.,
Kew M. C. Integration of hepatitis B virus DNA into the
genome of liver cells in chronic liver disease and hepatocellular
carcinoma. Studies in percutaneous liver biopsies and post-mor-
tem tissue specimens Il Engl. J. Med.—1981.—305.—
P. 1067—1073.
38. Rossner Μ. T. Review: Hepatitis B virus X-gene product: A
promiscuous transcriptional activator / / J. Med. Virol.—
1992,—36.—P. 101 — 117.
39. Araki K, Miyazaki J., Hino O , Tomita N., Chisaka O.,
Matsubara 1С, Yamamura IC Expression and replication of
hepatitis B virus genome in transgenic mice / / Proc. Nat. Acad.
Sci. USA.—1989.—86.—P. 207—211.
40. Hollinger F. B. Hepatitis B virus.—Lippincott: Raven publ.,
1996.—P. 2739—2807.
41. Cattaneo R., Will H., Schaller H. Hepatitis B virus transcrip-
tion in the infected liver / / EMBO J. —1984.—3.—P. 2191.
42. Elfassi E., Romet-Lemonne J. L, Essex M., Mclane M. F.,
Haseltine W. Evidence of extrachromosomal forms of hepatitis
B viral DNA in a bone marrow culture obtained from a patient
recently infected with hepatitis B virus / / Proc. Nat. Acad. Sci.
USA.—1984.—81.—P. 3526—3528.
43. Farza H., Hadchouel M., Scotto J., Tiollais P., Babinet C.,
Pourcel C. Replication and gene expression of hepatitis B virus
in a transgenic mouse that contains the complete viral genome
/ / J. Virol.—1988.—62.—P. 4144—4152.
44. Heerman K H., Goddman U., Schwartz W., Seyffarts T.,
Baumgarten H., Gerlich W. Large surface proteins of hepatitis
B virus containing the pre-S sequence / / J. Virol.—1984.—
52 —P. 396—402.
45. Machida A., Kishimoto S., Ohnuma H., Miyamoto H., Baba
K., Oda K., Nakamura T., Miyakawa У. A hepatitis B surface
antigen polypeptide (p31) with the receptor for polymerized
human as well as chimpanzee albumins / / Gastroenterology.—
1983.—85.—P. 268—274.
46. Tiollais P., Charnay P., Vyas G. N. Biology of hepatitis B virus
/ / Science.—1981,—213.—P. 406—411.
47. Galibert F., Mandart E., Fitoussi F., Tiollais P., Charnay P.
Nucleotide sequence of the hepatitis B virus genome (subtype
ayw) Il Nature.—1979.—281.—P. 646—650.
48. Pasek M., Goto T., Gilbert W., Zink B., Schaller H., MacKay,
P., Leadbetter G., Murray K Hepatitis B virus genes and their
expression in E . coli Il Nature.—1979. —282.— P. 573—579.
49. Bosch K1 Kuhn C., Schaller H. Hepatitis B virus replication I l
Retroviruses, viroids, and RNA recombination, RNA genetics /
Eds E. Domingo, J. J. Holland, P. Ahiquist.—Cleveland: CRC
press, 1988.—Vol. 2,—P. 43—58.
50. Pfaff E., Klinkert M. Q., Theilmann L, Schaller H Carac-
terization of large surface proteins of hepatitis B virus by
antibodies to pre-S encoded amino acids / / Virology.—
1986.—148.—P. 15—22.
51. Ganem D. Assembly of hepadnaviral virions and subviral
particles Il Curr. Top. Microbiol. Immunol —і 991 —168.—
P. 61—83.
52. Stibbe W., Gerlich W. H. Structural relationships between
minor and major proteins of hepatitis B surface antigen / / J.
Virol. —1983.—46.—P. 626—628.
53. Ganem D. Hepadnaviridae and their replication.—Lippincott:
Raven pub!., 1996.—P. 2703—2737.
54. Ganem D., Varmus H. E. The molecular biology of the
hepatitis B viruses / / Ann. Rev. Biochem.—1987 —56.—
P. 651—693.
55. Shisari F. V., Klopchin K, Moriyama T., Pasquinell C .
Dunsford Η. A., Sell S., Pinkert C. A., Brinster R. L,
Palmiter R. D. Molecular pathogenesis of hepatocellular car-
cinoma in hepatitis B virus transgenic mice / / Cell.—1989,—
59.—P. 1145—1156.
56. Shisari F. V., Filippi P., Buras I., McLachlan A., Popper H.,
Pinkert C. A., Palmiter R. D., Brinster R. L Structural and
pathological effects of synthesis of hepatitis B virus large
envelope polypeptide in transgenic mice / / Proc. Nat. Acad.
Sci. USA.—1987.—84,—P. 6909—6913.
118
57. Cheng К.-C., Smit G. L., Moss В. Hepatitis В virus large
surface protein is not secreted but is immunogenic when
selectively expressed by recombinant vaccinia virus / / J.
Virol.—1986.—60.—P. 337—344.
58. MoLnar-Kimber K. L, Jarocki-Witek V., Dheer S. K, Vernon
S. K., Conley A /., Davis A. R., Hung P. P. Distinctive
properties of the hepatitis B vims envelope proteins / / J.
Virol.—1988.—62.—P. 407-^416.
59. Ou J.-H., Rutter W. J. Regulation of secretion of the hepatitis
B virus major surface antigen by the preS-1 protein / / J.
Virol.—1987.—61.—P. 782—786.
60. Ramakrishnam M., Tugizov S., Pereira L, Lee A. S. Confor-
mation-detective herpes simplex virus 1 glycoprotein B activates
the promoter of the grp94 gene that codes for the 94-KD stress
pro ιό in in the endoplasmic reticulum I l DNA Cell Biol.—
1995,—14,—P. 373—384.
ci. Bruss V., Ganem D. The role of envelope proteins in hepatitis
B virus assembly / / Proc. Nat. Acad. Sci. USA.—1991.—88.—
P. 1059—1063.
62. Yen T. S. B. Regulation of hepatitis B virus gene expression.
Semin / / Virology.—1993.—4—P. 33—42.
63. Xu Z., Jensen G., Yen T. S. B. Activation of hepatitis B virus
S promoter by the viral large surface protein via induction of
stress in the endoplasmic reticulum / / J. Virol.—1997.—71.—
P. 7387—7392.
64. Chang C., Jeng JC S., Hu C., Lo S. J., Su T. S., Ting L P.,
Chou C. K., Han S. H., Pfaff E., Salfeld J., Schaller H.
Production of hepatitis B virus in vitro by transient expression
of cloned HBV DNA in a hepatoma cell line Il EMBO
J —1987 —6.—P. 675—680.
65. Sells Μ. A., Chen M. L, Acs G. Production of hepatitis B
virus particles in HepG2 cells transfected with cloned hepatitis
B virus DNA / / Proc. Nat. Acad. Sci. USA.—1987.—84—
P. 1005—1009.
66. Tsurimoto T., Fujiyama A., Matsubara K. Stable expression
and replication of hepatitis B virus genome in an integrated
state in a human hepatoma cell line transfected with the cloned
viral DNA / / Proc. Nat. Acad. Sci. USA.—1987.—84.—
• p. 444—448.
67. Yaginuma K., Shirakata Y., Kobayashi M., JCoike K. Hepatitis
B virus (HBV) particles are produced In a cell culture system
by transient expression of transfected HBV DNA / / Proc. Nat.
Acad. Sci. USA.—1987.—84,—P. 2678—2682.
68. Matsui T., Takano M., Miyamoto K., Itoh Y., Yoshizawa H.,
Koike M., Mochizuki T., Tanaka E., Okamoto H., Jmai M.,
Mishiro S., Miyakawa Y., Mayumi M. Nude mice bearing
human primary hepatocellular carcinoma that produces hepa-
titis B surface, Core and e antigens, as well as deoxyribonucleic
acid polymerase / / Gastroenterology.—1986.—90.—P. 135—
142.
69. Gough N. M., Murray K J. Expression of the hepatitis B virus
surface, Core and E antigen genes by stable Rat and Mouse
cell line / / Мої. Biol.—1982 —162,—P. 43—68.
70. Will H., Cattaneo R., Pfaff E., Kuhn C., Roggendorf M.,
Schaller H. Expression of hepatitis B antigens with a simian
virus 40 vector / / J. Virol.—1984.—50.—P. 335—342.
71. Sureau C., Romet-Lemonne J. L, Mullins J. /., Essex M.
Production of hepatitis B virus by a differented human
hepatoma cell line after transfectlon with cloned circular HBV
DNA / / Cell.—1986.—47.—P. 37—47.
72. Gripon P., Christiana D., Theze N., Fourel L, Loreal O.,
Brechot C., Guguen-Guillouzo C. Hepatitis B virus infection of
adult human hepatocytes cultured in the presence of Dimethyl
Sulfoxide / / J. Virol.—1988.—62.—P. 4136—4143.
73. Ochiya T., Tsurimoto T., Ueda Κ, Okubo 1С, Shiozawa M.,
Matsubara K An in vitro system for infection with hepatitis B
THE HEPATITIS B VIRUS: GENERAL DESCRIPTION
virus that uses primary human fetal hepatocytes / / Proc. Nat.
Acad. Sci. USA.—1989.—86.—P. 1875—1879.
74. Chisari J7. V., Pinlxrt C. A., Milich D. R., Filippi P.,
McLachlan A., Palmiter R. D., Brinster R. L A transgenic
mouse model of the chronic hepatitis B surface antigen carrier
state / / Science.—1985.—230.—P. 1157—1160.
75. Babinet C., Farza H., Morello D., Hadchouel M., Pourcel C.
Specific expression of hepatitis B surface antigen (HBsA;t; ) in
transgenic mice / / Science.—1985.—230.—P. 1160—1163.
76. Standring D., Rutter W. ./., Varrms H. E., Ganem D.
Transcription of the HBsAg gene in cultured murine cells
initiates v/ithin the presurface region / / J. Virol.—1984.—
50.—P. 563—571.
77. Le Bouvier G. L The heterogeneity of Australia antigen / / J.
Infect. Diseases.—1971.—123—P. 671—675.
78. Bancroft W. H., Mundon F. JC, Russell P. K Detection of
additional antigenic determinants of hepatitis B antigen / / J.
Immunol.—1972.—109.—P. 842—848<X
79. Fujiyama A., Miyanohara A., Nozaki C., Yoneyarni T.,
Ohtomo N., Matsubara K. Cloning and structural analysis of
hepatitis B virus DNAs, subtype adr II Nucl. Aciiis Res.—
1983.—П.—P. 4601—4610.
80. Okamoto H., Tsuda F., Sakugawa H., Sastrosoewignjo R. I.,
Imai M., Miyakawa Y., Mayumi M. Typing hepatitis B virus
by homology in nucleotide sequence: comparison of surface
antigen subtypes / / J. Gen. Virol.—1988.—69,—P. 2575—
.2583.
81. Charnay P., Mandart E., Hampe A., FAoussi F., Tiollis P.,
Galibert F. localization on the viral genome and nucleotide
sequence of the gene coding for the two major polypeptides of
the hepatitis B surface antigen (HBsAg ) / / Nucl. Acids
Res.—1979.—7—P. 335—346.
82. Stibbe W, Gerlich W. H. Structural relationships between
minor and major proteins of hepatitis B virus surface antigen
/ / J. Virol.—1983.—46.—P. 626—628.
83. De-Medina Г., Faktor O., Shaul Y. The S promoter of the
hepatitis B virus is regulated by positive and negative elements
/ / Мої. and Cell. Blol-—1988.—8.— P. 2449—2455
84 Courtois G., Baumhueter S., Carbtree G. R. Purified hepa-
tocyte nuclear factor 1 interacts with a family of hepatocyte-
specific promoters Il Proc. Nat. Acad. Sci. USA.—19Й8.—
85.—P. 7937—7941.
85. Tur-Kaspa R , Burk R. D., Shaul Y., Shafritz D. A. Hepatitis
B vims DNA contains a glucocorticoid-responsive element / /
Proc. Nat. Acad. Sci. USA.—1986.—8.—P. 1627—1631
86. Tur-Kaspa R , Shaul Y., Moore D. D., Burk R. D., Okret S.,
Poellinger L, ShafrUz D. A. The glucocorticoid receptor
recognizes a specific nucleotide sequence in hepatitis B vims
DNA causing increased activity of the HBV enhancer / /
Virology.—1988.—167.—P. 630—633.
87. Farza H., Salmon A. M., Hadchouel M., Moreau J. L,
Babinet C., Tiollais P., Pourcel C. Hepatitis B surface antigen
gene expression is regulated by sex steroids and glucocorticoids
in transgenic mice / / Proc. Nat. Acad. Sci. USA.—1987.—
84,—P. 1187—1191.
88. Uy A., Bruss V., Gerlich W. H., Kochel H. G., Thomsstm R.
Pre Core sequence of hepatitis B vims inducing e antigen and
membrane association of the viral Core protein 11 Virology.—
1986,—155 —P. 189—198.
89. Levrero M., Jean-Jean 0-, Balsana C., Will II., Peiricaudett
M. Hepatitis B vims (HBV) X gene expression in human cells
and anti-HBx antibodies detection in chronic HBV infection / /
Virology.—1990. — 174.—P. 299—304.
90. Twu J. S., Schioemer R. H. Transcriptional trans-activating
function of hepatitis: B vims / / J. Virol.—1987.—61.—
P. 3448-3453 .
119
ADiAMIAN F.
91. Spandau D. F., Lee С. Η. Trans-activation of viral enhancers
by the hepatitis B virus X protein / / J. Virol.—1988.—62,—
P. 427—434.
92. Twu J. S., Robinson W. Λ. Hepatitis B virus X gene can
transactivate heterologous viral sequences / / Proc. Nat. Acad.
Sci. USA.—1989.—86.—P. 2046—2050.
93. Gunther S., Piwon N., Iwanska A., Schilling R., Meisel H.,
Will H. Type, prevalence, and significance of Core promoter.
Enhancer Π mutations in hepatitis B virus from Immunosup-
pressed patients with severe liver disease / / J. Virol.—1996.—
70.—P. 8318—8331.
ζ 4. Bartenschlager R., Schaller Η. The amino-terminal domain of
the hepadnaviral P-gene encodes the terminal protein (geno-
me-Iinked protein) believed to prime reverse transcription / /
EMBO J . ~ 1988.—7.—P. 4185—4192.
95. Schlicht H. J., Radziwill G., Schalkr H. Synthesis and
encapsidation of Duck hepatitis B virus reverse transcriptase do
not require formation of Core-polvmerase fusion proteins / /
CeU.-1989—56—P. 85—92.
96. Bosch V., BartenscMager R., Radziwill G., Schaller H. The
Duck hepatitis B virus P-gene codes for protein strongly
associated with the 5'-end of the viral DNA minus strand / /
Virologj'.—I 988.—166. —P. 475—485.
97. WillH., Reiser W., WeimerT., PfaffE., BuscherM., Sprengel
R., Cattaneo R., Schaller H. Replication strategy of human
hepatitis B virus / / J. Virol —1987.—61 .—P. 904—911.
98. Yuh C H., Ting L P. The genome of the hepatitis B virus
contains a second enhancer: cooperation of two elements within
this enhancer is required for its function I l J. Virol.—1990.—
64 —P. 4281—4287.
99. Valenzticla P., Qurioga M., Zaldiver /., Cray P., Rutter W. J.
The nucleotide sequence of the hepatitis B viral genome and
identification of the major viral genes / / Animal Virus Ge-
netics: ICN/UCLA Symp. on Мої. and Cell. Biol. / Eds B. N.
Fields, R. Jaenlsch, C. F. Fox.—San Diego: Acad, press,
1980.—P. 57—70.
100. Malpiece Y., Michel M. L, Carloni G., Revel M., Tiollais P.,
Weissenbach J. The gene S promoter of hepatitis B virus
confers constitutive gene expression I l Nucl. Acids Res.—
1983.—11.—P. 4645—4654.
101. Rail I. B., Standring D. N., Laub O., Rutter W. J. Transcrip-
tion of hepatitis B virus by IRNA polymerase Π Il Мої. and
Cell. Biol. —1983.—3.—P. 1766—1773.
102. Persing D. H., VarmiAS H. E., Ganem D. inhibition of secretion
of hepatitis B surface antigen by a related presurface polypep-
tide / / Science.—1986.-234,—P. 1388 — 1392.
103. Standring D. N., Ou J. S., Rutter W. J. Assembly of viral
particles in Xenopus oocytes: pre-surface antigens regulate
secretion of the hepatitis B viral surface envelope particle / /
Proc. Nat. Acad. Sci. USA.—1986.—83.—P. 9338—9342.
104. Chang H. K., Ting L P. lire surface gene promoter of the
human hepatitis B virus displays a preference for differentiated
hepatocytes Il Virology.—1989.—170.—P. 176—183.
105. Chang H. K,, Bang B. Y., Yuh C-. H., Wei C. L, Ting L. P.
A liver-specific nuclear factor interacts with the promoter
region of the large surface protein gene of human hepatitis B
virus / / Мої. Cell. Biol.—1989.—9.—P. 5189—5197.
106. Raney A. K., Milich D. R., Mclachlan A. Characterization of
hepatitis B virus major surface antigen gene transcriptional
regulatory elements in differentiated hepatoma cell line / / J.
Virol.—1989.—63—P. 3919—3925.
107. Laub O., Treinin M. Identification of a promoter element
located upstream from the hepatitis 13 virus X gene / / Мої.
Cell. Biol.—1987.—7—P. 545—548.
108 .Enders G. H., Ganem D., Varmus H. Mapping the major
transcripts of ground squirrel hepatitis virus: the presumptive
template for reverse transcriptase is terminally redundant / /
Cell.—1985.—42.—P. 297—308.
109. Mandart E., Kay A., Galibert F. Nucleotide sequence of a
cloned duck hepatitis virus genome: comparison with wood-
chuck and human hepatitis B virus sequences / / J . Virol.—
1984.—49.—P. 782—792.
110. Yuh C., Ting L Differentiated liver cell specificity of the
second enhancer of hepatitis B Virus / / J. Virol.—1993.—
67.—P. 142—149.
111.Kobayashi M., Koike K. Complete nucleotide sequence of
hepatitis B virus DNA of subtype adr and its conserved gene
organization / / Gene—1984.—30.—P. 227—232.
112. Laub O., Rail L B., Truett M., Shaul Y., Standring D. N.,
Valenzuela P., Rutter W. J. Synthesis of hepatitis B surface
antigen in mammalian cell / / J. Virol.—1983.—48.—P. 271 —
280.
113. Kaneko S., Miller R. H. X-Region-specific transcript in
mammalian hepatitis B virus-infected liver / / J. Virol —
1988.—62.—P. 3979—3984.
114. Yen T. S. B. Viral Hepatitis.—New York: Williams and
Wilkins, 1991.
115. Fouillot N., Tlouzeau S., Rossignol J. M., Jean-Jean O.
Transcription of the hepatitis B virus P gene by ribosomal
seanning as an alternative to internal initiation / / J. Viroi.—
1993.—67.—P. 4886—4895.
116. Weimer T., Salfeld J., Will H. Expression of the hepatitis B
virus Core gene in vitro and in vivo Il J. Virol.—1987.—61 —
P. 3109—3113.
117. Lopez-Cabrera M., Letovsky J., Hu K. Q., Sidddiqui A.
Multiple liver-specific factors bind to the hapatitis B virus core
(pregenomic promoter: trans-activation and repression by
CCAAT) enhancer binding protein / / Proc. Nat. Acad. Sci.
USA.—1990.—87.—P. 5069—5073.
Ii 8. Yaginuma K., Koike K. Identification of a promoter region for
3.6-kilobase mRNA of hepatitis B virus and specific cellular
binding protein / / J. Virol.—1989.—63,—P. 2914—2920.
119. Yuh C. H., Chang Y. L, Ting L P. Transcriptional regulation
of precore and pregenomic RNAs of hepatitis B virus / / J.
Virol.—1992.—66.—P. 4073—4084.
120. Chen I.-H., Huang C. J., Ting L P. Overlapping initiator and
TATA box functions in the basal Core promoter of hepatitis B
virus Hi. Virol.—1995.—69.—P. 3647—3657.
121. Guo W., Chen M., Yen T. S. B., Ou J. H. Hepatocyte-specific
expression of the hepatitis B virus Core promoter depends on
both positive and negative regulation / / Мої. Cell. Biol.—
1993.—13.—P. 443—448.
122. Wang Y., Chen P., Wu X., Sun A. L, Wang H., Zhu Y. .·
Li Z. P. A new enhancer element, ENII, identified in the X
gene of hepatitis B virus / / J. Virol.—1990.—64,—P. 3977—
3981.
123. Yuh C.-H., Ting L P. C/EBP-like proteins binding to the
functional box-« and box-/5 of the second enhancer of hepatitis
B virus / / Мої. Cell. Biol.—1991.—11.—P. 5044—5052.
124. Zhou υ.-X., Yen T. S. B. Differential regulation of the
hepatitis B viral surface gene promoters by a second viral
enhancer / / J. Biol. Chem.-1990.—265,—P. 20731—20734.
125. Johartson J. L, Raney A. K., McLachln A. Characterization of
a functional hepatocyte nuclear factor 3 binding site in the
hepatitis B virus nucleocapsid promoter I l Virology.—1995.—
208.—P. 147—158.
126. Zang P., Raney A. K., McLachln A. Characterization of a
functional Spl transcription factor binding sites in the hepatitis
B virus nucleocapsid promoter I l J. Virol.—1993.—67.—
P. 1472—1481.
127. Rartey A. K, Easton A. J., Milich D. R., McLachlan A.
Promoter-specific transactivation of hepatitis B virus transcrip·
120
THE HEPATITIS B VIRUS: GENERAL DESCRIPTION
tion by a glutamine- and proline-rich domain of hepatocyte
nuclear factor / / J. Virol.—1991,—65.—P. 5774—5781.
128. Hasegawa JC, Huang J., Rogers S. A., Blum H. E., Liang T.
J. Enhanced replication of a hepatitis B virus mutant associated
with an epidemic of fulminant hepatitis 1 1 1 . Virol.—1994.—
6 8 — P . 1651—1659.
129. Horikita M., Jtoh S., Yamamoto JC, Shibayama T., Tsuda F.,
Okamoto H. Differences in the entire nucleotide sequence
between hepatitis B virus genomes from carriers positive for
antibody to hepatitis B e antigen with and without active
disease / / J. Med. Virol.—1994.—44,—P. 96—103.
130. Kaneko M., Uchida T., Moriyama M., Arakawa Y., Shikata
T., Gotoh K., Mima S- Probable implication of mutations of the
X open reading frame in the onset of fulminant hepatitis В Il
т. Med. Virol.—1995.—47—P. 204—208.
131. Sato S., Suzuki JC, Akahane Y., Akamatsu JC, Akiyama JC,
Yunomura K., Tsuda F., Tanaka T., Okamoto H., Miyakawa
Y., Mayumi M. Hepatitis B virus strains with mutations in the
Core promoter in patients with fulminant hepatitis / / Ann. Int.
Med —1995 —122.—P. 241—248.
132. MoHyama K., Takada T., Tsutsumi Y., Fukada K, Jshibashi
H., Niho Y., Maeda Y. Mutations in the transcriptional
regulatory region of the precore and Core/pregenome of a
hepatitis B virus with defective HBeAg production / / Fukuoka
Igaku Zasshl.—1994.—85.—P. 314—322.
133. Okamoto H., Tsuda F., Akahane Y., Sugai Y., Yoshiba M.,
Moriyama JC, Tanaka T., Miyakawa Y., Mayumi M., Miya-
kawa Y., Mayumi M. Hepatitis B virus with mutations in the
Core promoter for an e antigen-negative phenotype in carriers
with antibody to e antigen / / J. Virol.—1994.—68.—
P. 8102—8110.
134. Takahashi K, Aoyama K., Ohno N., Jwata JC, Akahane Y.,
Baba K.. Yoshizawa H., Mishiro S. The precore / Core
promoter mutant (T1762 A1764 ) of hepatitis B virus: clinical
significance and an easy method for detection I I I . Gen.
Virol.—1995.—76.—P. 3159—3164.
135. Fukuda R., Nguyen X. Y., Jshimura N., Ishihara S., Chowd-
hury A., Kohge N., Akagi S., Watanabe M., Fukumoto S. X
gene and precore region mutations in the hepatitis B virus
genome in persons positive for antibody to hepatitis B e
antigen: comparison between asymptomic «healthy» carriers
and patients with severe chronic active hepatitis / / J . Infect.
Diseases.—1995.—172.—P. 1191—1197.
136. Gotoh 1С, Mima S., Uehida T., Shlkata T., Yoshizawa K, Irie
M., Mizui M. Nucleotidd sequence of hepatitis B virus isolated
from subjects without serum and hepatitis B core antibody Il
J. Med. Virol.—1995.—46.—P. 201—206.
137. Preisler-Adams S., Schlayer H. J., Peters T., Hettler F.,
Gerok tV., Rasenaek J. Sequence analysis of hepatitis B virus
DNA in immunologically negative infection / / Arch. Virol.—
1993.—133.—P. 385—396.
138. Uehida T., Shimojima M., Gotoh 1С, Shikata T., Tanaku E.,
JCiyosawa K. «Silent* hepatitis B virus mutants are responsible
for non-A, non-B, non-C, non-D, non-E, hepatitis / / Mic-
robiol. Immunol.—1994.—38.—P. 281—285.
139. Landschulz W. H., Johnson P. F., Adashi E. Y., Graves B. J.,
McKnight S. L Isolation of a recombinant copy of the gene
encoding C/EBP / / Genes Dev.—1988.—2.—P. 786—800.
140. Mitchell P. J., Tjian R. Transcription regulation in mammalian
cells by sequence specific DNA binding proteins / / Science.—
1989.—245.—P. 371—378.
141. Maniatis T., Goodbvurn S., Fischer J. A. RegtJaticn of
inducible and tissue-specific gene expression / / Science.—
1987.—236.—P. 1237—1245.
142. Hones N. C.„ Rigby P. W. J., Ziff Ε. B. Trans-acting protein
factors and the regulation of eukaryotic transcription: lessons
from studies on DNA tumor viruses / / Genes Dev.—1988.—
2,—P. 267—281.
143. Meyer К. B., Neuberger M. S. The immunoglobulin к locus
contains a second, stronger-cell specific enhancer which is
located downstream of the constant region / / EMBO J.—
1989.—8.—P. 1959—1964.
144. Fromental C., Kanrui M., Nomiyama (I., Chambon P. Coo-
perativity and hierarchical levels of functional organization in
the SV40 enhancer / / Cell.—1988.—54,—P. 943—953.
145. Nomiyama H., Fromental C., Xiao J. H., Chambo α P.
Cell-specific activity of the constituent elements of the simian
virus 40 enhancer Il Proc. Nat. Acad. Sci. USA.—19(17.—
84,—P. 7881—7885.
146. Ondek B.. Shepard A., Herr W. Discrete elements within the
SV40 enhancer region display different cell-specific enhancer
activities H EMBO J —1987 —6,—P 1017—1025.
147. Guo W., Bell K. D., Ou J. H. Characterization of the hepatitis
B virus Enhl enhancer and X promoter complex Il J.
Virol.—1991.—65.—P. 6686—6692.
148. Shaul Y., Rutter W. J., Laub 0. A human hepatitis B viral
enhancer element / / IiMBO J.—1985 —4—P. 427—430.
149. Tognoni A., Cattaneo R., Serfling E., Schaffner W A novel
expression selection approach allows precise mapping of the
hepatitis B virus enhancer / / Nucl. Acids Res.—1985.—113.—
P. 7457—7472.
150. Shaul Y., Rutter W. J., Laub 0. A human hepatitis B viral
enhancer element / / EMBO J.—1985.—4.—P. 427—430.
151. Chang H. K., Chou C. K., Chang C., Su T. S., Hu C. P.,
Yoshida M., Ting L. P. The enhancer sequence of human
hepatitis B virus can enhancer the activity of its surface gene
promoter / / Nucl. Acids Res.—1987.—15.—P. 2261—2268.
152. Yee J.-JC A liver specific enhancer in the core promoter region
of human hepatitis B virus / / Science.—1989.—246.—
P. 658—661.
153 . Honigwachs J., Factor O., Dikstein R., Shaul Y., Laub O.
Liver-specific expression of hepatitis B virus is determined by
the combined action of the Core gene promoter and the
enhancer Il J. Virol. —1989.—63.—P. 919—924.
154. Roossinck M. J., Jameel S., Uiukin S. H., Siddiqui A.
Expression of hepatitis B viral core region in mammalian cells
/ / Мої. Cell Biol.—1986.—6.—P. 1393—1400
155. Imai M., Hoshi Y., Окатою H., Matsui Т., Tsuritnoto Т.,
Matsubara К, Miyakawa Y., Mayumi Μ. Free and integrated
forms of hepatitis B virus DNA in human hepatocellular
carcinoma cells (PLC/342) propagated in Nude mice / / J.
Virol.—1987.—61.—P. 3555—3560.
156. Lo W.-Y., Ting L-P. Repression of enhancer II activity by a
negative regulatory element in the hepatitis B virus gjnome / /
J. Virol.—1994.—68.—P. 1758—1764.
УДК 578.2
Received 28.10.98
121
|