The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements

The HBV genome is a circular partially double-stranded DNA molecule. It contains four overlapping open reading frames (ORFs) genes. The S (preS1, preS2) region(s) encodes the major (small), middle and large proteins (HBsAg). The C and pre-C regions encode HBcAg and HBeAg. The X region encodes a poly...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автор: Adjamian, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 1999
Назва видання:Биополимеры и клетка
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156323
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements / F. Adjamian // Биополимеры и клетка. — 1999. — Т. 15, № 2. — С. 109-121. — Бібліогр.: 156 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156323
record_format dspace
spelling irk-123456789-1563232019-07-05T17:11:38Z The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements Adjamian, F. Обзоры The HBV genome is a circular partially double-stranded DNA molecule. It contains four overlapping open reading frames (ORFs) genes. The S (preS1, preS2) region(s) encodes the major (small), middle and large proteins (HBsAg). The C and pre-C regions encode HBcAg and HBeAg. The X region encodes a polypeptide expressed during HBV infection. The P region codes for a protein with several, functions in replication. Four classes of HBV mRNAs have been identified, in the HBV genome the pre-S1 promoter expresses the large protein. The pre-S2/S promoters produce both major and middle proteins. The X promoter produces 0.7 and 0.9 kb transcripts. The C and pre-C promoters produce the Core, pol(HBcAg), and the HBeAg proteins. Enhancer I and II are key regulatory elements in the transcriptional regulation of HBV. The activity of enhancer II is highly the liwr specific. Enhancer II activates the transcriptional activity of both the pre-S1 and preS2/S promoters. Two HBV enhancers strongly affect the activity of all three major HBV promoters. A box-α in the II-A and box-β in II-B elements of HBV genome, are necessary for the enhancer II function. Either box-α or box-β can regulate the activity of the Core promoter, a, b, f proteins and c, d proteins bind to box-α and box-β, respectively, and mediate the enhancer function. Геном вірусу гепатиту В людини (HBV) існує у вигляді дволанцюгових кільцевих молекул ДНК Він містить чотири фланкуючі відкриті рамки зчитування (ORFs) генів, S (preSl, preS2) регіоні и) кодує головний, середній та великий білки (HBsAg). С і preC регіони кодують HBcAg і HBeAg, X регіон кед у є поліпептид, який експресується за час HBV інфекції Р регіон кодує білок з різноманітними функціями у реплікації. Ідентифіковано чотири класи HBV мРНК. У геномі HBV pre-S1 промотор продукує великий білок, pre-S2/S виробляє головний і середній білки. X промотор кодує 0,7 і 0,9 трагскрипти. С і пре-С промотори кодують Core і pol(HBVcAg) і HBeAg білки. Ключовими регуляторними елементами HBV є енхансери І і II. Активність енхансера II є специфічною для печінки. Він активує транскрипцію обох пре-S1 і пре-S2/S промоторів. Два HBV енхансери активують основні промото­ри HBV. Бокс-α в І 1-А і бокс-β в ІІ-В елементах у геномі HBV необхідні для функції енхансера II. Бокси а і р можуть регулювати активацію промотора Core, білки a, b, f і білки с, d прикріплюються у боксах а і р відповідно і впливають на енхансерну функцію. Геном вируса гепатита В человека (HBV) существует в виде двухцепочных кольцевых молекуул ДНК Он содержит четыре фланкирующие открытые рамки считывания (ORF8) генов. S (преS1, преS2) регион/ы) кодирует главный, средний и боль­шой белки (HBsAg). С и пре-С регионы кодируют HBсAg и HBeAg. X регион кодирует полипептид, экспрессирующийся в течение HBV инфекции. Р регион кодирует белок с разнообраз­ными функциями в репликации. Идентифицированы четыре класса HBV мРНК. В геноме HBV npe-Sl промотор продуци­рует большой белок, пpe-S2/S промотор производит оба (главный и средний) белка. X промотор кодирует 0,7 и 0,9 транскрипты. С и пре-С промоторы кодируют Core и pol(HBcAg) и HBeAg белки. Ключевыми регуляторными эле­ментами в HBV являются энхансеры I и II. Активность энхансера II очень специфична для печени, Энхансер II активи­рует транскрипционную активность пре-S1 и пре-S2/S про­ моторов. Два HBV энхансера активируют основные промото­ры HBV. Вокс-α в НА и бокс-β в П-В элементах в геноме HBV необходимы для функции энхансера II. Воксы α и β могут регулировать активацию Core промотора, белки a, b, f и белки с, d прикрепляются в боксах α и β соответственно и дейст­вуют на энхансерную функцию. 1999 Article The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements / F. Adjamian // Биополимеры и клетка. — 1999. — Т. 15, № 2. — С. 109-121. — Бібліогр.: 156 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00050E http://dspace.nbuv.gov.ua/handle/123456789/156323 578.2 en Биополимеры и клетка Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Обзоры
Обзоры
spellingShingle Обзоры
Обзоры
Adjamian, F.
The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements
Биополимеры и клетка
description The HBV genome is a circular partially double-stranded DNA molecule. It contains four overlapping open reading frames (ORFs) genes. The S (preS1, preS2) region(s) encodes the major (small), middle and large proteins (HBsAg). The C and pre-C regions encode HBcAg and HBeAg. The X region encodes a polypeptide expressed during HBV infection. The P region codes for a protein with several, functions in replication. Four classes of HBV mRNAs have been identified, in the HBV genome the pre-S1 promoter expresses the large protein. The pre-S2/S promoters produce both major and middle proteins. The X promoter produces 0.7 and 0.9 kb transcripts. The C and pre-C promoters produce the Core, pol(HBcAg), and the HBeAg proteins. Enhancer I and II are key regulatory elements in the transcriptional regulation of HBV. The activity of enhancer II is highly the liwr specific. Enhancer II activates the transcriptional activity of both the pre-S1 and preS2/S promoters. Two HBV enhancers strongly affect the activity of all three major HBV promoters. A box-α in the II-A and box-β in II-B elements of HBV genome, are necessary for the enhancer II function. Either box-α or box-β can regulate the activity of the Core promoter, a, b, f proteins and c, d proteins bind to box-α and box-β, respectively, and mediate the enhancer function.
format Article
author Adjamian, F.
author_facet Adjamian, F.
author_sort Adjamian, F.
title The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements
title_short The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements
title_full The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements
title_fullStr The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements
title_full_unstemmed The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements
title_sort hepatitis в virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements
publisher Інститут молекулярної біології і генетики НАН України
publishDate 1999
topic_facet Обзоры
url http://dspace.nbuv.gov.ua/handle/123456789/156323
citation_txt The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements / F. Adjamian // Биополимеры и клетка. — 1999. — Т. 15, № 2. — С. 109-121. — Бібліогр.: 156 назв. — англ.
series Биополимеры и клетка
work_keys_str_mv AT adjamianf thehepatitisvvirusgeneraldescriptionphysicalstructuregeneticorganizationgenetranscriptsandgenomicregulatoryelements
AT adjamianf hepatitisvvirusgeneraldescriptionphysicalstructuregeneticorganizationgenetranscriptsandgenomicregulatoryelements
first_indexed 2025-07-14T08:24:10Z
last_indexed 2025-07-14T08:24:10Z
_version_ 1837611340712116224
fulltext ISSN 0233-7657. Биополимеры и клетка. 1999. Т. 15. № 2 The hepatitis В virus: general description, physical structure, genetic organization, gene transcripts and genomic regulatory elements Farzam Adjamian Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine 150 Zabolotnoho vul., 250143, Kyiv, Ukraine The HBV genome is a circular partially double-stranded DNA molecule. It contains four overlapping open reading frames (ORFs) genes. The S (preSJ, preS2) region(s) encodes the major (small), middle and large proteins (HBsAg). The C and pre-C regions encode HBcAg and HBeAg. The X region encodes a polypeptide expressed during HBV infection. The P region codes for a protein with several functions in replication. Four classes of HBV mRNAs have been identified. In the HBV genome the pre-Sl promoter expresses the large protein. The pre-S2/S promoters produce both major and middle proteins. The X promoter produces 0.7 and 0.9 kb transcripts. The C and pre~C promoters produce the Core, pol(HBcAg), and the HBeAg proteins. Enhancer I and II are key regulatory elements in the transcriptional regulation of HB V. The activity of enhancer II is highly the liver specific. Enhancer II activates the transcriptional activity of both the pre-Sl and preS2/S promoters. Two HBV enlmncers strongly affect the activity of all three major HBV promoters. A box-α in the II-A and box-β in II-B elements of HBV genome, are necessary for the enhancer II function. Either box-α or box-β can regulate the activity of the Core promoter, a, b, f proteins and c, d proteins bind to box-α and box-β, respectively, and mediate the enhancer function. The study of human HBV which is one of the smallest known for animal virus, has been severaly limited because it only infects humans and because a tissue culture system in which this virus can be propagated is not available. (HBV can not be propagated in vitro). The hepatitis B surface antigen (HBsAg) transcription has been studied only in cell lines containing HBV DNA integrated into chromosomes, and HBsAg-rela- ted mRNAs 2.0 to 2.5 kb long have been described [1—5 J. The hepatitis B viruses, also called Hepadna- viruses [6], represent a small group of primarily hepatotropic enveloped DNA viruses that proceed through reverse transcription of a RNA intermediate [7, 8 ] in a manner analogous to that of retroviruses. Beside the HBV of man [9 ], this family (Hapad- naviridae) includes woodchuck hepatitis virus (WHV) of Marmota топах [10], ground squirrel hepatitis B virus (GSHV) of Spermophilus beecheyi [11 ], the tree squirrel hepatitis B virus [12], duck hepatitis B virus © F ADJAMIAN, 1999 (DHBV) of Anas domesticus [13] and other ducks, heron hepatitis B virus in gray herons [14] and probably others. This taxonomy is derived from the relative hepatotropism of virus family members, their common virion morphology, genome size, structure and organization, and common mechanism of genome replication. All the viruses exhibit a strict host specificity; the human virus replicating only in man and a small number of higher apes. The disease state induced by infection with HBV is manifest in varying ways characterized by the extent of liver inflammation and damage arid viral persistence. In a small percentage of cases, primary infection leads to fulminant hepatitis resulting in severe liver dysfunction with very high mortality. Primary infection is most often resolved by complete clearance ol the virus and development of immune memory to counter reinfection, but 5—10 % of infected adults develop chronic infection characterized by the persistence of viral antigens in the serom and accompanied by varying degrees of hepatic injury. This disease state may continue after integration of HBV DNA into the hepatocyte genome from which 109 ADiAMIAN F. transcription of viral antigen genes may continue in the absence of virion production. H BV can be detec- ted in the hepatocyte either as a free DNA molecules or in an integrated form [15]. ChiOnically infected patients are predisposed to developing hepatocellular carcinoma (HCC) [16—19] with more than 100-fold greater probability than non-infected individuals [20]. The presence of integrated HBV DNA in hepatocellular carcinoma has led to the hypothesis that viral integration may contribute to the process of hepatocarcinogenesis [21, 22]. In hepatocytes that have undergone malignant transformation, part of HBV DNA are integrated into chromosomes of the host [23—31]. However, the mechanisms of integration, res- ponsible for Iumorigenesis and for the shutdown of HBV gene expression and replication in hepatocellular carcinoma remain unclear [32], but the integrated HBV subgenomes are suspected to be carcinogenic [3, 33—37]. Hepatitis B constitutes a major worldwide health problem with the number of chronically in- fected people currently estimated in excess of 250 million [38—40]. HBV has a partially double stranded, open- circular genome of 3.2 kb which contains four open reading frames (ORFs) including the S-gene encoding the suiiace antigen (HBsAg) and the C-gene encoding the Core antigen (HBcAg) (Fig. I). A large ORF encompassing most of the viral genome encodes the viral polymerase while the fourth ORF encodes a protein of 154-amino acid residues which has been termed the X antigen (HBAg). Because the function of this product in the viral life cycle is still under intensive investigation. Although the viral genome and RNA transcripts can be detected in extra-hepatic tissues of HBV- infected chimpanzees and in transgenic mice carrying the HBV DNA [39, 41—43], liver is still the principal site of clinical disease in which HBV actively repli- cates. Infected plasma contains viral particles of dif- ferent sizes and forms. During infection of humans, the virus (Dane particle) and the two prominent subviral particles (filaments and 22-nm particles) are observed in the sera of infected individuals. The virion has a diameter of approximately 42 nm (Dane particle) with a 27-nm core. The 22 nm diameter particles consist of empty viral envelopes that bears the hepatitis B surface antigen (HBsAg). Filaments and 22 nm particles consist only of the HBsAg and cellular lipid. Careful examination of the surface antigen [44, 45] has indicated that it is composed of at least three pairs of proteins: p24 and gp27; gp33 and gp36; p39 and gp42 (p: protein, gp: glycoprotein), where the second protein in each pair is a gly- cosylated from of the first. It is apparent from the work of a number of investigators [5, 31, 46] that these proteins are derived from a large open reading frame (one of OR Fs) and originate from the first three strongly conserved ATGs in that region. This particular ORF consists of an «S» region that is preceded by an in-phase reading frame, which has been designated as «pre-surface» or «рге-S». The pre-S region may be further subdivided into «pre-Sl» and «pre-S2» [46—48]. The 42 nm HBV particles (Dane particle = virion) contains three different sur- face proteins which are referred to as «major (small)» protein, «middle» protein and «large» protein. (The outer envelope of the virion is arrayed by three surface S proteins; the major (small) S, the middle S, and the large S [17, 44, 49, 50—53)). The large surface protein (LS) is translated from the first ATG codon of the surface open reading frame, while the middle and small (major) forms are translated from in-frame ATG codons further downstream. Inside the viral envelope, there is the 27-nm «Core» particle formed by subunits of core proteins referred to as HBcAg. It contains the viral polymerase and the partially double stranded DNA molecule to which a protein is covalently linked (for a review see [54]). All three forms of the surface (envelope) proteins (antigens) which are co-linear in the carboxyl-ter- minal protein, are needed for virion production and cotranslationally inserted into the Endoplasmic Reti- culum (ER) as transmembrane proteins and, together with envelope cytoplasmic core (nucleocapsid) par- ticles, form mature virions that are secreted via the constitutive secretory pathway [53], but an over- production of the large form can result abnormal particle formation that becomes inspissated in the ER and damages the host cell [55, 56]. In addition, the middle and/or small forms, in the absence of other viral proteins, can bud into the lumen and be secreted in the form of spherical and filamentous subviral particles. LS, in contrast cannot be secreted when expressed alone but instead is retained within the cell in the form of intraluminal particles [55, 57, 58—60, 102 ]. If LS is coexpressed with the other forms of surface protein, they form heteromultimers whose phenotype depends on the relative amounts of the various surface proteins: a small relative amount of LS results in secretion, while a large amount results in retention. This retention affects the secretion not only of noninfectious subviral particles but also of the infectious virion particles and, therefore, is delete- rious to the viral life cycle [61 ]. Not surprisingly, in the infected cell, LS is usually synthesized in much 110 THE HEPATITIS B VIRUS: GENERAL DESCRIPTION Fig. 1. HBV genome organization and viral transcripts (in ayw subtype): Open reading frames are represented by arrows, and Iwxes represented transcriptional control regions. The stars correspond to the ATG codons and the position given at the end of the arrows correspond to those of the stop codons. Abbreviation: GRE - Glucocorticoid Responsive Element, DRI and DRIT - primary site for replication smaller amounts than the middle and small surface proteins. This differential regulation is achieved by the presence of two independent promoters [62 ]. The upstream pre-Sl promoter gives rise to transcripts that are translated mainly into LS, while the down- stream S promoter gives rise to transcripts capable of translation into only the middle and small surface protein. Since the amount of pre-Sl mRNA is nor- mally much smaller than the amount of S mRNA, there is insufficient LS to prevent secretion. Because the relative ratio of LS to the middle and small surface proteins synthesized by HBV is crucial to its replication, it was found, that there is a feedback mechanism to ensure a balanced synthesis of these proteins, in that LS significantly activates the S promoter [63]. This activation is con-elated whit the intracellular retention of LS and is mimicked by agents that induce ER stress [63 ], Conversely, LS 111 ADiAMIAN F. also activates cellular promoters known to respond to ER stress, but not irrelevant promoters. Therefore, overexpression of LS and subsequent intracellular particle retention appear to activate the S promoter by an intracellular signalling pathway induced by ER stress. This activation would in turn lead to increased synthesis of the middle and small surface proteins and, hence, allow secretion of both subviral and virion particles [63]. (The pre Sl and S promoters will explaind in other part of litis review.) The investigation of the HBV life cycle has been hampered by the lack of a system for HBV replication in vitro. However, in vitro culture systems whit human hepatoma cells that are capable of producing HBV particles by DNA transfection have been successfully established by various groups of investigators [64— 67, 71]; cloning and sequencing [47, 48], the use of animal model systems [7, 68], and eukaryotic exp- ression system [69, 70], however, have brought some insight into the HBV gene organization and life cycle. Different systems are now available to study HBV gene expression. Virus multiplication and production of surface antigens have been obtained in hepatoma cell lines transfected by cloned HBV DNA [71 ], in adult [72] and fetal [73] primary human hepatocytes cultures by direct infection, This has been clone also in vivo with the transgenic mouse system [38, 39, 43, 74, 75]. By using eukaryotic vectors, expression of HBsAg has been demonstrated in various cultured cells [4, 76 ]. Synthesis of HBsAg in mammalian cells has uniformly resulted in production of this gene product and its secretion in the form of 22 nm particles into the culture medium, which facilitates detection and purification [5]. So that knowledge of the virus cycle and of its molecular biology is in progress. The viral surface antigen has a common group specific determinant a and carries one member of each of the two pairs of mutually exclusive subtype determinants d and у [68 ] and w and r [78 ]. Thus there are four major subtypes of HBsAg: adw,' adr, ayw, and ayr [79]. These subtypes have been recently classificated into group A, B, C' and D by Okamoto et al. [80]. The groups A, B and D are homogenous while group C is not [80]. In this later group the adw genome is closely related to the ayr and adr genomes. Two by two analysis of the nucleotide sequences show some degree of divergence. The divergence is about 10 % for viruses of different subtypes and about 2 % for viruses of the same subtype except for the ayr subtype which diverges only 2 % from the adr subtype. Occasionally mixed subtypes have been re- ported in adwr, adyw, adywr and aywr. Both appa- rently excluded determinants map to the same mole- cule. It is not known if this represents a double infection or an uncommon HBV strain. Virion DNA: It has been mentioned above, that the HBV genome is a small circular partially double- stranded DNA molecule. This genome is accompanied by a single stranded region of variable length (Fig. 1). The minus (-) strand is linear and of fixed length of about 3200 nucleotides. It is the coding strand from which the viral mRNA and the viral pregenomic RNA are transcribed. At its 5' end, there is a protein that serves as primer for reverse transcription. The plus strand (+) is of variable length ranging from 50 to 100 % that of the minus strand. The maintenance of the circular structure is assured by a short cohesive overlap region of about 200 nucleotides at the 5' end of the two strands. A 12 bp direct repeats (DRI and DRII) located near the 5' end of both strands seems to serve as a primary site for replication (Fig. 1). The first «Т» of the sequence 5'GAATTC in the plus strand corresponding to the unique EcoRI site which exists in most genomes is used as reference origin of physical map. Nucleotides numbering is from 5' to 3' in the plus strand. When the EcoRI site dose not exist the base occupying the same position is taken as position 1. Physical structure and genetic organization of the HBV genome: As a remind and completion, it is pointing out that the hepatitis B virus genome con- tains four overlapping open reading frames genes encoding all known proteins of this virus. The enve- lope open reading frame, or S region (S gene), contains three in phase translation start codons (ATG) defining the N-termini of three envelope polypeptides; pre-Sl, pre-S2 and S protein (The hepatitis B surface antigen [HBsAg]) [54, 81, 82]. Referring to the ayw subtype [47], the shortest polypeptide (226 aa) (aa = amino acid) that contains the group a and the subtypes ( d / у , w/r) determinants is also called major (small) protein (HBsAg) because of in relative abundance. It is encoded by the S region starting from the ATG at position 158 (in the adw subtype [83 ]). The middle envelope polypeptide con- tains the entire amino acid sequence of the major polypeptide plus 55 aa at the N-terminus containing the pre-S2 antigen, starting from the ATG at position 3214 ([The P31 ATG] in adw subtype [83]). The large protein is composed by the entire amino acid sequence of the middle envelope polypeptide plus 158 aa at the N-terminus and bears the pre-Sl antigen [52, 82]. The two pre-S antigens are highly immuno- genic neutralizing epitopes, the larger one being involved in the virus binding to cell receptors and in the entry in the hepatocytes [82 ]. Many trans- criptional factors are able to bind to specific sites in 112 the pre-S region of HBV DNA and could be somehow responsible for the hepatotropism i. e. HNFl and API [83, 84]. A glucocorticoid responsive element (GRE) has been mapped within the S gene between positions 351 and 366 (in ayw subtype) [85 ]. This element has no enhancer activity but act synergettically with the viral enhancer [86 ]. Steroid hormones have been shown to positively regulate the S gene expression in transgenic mice [87]. (The Enhancer activity will discussed in other part of this review.) The capside open reading frame or region C (C gene) contains two in frame ATG and encodes a nucleic acid binding protein, HBcAg, that encapsidate the viral nucleic acids and a 29 aa longer polypeptide (pre-C) that is secreted as HBeAg [88 ]. The X region (X gene) encodes a polypeptide expressed during HBV infection and in hepatocellular carcinoma [89]. This polypeptide has transactivating properties on HBV and other viral and cellular promoters [90—92 ]. The P region (P = Pol gene) overlaps all the others. It codes for a protein with several function in replication; (DNA poly- merase, RNAse H, primer for DNA synthesis and reverse transcriptase [93]). This protein as well as reverse transcriptase activity [94, 95], binds to the viral DNA 5' terminus of the minus strand [96 ]. Three major classes of HBV-specific message are detected in infected hepatocytes, and 5' ends of the RNAs are heterogeneous (Fig. 2) [41, 54, 97]: the 3.5-kb RNAs, which are slightly larger than the 3.2 kb unit length of HBV genome serve as the mRNAs THE HEPATITIS B VIRUS: GENERAL DESCRIPTION for expression of the core protein. It is also used for the synthesis of viral DNA polymerase [7, 8, 98]. Because these RNAs are the only species containing the full complement of viral genetic information, they also serve as templates for reverse transcription during HBV replication [8, 97, 99]. Two other mRNAs are subgenomic in size: the 2.4 kb RNAs encode the large envelope protein HBV surface ,anti- gen (S-protein), and the 2.1 kb RNAs encode the middle and major HEiV surface antigens. Expression of these HBV-specific mRNAs is controlled by four different promoters in the HBV genome [54]: the Core promoter regulates expression of the 3.5 kb RNAs, whereas the; pre-S promoter (The distal TATA-Iike promoter (SPI)) [4, 100, 101] and the S promoter (The proximal Simian virus 40 (SV40)-like promoter (SPII)) regulate expression of the 2.4 and 2.1 RNAs, respectively [44, 102, 103]. Both the SPI and the SPII promoters display a preference for differentiated hepatoma cell lines [104]. The liver- and differentiated state-specific transcriptional acti- vities of the SPI promoter are controlled by the combined action of a HNF-I binding element, lying between 68 and 95 bp upstream of the; RNA cap site in the SPI promoter region [98], and the HBV enhancer, which is located downstream of the coding sequence of the S gene [104, 105]. The liver- and differentiated state-specific trans- criptional activities of the SPII promoter are contri- buted mainly by the upstream flanking sequence in the promoter region [83, 104, 106]. In addition (0.7 Fig. 2. Linear representation of the HBV genome. The numbering system of Pasek et al. [481 is used. Transcriptional control regions are shown as boxes and are abbreviated as follows: SPJ - pre-SI promoter; SPIJ- pre-S2/S promoter, enh(I)/Xp - enhancer X/I promoter, CpIenh(II) - Core promoter/enhancer Π AD JAMlAM F. [113]) 0.8 to 0.9 kb mRNA has been detected in the in vitro expression system by the DNA transfection of HBV DNA [107]. This transcript may be related in some way to the expression of the X gene [99], controlled by X-promoter. One of the two major HBV-specific poly (A+) RN As characterized in infec- ted livers of chimpanzees is 2.1 kb long [4, 41 ]. This transcript codes for the major S protein and appare- ntly for pre-S2 protein. Thus, four classes of mRNAs have been identified so far in the process of HBV propagation and are known to use the single poly- adenylation signal for their termination [99 ]. Two similar major transcripts were also observed in the infection of other hepadnaviruses, the wood- chuck hepatitis virus (WHV) and ground squirrel hepatitis virus (GSHV). Analysis of Ihe 5' ends of the two major transcripts from infected woodchucks and ground squirrels indicated that they were hetero- geneous for all transcripts [108, 109]. For the two major transcripts of HBV, however, use of the tran- sient expression system of transfected HBV DNA with HuH-7 cell made possible a similar analysis of the heterogeneity of 5' ends of two major transcripts [67]. It is mentioned above, thai in human, the principal site of clinical pathology after HBV infec- tions is the liver because HBV actively replicates only in hepatocytes [17, 41]. Consistent with this obser- vation, the 3.5 kb genomic transcript has been detec- ted primarily in well-differentiated human hepatoma cell lines transfected by the cloned HBV genome [67, 71 ], suggesting that liver-specific factors are needed for efficient transcription of the genomic transcripts from the core promoter, but although HBV DNA has been found in non hepatic tissues in infected patients and in transgenic mice [38, 39, 42, 43, 110]. Gene Transcripts: All the transcripts already described have the same 3' end consisting on a polyadenylation site 1916-TATAAA- 1921(111). As a result and completion, there are four promoters that regulate the expression of the different HBV genes; two Surface promoters, one Core promoter, and one X promoter. The given positions correspond to that of the adw [48 ] HBV genome. The pre-Sl promoter: This promoter which con- tains a TATA box sequence was defined by in vitro [101] and in vivo [112] studies; this promoter initiates transcription at position 2810 (in adw), upstream from the pre-Sl region. Low activity of this promoter was found in the human hepatoma Ale- xander ceil line [31 ] and in the liver of an infected chimpanzee [4]. Using stable transformation with cloned HBV DNA, it was shown that this TATA box-containing promoter is not essential for the expression of hepatitis B surface antigen [76]. Thus the pre-Sl promoter, which is a canonical TATA sequence, located upstream the ATG of the pre-Sl region and, produces 2.4 kb transcripts. However, this promoter is less functional that the other viral pro- moters [82]. The S promoter; as a second promoter termed the S promoter and was characterized and mapped at the pre-S2 region. This promoter induces initiation of transcription at three major sites, spanning some 30 bp) around the EcoRI site [4, 5, 76 ]. The position of these three initiation sites are 5 nucleotides down- stream from and 5 and 25 nucleotides upstream from the EcoRI site (designated as a, b, and c, respec- tively). Since the ATG of the pre-S2 region is positioned between the b and с initiation sites, only the two longest RNA species may code for p31 protein with an extra 55 amino acids of the pre-S2 region. The shorter species lack the p31 ATG so that the first available ATG, at position 158 (in adw subtype), is the transcriptional start point of the major S protein. It was proposed that the expression of these trans- cripts in vivo is directed by a sequence positioned around the Fnu4HI restriction site (3165 in adw subtype) [4] at the region where sequence similarity to the SV40 late promoter was been shown. Thus the S promoter is located round position 3155 (in ayw subtype) just upstream to the translation site of the middle protein and produces 2.1 kb transcripts [4' The 5' ends of these transcripts are heterogeneous and encodes both the major (small) and middle protein. Despite the extensive mapping of S gsne mRNA initiation sites, little is known about regu- latory elements which modulate the S promoter. Transient expression studies revealed that ibis promoter is highly active in the Alexander (PLC/PRF/5) hepatoma cell line but not in SK-Hepl and HeLa cells. It has been determined that a distal element of the promoter (-103 to -48) confers this cell-type-specific behavior through a mechanism in which the promoter activity repressed in HeLa and SK-Hepl cell but increased in Alexander cells [83]. It has been also found an enhancer like activity associated with a small DNA segment of the S promoter (-27 to +30) [83]. This proximal element actives in HeLa and SK-Hepl cells only in the absence of the distal negative element. Finally, ana- lysis of S promoter deletion mutants demonstrated that the -27 to -17 region of the S promoter is crucial for its activity [83 ]. The X promoter; has not been precisely located [107]. It is weakly active in vivo and represent less than 1 % of the viral transcripts. In in vitro system, 0.7 kb and 0.9 kb transcripts have been reported [113]. This promoter seem to be more efficient out of 114 THE HEPATITIS B VIRUS: GENERAL DESCRIPTION the whole HBV genome context. Since the HBV X protein (pX) trans-activates many promoters [114], including the HBV Core promoter [91 ], it is deter- mined that pX not regulates the pre-Sl or S promoter (pX has not trans-effect on the Surface gene pro- moters). The Core promoter; regulates the replication of the virus, as the 3.5 kb C mRNA/pregenome not only serves for translation of the Core and Pol proteins but also represents the template for reverse transcription [97, 115, 116]. From the second Core promoter transcript, the pre-C mRNA, only the HBeAg precur- sor is translated [115, 116]. The Core promoter is composed of a minimal or basic Core promoter <BCP) sufficient to initiate transcription and of upstream regulatory sequences (URS) [117—119]. A short TA-rich sequence in the BCP serves as both the initiator and TATA box for transcription initiation of the pre-C mRNA and C mRNA/pregenome, respec- tively [120]. An important activating URS element is the alpha box (see part of Regulatory Elements of HBV genome in this review), which binds hepatocyte nuclear factor 4 (HNF4), C/EBP, or other liver-specific trans- cription factors [110, 117, 118, 121—124]. In addi- tion, binding sites for HNF3 and ubiquitous factors like SPI were identified in this promoter [125, 126]. Unlike the pre-Sl promoter, the Core promoter of wild-type HBV does not contain an HNFl binding site [127]. Because of its crucial role in the viral life cycle, naturally occurring sequence variation in the Core promoter of HBV in patients is under intense inves- tigation. Specific point mutations in the BCP were found in HBV from patients with fulminant hepatitis [128—131]. Similar mutation as well as different short deletions or insertions were found in viremic HBeAg-negative patients with chronic hepatitis B [129—134]. Since for these patients no mutation in the C gene could explain the lack of HBeAg expression, it was speculated that promoter mutation may be res- ponsible. Specific types of short deletions in the Core promoter region were found in patients with extre- mely low-level viremia, in some cases without any serological marker for HBV infection [135—138]. Thus, a particular phenotype may be caused by specific mutations in the Core promoter. However, this speculation has not previously been substantiated by experimental evidence [93]. At last the Core promoter, produces transcripts of 3.5 kb. Three 5' ends have been located upstream of the C gene: two of them initiating downstream of the ATG of pre-C region, coding for the major capsid antigen (HBcAg) and the genomic viral DNA, and another one starting ups tream region pre-C coding for the HBeAg [67 |. A C gene specific 2.1 kb spliced transcript that represent the 2.1 kb S transcripts has been described [1391. A polymerase gene promoter has not been iden- tified. The 3.5 kb transcripts that have heterogeneous 5' ends [108] could also encode the polymerase gene products. Regulatory Elements of HBV genome: Eukarvotic gene expression is in large part regulated at the transcription, level. Such regulation is governed by the constellation of trans-acting cellular factors that bind to specific as-acting elements and act in either a positive or negative manner [140]. Cell-type-specific gene activation a primary' determinant of cellular differentiation, represents a more complex type of interplay, as both constitutive arid tissue-restricted trans-acting regulatory factors are involved [1,41]. The differential sequence-specific recognition of these cis-acting elements in promoters and/or enhancer s by their cognate factors provides a mechanistic basis for the tissue- and differentiation-specific regulation of gene expression. The study of model viral genes which display distinct tissue tropism can provide valuable insight into the intricate effects of cell-type- specific transcription regulation on differentiation. It has been mentioned above, that control of gene transcription in part regulated by the presence of cis-acting DNA elements that interact with specific nuclear transcription factors. Enhancers, which act in a position- and orientation-independent mannner, are key regulatory elements in the transcriptional regu- lation of viral and cellular genes [142, 143 ]. The 72-bp repeat of simian virus 40 (SV40) is the best- characterized enhancer. The SV40 72-bp enhancer, which is composed of multiple regulatory cis-acting elements via the inter- action whit ubiquitous and cell-type-specific trans- criptional factors, orchestrates the expression of viral genes in many cells [144—146]. Two regions of the HBV genome are known to display properties of a transcriptional enhancer (Fig. 2) [147—149]. A transcriptional region, Enhancer I, is located between the open reading frames of the surface antigen, within the region P, and upstream the X region (position 1074—1234 in ayw subtype) and partially overlaps the X promoter [147, 150]. Because activation of trans- cription by this enhancer is greater in several cultured hepatoma cells than in nonhepatic cells, it has lieen suggested that this enhancer is responsible for liver- specific gene expression of HBV [150]. It is described the identification of a second enhancer sequence (enhancer II) in the HBV genome: Enhancer II is situated downstream of the previously identified en- 115 АШAMLAN F. hancer (enhancer I), immediately upstream from the coding region of the Core gene (initiation site of viral major transcript) [152], overlaps with the Core pro- moter [93], within the X open reading frame [98, 152]. Enhancer II has been mapped to nt 1636 to 1741 [123] in HBV genome. It furnishes a unique model of use in investigating the structure and function of an enhancer. Unlike enhancer I, the activity of enhancer II is highly liver specific, functioning only in highly differentiated human hepatoma cells. Furthermore, enhancer II activity varies in different hepatoma lines, suggesting that this enhancer is regulated according to the differentiation state of the hepatoma line used. Because enhancers have been shown to play a pivotal role in the regulation of mammalian and viral gene expression and because HBV gene expression is tightly coupled to the step of reveres transcription in this replication cycle, a mechanism for regulation of HBV enhancer activity may clarify the molecular basis for the absence of HBV replication and gene expression in hepatocellular carcinoma [22]. With various deletions at the 5' end of enhancer II, a positive regulatory element was identified at nt 1636 to 1690 (the II-A element), with the 5' boundary between nt 1636 and 1671. The II-A Element alone did not have an enhancer function, but the enhancer activity was been achieved by the concomitant pre- sence of the sequence from nt 1704 to 1741 (the II-B element). The II-B Element alone did not have enhancer activity. These facts indicate that coope- ration between the II-A and II-B elements is required to exhibit the enhancer activity of enhancer II [98 ]. Two functional constituents, a 23-bp sequence box-α in the II-A element and a 12-bp sequence box-β in II-B element, were identified as being both necessary and sufficient for enhancer II function [123]. Interes- tingly, either box-a or box-/? in an upstream position can regulate the activity of the nearly Core promoter [119]. Examination of the box-α and box-β sequences reveals a weak homology to the extended consensus for a C/EBP binding site. Gel shift and footprinting analyses indicate that multiple proteins bind to these sequences and thus are candidate transcription factors that mediate the enhancer function. One heat-resis- tant protein, protein a, and one heat-sensitive pro- tein, protein b, bind to box-α. Protein a, which bind to box-α in a way indistinguishable from that seen with a recombinant C/EBP, appears not to be iden- tical to C/EBP in that the binding of protein a requires a minimal sequence larger than the canonical C/EBP sites. Two box-/?-binding proteins с and d, show gre- ater affinity for the C/EBP consensus than for Ъох-β. However, both proteins с and d are relatively heat sensitive and display a distinct sequence prefe- rence from the recombinant C/EBP protein. Since the function of enhancer II is strictly dependent on a bipartite architecture, this system provides a unique model for studies of how the interactions of its binding proteins lead to the enhancer function. Fur- thermore, proteins that display binding activities to box-α and box-/? are found to be present in nuclear extracts of the differentiated human hepatoma cell line HepG2 by DNAse I footprinting and gel shift analyses [123]. Using DNA transfection to bypass viral entry into cells, it has been demonstrated that the expression of HBV genes exhibits liver cell and differentiation state specificity in the infective process in vivo [64, 66, 67, 71, 104, 153—155]. Previous studies show that only in the human hepatoma cell lines HepG2 and HuH-7, which have the feature of well-differentiated liver cells, does enhancer II have strong enhancing activity on the simian virus 40 (SV40) early promoter [1101. In contrast, this is not seen in the poorly differentiated HA22T/VGH cells or the nonliver HeLa cells [98 ]. These results also apply to the upstream regulatory effect on the bast. Core promoter (BCP) [119]. These differentiateo actions, therefore, may contribute at least in part to the observed hepatotropism of HBV. It has been mentioned above that gel shift experiments reveal a unique box-a-binding protein, protein a, which is present only in differentiated liver cells, where en- hancer II is functional. The converse is true for another box-a-binding protein, protein /, which is present only in poorly differentiated liver cells and nonliver cells. The simplest hypothesis that explains these results is that protein a activates and/or protein / suppresses the enhancer and upstream regulator functions. Although C/EBP is a candidate for a trans- cription factor that interacts with box-α or box-β, none of the binding factors identified in the gel shift assays, including protein a and protein /, is likely to be C/EBP because they differ from C/EBP in heat liability and sequence preference [117]. In addition, enhancer II consists an upstream negative regulatory element [98, 110, 122, 124, 152, 156]. Enhancer II activates the transcriptional activity of both the SPl and SPII promoters in a liver- and differentiated state-specific manner [98 ]. It has been shown that the two HBV enhancers strongly effect the activity of all three major HBV promoters in human hepatoma cells and that the activity of HBV enhancers is differentially regulated, depending on the state of hepatocyte differentiation. 116 THE HEPATITIS B VIRUS: GENERAL DESCRIPTION Ф. Аджаміян Вірус гепатиту В: загальний опис, фізична структура, генетична організація, транскрипція генів та геномні регулюючі елементи Резюме Геном вірусу гепатиту В людини (HBV) існує у вигляді дволанцюгових кільцевих молекул ДНК. Він містить чотири фланкуючі відкриті рамки зчитування (ORFs) генів. S (preSl, preS2) регіон(и) кодує головний, середній та великий білки (HBsAg). C і ргеС регіони кодують HBcAg і HBeAg. X регіон кодує поліпептид, який експресується за час HBV інфекції. P регіон кодує білок з різноманітними функціями у реплікації. Ідентифіковано чотири класи HBV мРНК. У геномі HBV pre-Sl промотор продукує великий білок, pre-S2/S виробляє головний і середній білки. X промотор кодує 0,7 і 0,9 траі с- крипти. C і пре-С промотори кодують Core і pol(HBVcAg) і HBeAg білки. Ключовими регуляторними елементами HBV є енхансери І і II. Активність енхансера II є специфічною для печінки. Він активує транскрипцію обох npe-Sl і npe-S2/S промоторів. Два HBV енхансери активують основні промото- ри HBV. SoKC-a в II-A і бокс-β в II-B елементах у геномі HBV необхідні для функції енхансера II. Бокси а і β можуть регулювати активацію промотора Core, білки a, b, f і білки с, d прикріплюються у боксах а і β відповідно і впливають на енхансерну функцію. Ф. Аджамиян Вирус гепатита В: общее описание, физическая структура, генетическая организация, транскрипция генов и геномные регулирующие элементы Резюме Геном вируса гепатита В человека (HBV) существует в виде двухцепочных кольцевых молекуул ДНК. Он содержит четыре фланкирующие открытые рамки считывания (ORFs) генов. S (npeSl, npeS2) регион/ы) кодирует главный, средний и боль- шой белки (HBsAg). С и пре-С регионы кодируют HBcAg и HBeAg. X регион кодирует полипептид, репрессирующийся в течение HBV инфекции. P регион кодирует белок с разнообраз- ными функциями в репликации. Идентифицированы четыре класса HBV мРНК. В геноме HBV npe-Sl промотор продуци- рует большой белок, npe-S2/S промотор производит оба (главный и средний) белка. X промотор кодирует 0,7 и 0,9 транскрипты. С и пре-С промоторы кодируют Core и Pol(HBcAg) и HBeAg белки. Ключевыми регуляторными эле- ментами в HBV являются энхансеры I и II. Активность энхансера II очень специфична для печени. Энхансер II активи- рует транскрипционную активность npe-Sl и npe-S2/S про- моторов. Два HBV энхансера активируют основные промото- ры HBV. Бокс-α в II -A и бокс-β в Il-B элементах в геноме HBV необходимы для функции энхансера II. Боксы а и β могут регулировать активацию Core промотора, белки a, b, f и белки с, d прикрепляются в боксах а и β соответственно и дейст- вуют на энхансерную функцию. REFERENCES 1. Pourcel С., Louise Α., Geravis M., Chnciner N., Dubais Μ. F., Tiollais P. Transcription of the hepatitis B surface antigen gene in mouse cells transformed with cloned viral DNA / / J. Virol.—1982.—42 —P. 100—105. 2. Gough N. M. Core and E antigen synthesis in rodent cells transformed with hepatitis B virus DNA is associated with greater than genome length viral messenger RNAs / / J, Мої. Biol.—1983.—165.—P. 683—699. 3. Chakraborty P. R., Ruiz-Opazo N., Shouval D., Shafritz D. A. Identificaition of Integrated hepatitis B virus DNA and expres- sion of viral RNA in an HBsAG-producing human hepatocel- lular carcinoma cell line Il Nature.—1980.—286.—P. 531. 4. Cattaneo R., Will H., Hernandez N., Scalier H. Signals regulating hepatitis B surface antigen transcription / / Na- ture.—19,S3.—305.—P. 336—338. 5. Slddiqqui A., Jameel S., Mapoles J. Transcriptional control elements of hepatitis B surface antigen gene / / Proc. Nat. Acad. Sci. USA.—1986.—S3.—P. 566—570. 6. Galibert F., Chen T. N., Mandart E. Nucleotide, sequence of a cloned woodchuck hepatitis virus genome: comparison with the hepatitis B virus sequence / I J. Virol.—1982,—41.—P. 51 — 56. 7. Summers J., Mason W. S. Replication of the proteins of a hepatitis B-Iike virus by revers transcription of an RNA intermediate H Cell.—1982.—29.—P. 403—415. 8. Seeger C., Ganem D, Varmus Η. E. Biochemical and genetic evidence for the hepatitis B virus replication strategy / / Science—1986 —232 —P. 477—484, 9. Bayer M. E., Blumberg B. S., Werner B. Particles associated with Australia antigen in the sera, of patients with leukaemia, Down's syudrome and hepatitis / / Nature.—1968 —218.— P. 1057—1059. 10. Summers J., Smolec J. M., Suyder R. A virus similar to human hepatitis І8 virus associated with hepatitis and hepatocyte in woodchucks Il Proc. Nat. Acad. Sci. USA.—197:3.—75.— P. 4533—4537. 11. Marion P. L1 Oshiro L S., Regnery D. C., Scullard G. H., Robinson W. S. A virus in Bcechy ground squirrels which is related to hepatitis B virus of human 11 Prtx;. Nat. AcacL Sci. USA.—1980.—77,—P. 2941—2944. 12. Feitelson Μ. A., Millnuin I., Blumberg S. Tree; squirrel hepatitis B virus; antigenic and structural characterization / / Proc. Nat. Acad. Sci. USA.—1986.—83.—P. 2994—2997. 13. Mason W. S., Seal G1., Summers J. Virus of Pekin duck; with structural and biological relatedness to human hepatitis B virus / / J. Virol.—1980.—36.—P. 829—836. 14. Sprengel R., Kaleta E. F., Will H. Isolation and charac- terization of a hepatitis B virus endemic in herons Il J. Virol.—1988 —62.—P. 3832—3839. 15. Skelly /., Copeland J. A., Howard C. R., Zuckerman A. J. Hepatitis B surface antigen produced by a human hepatoma cell line / / Nature.—1979.—282,—P. 617—618. 16. Szmuness W. Hepatocellular carcinoma and the hepatitis B virus: evidence for a casual associated progress in medical virology / / Progr. Med. Virol —1978.—24 —P. 40—69 17. Tiollais P., Pourcel C., Dejeari A. The hepatitis B virus / / Nature.— 1985'.—317. —P. 489—495. 18. Aspinall S., Alexander J., Bos P. Comparative expression of hepatitis B virus antigens in several cell model system / / J. Gen. Virol.-1986.— 67.—P. 2315—2323. 19. Johnson P. F., Landschulz W. H., Graves B. J., McKnight S. L. Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses / / Genes Dev.—1987.—I.—P. 133—146, 20. Beasley R. P., Hwang L Y., Lin C. C., Chien C. S. Hepatocellular Mrcinoma and hepatitis B virus: a prospective study of 22,707 men in taiwan I l Lancet.—1981.—ii.— P. 1129—1133. 21. Moroy T., Marchio A., Etiemble J., Trepo, C., Tiollais P., Buendia M. Rearrangement and enhanced expression of e-myc in hepatocellular carcinoma of hepatitis virus infected wood- chucks / / Nature.—1986.—324,—P. 276—279. 117 ADiAMIAN F. 7,2. Fourel G., Trepo C., BougtAeleret L, Henglein В., Ponzetto Α., Tiollais P., Buendia Μ. Frequenl activation of N-myc genes by hepadnavirus insertion in woodchuck liver tumours / / Na- ture.—1990.—347.—P 294—298. 23. Dejean A., Brechot C., TioIJais P., Waln-Hobson S. Charac- terization of integrated hepatitis B viral DNA cloned from a human hepatoma and the hepatoma-derived cell line PLC/PRF/5 / / Proc. Nat. Acad. Sci. USA.—1983.—80.— P. 2505—2509. 24. Fowler M. J. F., Tlwmas H. C., Monjardino J. Cloning and analysis of integrated hepatitis B virus DNA of the adr subtype derived from a human primai-y liver cell carcinoma / / J . Gen. Virol.—1986.—67.— P. 771—775. 25. Koshy R., Koch S., Freytag von Loringhoven A., Kahmann R., Murray K., Hofschneider P. H. Integration of hepatitis B virus DNA: evidence for integration in the single-stranded gap Il Cell.—1983.—34.—P. 215—223. 26. Mizusawa H., TairaM., Yaginoma K., Kobayashi M., Yoshida E., Koike K Inversely repeating integrated hepatitis B virus DNA and cellular flanking sequences in the human hepatoma- derived cell line huSP / / Proc. Nat. Acad. Sci. USA.—1985.— 82—P. 208—212. 27. Rogler C. E., Sherman M., Su C. Y., Shafritz D. A., Summers J., Shows Τ. B , Henderson A., Kew M. Deletion in chromo- some l i p associated with a hepatitis B integration site in hepatocellular carcinoma / / Science.— 1985.—230.—P. 319. 28. Shaul Y., Ziemer M., Garcia P. D., Cmwford R., Hsu H., Valeruuela P., Rutter W. J. Cloning and analysis of integrated hepatitis B virus sequences from a human hepatoma cell line / / J. Virol.—1984.—51.—P. 776—787. 29. Yaginuma XL, Kobayashi M., Yoshida E., Koike K. Hepatitis B virus integration in hepatocellular carcinoma DNA: duplica- tion of cellular flanking sequences at the integration site / / Proc. Nat. Acad. Sci. USA. — 1985.—82.—P. 4458—4462. 30. Ziemer M., Garcia P., Slwul Y., Rutter W. J. Sequence of hepatitis B virus DNA incorporated into the genome of a human hepatoma cell line / / J. Virol.—1985.—53.—P. 885—892. 31. Ou S., Rutter W. J. Hybrid hepatitis B virus-host transcripts in a human hepatoma cell / / Proc. Nat. Acad. Sci. USA.— 1985.—82.—P. 83—87. 32. Su H., Yee J-K. Regulation of hepatitis B virus gene expression by its two enhancers / / Proc Nat. Acad. Sci. USA.—1992.— 89.—P. 2708—2712. 33. Brechot C., Hadshouel M., Scotto /., Fonck M., Potet F., Руда G. N., Tiollais P. State of hepatitis B virus DNA in hepatocytes of patients with hepatitis B surface antigen-positive and negative liver diseases II Proc. Nat. Acad. Sci. USA.— 1981.—78,—P. 3906—3910. 34. Brechot C., Pourcel C., Louise A., Rain B., Tiollais P. Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma Il Nature.— 1980.—286,—P. 533—535. 35. Chen D. S., Hoyer B H., Nelson /., Purcell R. H., Gerin J. L Detection and properties of hepatitis B viral DNA in liver tissues from patients with hepatocellular carcinoma / / Hepatol- ogj .—1982,—2,— P. 42—46, 36. Edman J. C., Gray P., Valenzuela P., Rail L B., Rutter W. J. Integration of hepatitis B virus sequences and their expres- sion in a human hepatoma cell / / Nature.—1980.—286.— P. 535—538. 37. Shafritz D. A., Shauval D., Sherman H. J., Hadziyannis S. J., Kew M. C. Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma. Studies in percutaneous liver biopsies and post-mor- tem tissue specimens Il Engl. J. Med.—1981.—305.— P. 1067—1073. 38. Rossner Μ. T. Review: Hepatitis B virus X-gene product: A promiscuous transcriptional activator / / J. Med. Virol.— 1992,—36.—P. 101 — 117. 39. Araki K, Miyazaki J., Hino O , Tomita N., Chisaka O., Matsubara 1С, Yamamura IC Expression and replication of hepatitis B virus genome in transgenic mice / / Proc. Nat. Acad. Sci. USA.—1989.—86.—P. 207—211. 40. Hollinger F. B. Hepatitis B virus.—Lippincott: Raven publ., 1996.—P. 2739—2807. 41. Cattaneo R., Will H., Schaller H. Hepatitis B virus transcrip- tion in the infected liver / / EMBO J. —1984.—3.—P. 2191. 42. Elfassi E., Romet-Lemonne J. L, Essex M., Mclane M. F., Haseltine W. Evidence of extrachromosomal forms of hepatitis B viral DNA in a bone marrow culture obtained from a patient recently infected with hepatitis B virus / / Proc. Nat. Acad. Sci. USA.—1984.—81.—P. 3526—3528. 43. Farza H., Hadchouel M., Scotto J., Tiollais P., Babinet C., Pourcel C. Replication and gene expression of hepatitis B virus in a transgenic mouse that contains the complete viral genome / / J. Virol.—1988.—62.—P. 4144—4152. 44. Heerman K H., Goddman U., Schwartz W., Seyffarts T., Baumgarten H., Gerlich W. Large surface proteins of hepatitis B virus containing the pre-S sequence / / J. Virol.—1984.— 52 —P. 396—402. 45. Machida A., Kishimoto S., Ohnuma H., Miyamoto H., Baba K., Oda K., Nakamura T., Miyakawa У. A hepatitis B surface antigen polypeptide (p31) with the receptor for polymerized human as well as chimpanzee albumins / / Gastroenterology.— 1983.—85.—P. 268—274. 46. Tiollais P., Charnay P., Vyas G. N. Biology of hepatitis B virus / / Science.—1981,—213.—P. 406—411. 47. Galibert F., Mandart E., Fitoussi F., Tiollais P., Charnay P. Nucleotide sequence of the hepatitis B virus genome (subtype ayw) Il Nature.—1979.—281.—P. 646—650. 48. Pasek M., Goto T., Gilbert W., Zink B., Schaller H., MacKay, P., Leadbetter G., Murray K Hepatitis B virus genes and their expression in E . coli Il Nature.—1979. —282.— P. 573—579. 49. Bosch K1 Kuhn C., Schaller H. Hepatitis B virus replication I l Retroviruses, viroids, and RNA recombination, RNA genetics / Eds E. Domingo, J. J. Holland, P. Ahiquist.—Cleveland: CRC press, 1988.—Vol. 2,—P. 43—58. 50. Pfaff E., Klinkert M. Q., Theilmann L, Schaller H Carac- terization of large surface proteins of hepatitis B virus by antibodies to pre-S encoded amino acids / / Virology.— 1986.—148.—P. 15—22. 51. Ganem D. Assembly of hepadnaviral virions and subviral particles Il Curr. Top. Microbiol. Immunol —і 991 —168.— P. 61—83. 52. Stibbe W., Gerlich W. H. Structural relationships between minor and major proteins of hepatitis B surface antigen / / J. Virol. —1983.—46.—P. 626—628. 53. Ganem D. Hepadnaviridae and their replication.—Lippincott: Raven pub!., 1996.—P. 2703—2737. 54. Ganem D., Varmus H. E. The molecular biology of the hepatitis B viruses / / Ann. Rev. Biochem.—1987 —56.— P. 651—693. 55. Shisari F. V., Klopchin K, Moriyama T., Pasquinell C . Dunsford Η. A., Sell S., Pinkert C. A., Brinster R. L, Palmiter R. D. Molecular pathogenesis of hepatocellular car- cinoma in hepatitis B virus transgenic mice / / Cell.—1989,— 59.—P. 1145—1156. 56. Shisari F. V., Filippi P., Buras I., McLachlan A., Popper H., Pinkert C. A., Palmiter R. D., Brinster R. L Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice / / Proc. Nat. Acad. Sci. USA.—1987.—84,—P. 6909—6913. 118 57. Cheng К.-C., Smit G. L., Moss В. Hepatitis В virus large surface protein is not secreted but is immunogenic when selectively expressed by recombinant vaccinia virus / / J. Virol.—1986.—60.—P. 337—344. 58. MoLnar-Kimber K. L, Jarocki-Witek V., Dheer S. K, Vernon S. K., Conley A /., Davis A. R., Hung P. P. Distinctive properties of the hepatitis B vims envelope proteins / / J. Virol.—1988.—62.—P. 407-^416. 59. Ou J.-H., Rutter W. J. Regulation of secretion of the hepatitis B virus major surface antigen by the preS-1 protein / / J. Virol.—1987.—61.—P. 782—786. 60. Ramakrishnam M., Tugizov S., Pereira L, Lee A. S. Confor- mation-detective herpes simplex virus 1 glycoprotein B activates the promoter of the grp94 gene that codes for the 94-KD stress pro ιό in in the endoplasmic reticulum I l DNA Cell Biol.— 1995,—14,—P. 373—384. ci. Bruss V., Ganem D. The role of envelope proteins in hepatitis B virus assembly / / Proc. Nat. Acad. Sci. USA.—1991.—88.— P. 1059—1063. 62. Yen T. S. B. Regulation of hepatitis B virus gene expression. Semin / / Virology.—1993.—4—P. 33—42. 63. Xu Z., Jensen G., Yen T. S. B. Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum / / J. Virol.—1997.—71.— P. 7387—7392. 64. Chang C., Jeng JC S., Hu C., Lo S. J., Su T. S., Ting L P., Chou C. K., Han S. H., Pfaff E., Salfeld J., Schaller H. Production of hepatitis B virus in vitro by transient expression of cloned HBV DNA in a hepatoma cell line Il EMBO J —1987 —6.—P. 675—680. 65. Sells Μ. A., Chen M. L, Acs G. Production of hepatitis B virus particles in HepG2 cells transfected with cloned hepatitis B virus DNA / / Proc. Nat. Acad. Sci. USA.—1987.—84— P. 1005—1009. 66. Tsurimoto T., Fujiyama A., Matsubara K. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA / / Proc. Nat. Acad. Sci. USA.—1987.—84.— • p. 444—448. 67. Yaginuma K., Shirakata Y., Kobayashi M., JCoike K. Hepatitis B virus (HBV) particles are produced In a cell culture system by transient expression of transfected HBV DNA / / Proc. Nat. Acad. Sci. USA.—1987.—84,—P. 2678—2682. 68. Matsui T., Takano M., Miyamoto K., Itoh Y., Yoshizawa H., Koike M., Mochizuki T., Tanaka E., Okamoto H., Jmai M., Mishiro S., Miyakawa Y., Mayumi M. Nude mice bearing human primary hepatocellular carcinoma that produces hepa- titis B surface, Core and e antigens, as well as deoxyribonucleic acid polymerase / / Gastroenterology.—1986.—90.—P. 135— 142. 69. Gough N. M., Murray K J. Expression of the hepatitis B virus surface, Core and E antigen genes by stable Rat and Mouse cell line / / Мої. Biol.—1982 —162,—P. 43—68. 70. Will H., Cattaneo R., Pfaff E., Kuhn C., Roggendorf M., Schaller H. Expression of hepatitis B antigens with a simian virus 40 vector / / J. Virol.—1984.—50.—P. 335—342. 71. Sureau C., Romet-Lemonne J. L, Mullins J. /., Essex M. Production of hepatitis B virus by a differented human hepatoma cell line after transfectlon with cloned circular HBV DNA / / Cell.—1986.—47.—P. 37—47. 72. Gripon P., Christiana D., Theze N., Fourel L, Loreal O., Brechot C., Guguen-Guillouzo C. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of Dimethyl Sulfoxide / / J. Virol.—1988.—62.—P. 4136—4143. 73. Ochiya T., Tsurimoto T., Ueda Κ, Okubo 1С, Shiozawa M., Matsubara K An in vitro system for infection with hepatitis B THE HEPATITIS B VIRUS: GENERAL DESCRIPTION virus that uses primary human fetal hepatocytes / / Proc. Nat. Acad. Sci. USA.—1989.—86.—P. 1875—1879. 74. Chisari J7. V., Pinlxrt C. A., Milich D. R., Filippi P., McLachlan A., Palmiter R. D., Brinster R. L A transgenic mouse model of the chronic hepatitis B surface antigen carrier state / / Science.—1985.—230.—P. 1157—1160. 75. Babinet C., Farza H., Morello D., Hadchouel M., Pourcel C. Specific expression of hepatitis B surface antigen (HBsA;t; ) in transgenic mice / / Science.—1985.—230.—P. 1160—1163. 76. Standring D., Rutter W. ./., Varrms H. E., Ganem D. Transcription of the HBsAg gene in cultured murine cells initiates v/ithin the presurface region / / J. Virol.—1984.— 50.—P. 563—571. 77. Le Bouvier G. L The heterogeneity of Australia antigen / / J. Infect. Diseases.—1971.—123—P. 671—675. 78. Bancroft W. H., Mundon F. JC, Russell P. K Detection of additional antigenic determinants of hepatitis B antigen / / J. Immunol.—1972.—109.—P. 842—848<X 79. Fujiyama A., Miyanohara A., Nozaki C., Yoneyarni T., Ohtomo N., Matsubara K. Cloning and structural analysis of hepatitis B virus DNAs, subtype adr II Nucl. Aciiis Res.— 1983.—П.—P. 4601—4610. 80. Okamoto H., Tsuda F., Sakugawa H., Sastrosoewignjo R. I., Imai M., Miyakawa Y., Mayumi M. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes / / J. Gen. Virol.—1988.—69,—P. 2575— .2583. 81. Charnay P., Mandart E., Hampe A., FAoussi F., Tiollis P., Galibert F. localization on the viral genome and nucleotide sequence of the gene coding for the two major polypeptides of the hepatitis B surface antigen (HBsAg ) / / Nucl. Acids Res.—1979.—7—P. 335—346. 82. Stibbe W, Gerlich W. H. Structural relationships between minor and major proteins of hepatitis B virus surface antigen / / J. Virol.—1983.—46.—P. 626—628. 83. De-Medina Г., Faktor O., Shaul Y. The S promoter of the hepatitis B virus is regulated by positive and negative elements / / Мої. and Cell. Blol-—1988.—8.— P. 2449—2455 84 Courtois G., Baumhueter S., Carbtree G. R. Purified hepa- tocyte nuclear factor 1 interacts with a family of hepatocyte- specific promoters Il Proc. Nat. Acad. Sci. USA.—19Й8.— 85.—P. 7937—7941. 85. Tur-Kaspa R , Burk R. D., Shaul Y., Shafritz D. A. Hepatitis B vims DNA contains a glucocorticoid-responsive element / / Proc. Nat. Acad. Sci. USA.—1986.—8.—P. 1627—1631 86. Tur-Kaspa R , Shaul Y., Moore D. D., Burk R. D., Okret S., Poellinger L, ShafrUz D. A. The glucocorticoid receptor recognizes a specific nucleotide sequence in hepatitis B vims DNA causing increased activity of the HBV enhancer / / Virology.—1988.—167.—P. 630—633. 87. Farza H., Salmon A. M., Hadchouel M., Moreau J. L, Babinet C., Tiollais P., Pourcel C. Hepatitis B surface antigen gene expression is regulated by sex steroids and glucocorticoids in transgenic mice / / Proc. Nat. Acad. Sci. USA.—1987.— 84,—P. 1187—1191. 88. Uy A., Bruss V., Gerlich W. H., Kochel H. G., Thomsstm R. Pre Core sequence of hepatitis B vims inducing e antigen and membrane association of the viral Core protein 11 Virology.— 1986,—155 —P. 189—198. 89. Levrero M., Jean-Jean 0-, Balsana C., Will II., Peiricaudett M. Hepatitis B vims (HBV) X gene expression in human cells and anti-HBx antibodies detection in chronic HBV infection / / Virology.—1990. — 174.—P. 299—304. 90. Twu J. S., Schioemer R. H. Transcriptional trans-activating function of hepatitis: B vims / / J. Virol.—1987.—61.— P. 3448-3453 . 119 ADiAMIAN F. 91. Spandau D. F., Lee С. Η. Trans-activation of viral enhancers by the hepatitis B virus X protein / / J. Virol.—1988.—62,— P. 427—434. 92. Twu J. S., Robinson W. Λ. Hepatitis B virus X gene can transactivate heterologous viral sequences / / Proc. Nat. Acad. Sci. USA.—1989.—86.—P. 2046—2050. 93. Gunther S., Piwon N., Iwanska A., Schilling R., Meisel H., Will H. Type, prevalence, and significance of Core promoter. Enhancer Π mutations in hepatitis B virus from Immunosup- pressed patients with severe liver disease / / J. Virol.—1996.— 70.—P. 8318—8331. ζ 4. Bartenschlager R., Schaller Η. The amino-terminal domain of the hepadnaviral P-gene encodes the terminal protein (geno- me-Iinked protein) believed to prime reverse transcription / / EMBO J . ~ 1988.—7.—P. 4185—4192. 95. Schlicht H. J., Radziwill G., Schalkr H. Synthesis and encapsidation of Duck hepatitis B virus reverse transcriptase do not require formation of Core-polvmerase fusion proteins / / CeU.-1989—56—P. 85—92. 96. Bosch V., BartenscMager R., Radziwill G., Schaller H. The Duck hepatitis B virus P-gene codes for protein strongly associated with the 5'-end of the viral DNA minus strand / / Virologj'.—I 988.—166. —P. 475—485. 97. WillH., Reiser W., WeimerT., PfaffE., BuscherM., Sprengel R., Cattaneo R., Schaller H. Replication strategy of human hepatitis B virus / / J. Virol —1987.—61 .—P. 904—911. 98. Yuh C H., Ting L P. The genome of the hepatitis B virus contains a second enhancer: cooperation of two elements within this enhancer is required for its function I l J. Virol.—1990.— 64 —P. 4281—4287. 99. Valenzticla P., Qurioga M., Zaldiver /., Cray P., Rutter W. J. The nucleotide sequence of the hepatitis B viral genome and identification of the major viral genes / / Animal Virus Ge- netics: ICN/UCLA Symp. on Мої. and Cell. Biol. / Eds B. N. Fields, R. Jaenlsch, C. F. Fox.—San Diego: Acad, press, 1980.—P. 57—70. 100. Malpiece Y., Michel M. L, Carloni G., Revel M., Tiollais P., Weissenbach J. The gene S promoter of hepatitis B virus confers constitutive gene expression I l Nucl. Acids Res.— 1983.—11.—P. 4645—4654. 101. Rail I. B., Standring D. N., Laub O., Rutter W. J. Transcrip- tion of hepatitis B virus by IRNA polymerase Π Il Мої. and Cell. Biol. —1983.—3.—P. 1766—1773. 102. Persing D. H., VarmiAS H. E., Ganem D. inhibition of secretion of hepatitis B surface antigen by a related presurface polypep- tide / / Science.—1986.-234,—P. 1388 — 1392. 103. Standring D. N., Ou J. S., Rutter W. J. Assembly of viral particles in Xenopus oocytes: pre-surface antigens regulate secretion of the hepatitis B viral surface envelope particle / / Proc. Nat. Acad. Sci. USA.—1986.—83.—P. 9338—9342. 104. Chang H. K., Ting L P. lire surface gene promoter of the human hepatitis B virus displays a preference for differentiated hepatocytes Il Virology.—1989.—170.—P. 176—183. 105. Chang H. K,, Bang B. Y., Yuh C-. H., Wei C. L, Ting L. P. A liver-specific nuclear factor interacts with the promoter region of the large surface protein gene of human hepatitis B virus / / Мої. Cell. Biol.—1989.—9.—P. 5189—5197. 106. Raney A. K., Milich D. R., Mclachlan A. Characterization of hepatitis B virus major surface antigen gene transcriptional regulatory elements in differentiated hepatoma cell line / / J. Virol.—1989.—63—P. 3919—3925. 107. Laub O., Treinin M. Identification of a promoter element located upstream from the hepatitis 13 virus X gene / / Мої. Cell. Biol.—1987.—7—P. 545—548. 108 .Enders G. H., Ganem D., Varmus H. Mapping the major transcripts of ground squirrel hepatitis virus: the presumptive template for reverse transcriptase is terminally redundant / / Cell.—1985.—42.—P. 297—308. 109. Mandart E., Kay A., Galibert F. Nucleotide sequence of a cloned duck hepatitis virus genome: comparison with wood- chuck and human hepatitis B virus sequences / / J . Virol.— 1984.—49.—P. 782—792. 110. Yuh C., Ting L Differentiated liver cell specificity of the second enhancer of hepatitis B Virus / / J. Virol.—1993.— 67.—P. 142—149. 111.Kobayashi M., Koike K. Complete nucleotide sequence of hepatitis B virus DNA of subtype adr and its conserved gene organization / / Gene—1984.—30.—P. 227—232. 112. Laub O., Rail L B., Truett M., Shaul Y., Standring D. N., Valenzuela P., Rutter W. J. Synthesis of hepatitis B surface antigen in mammalian cell / / J. Virol.—1983.—48.—P. 271 — 280. 113. Kaneko S., Miller R. H. X-Region-specific transcript in mammalian hepatitis B virus-infected liver / / J. Virol — 1988.—62.—P. 3979—3984. 114. Yen T. S. B. Viral Hepatitis.—New York: Williams and Wilkins, 1991. 115. Fouillot N., Tlouzeau S., Rossignol J. M., Jean-Jean O. Transcription of the hepatitis B virus P gene by ribosomal seanning as an alternative to internal initiation / / J. Viroi.— 1993.—67.—P. 4886—4895. 116. Weimer T., Salfeld J., Will H. Expression of the hepatitis B virus Core gene in vitro and in vivo Il J. Virol.—1987.—61 — P. 3109—3113. 117. Lopez-Cabrera M., Letovsky J., Hu K. Q., Sidddiqui A. Multiple liver-specific factors bind to the hapatitis B virus core (pregenomic promoter: trans-activation and repression by CCAAT) enhancer binding protein / / Proc. Nat. Acad. Sci. USA.—1990.—87.—P. 5069—5073. Ii 8. Yaginuma K., Koike K. Identification of a promoter region for 3.6-kilobase mRNA of hepatitis B virus and specific cellular binding protein / / J. Virol.—1989.—63,—P. 2914—2920. 119. Yuh C. H., Chang Y. L, Ting L P. Transcriptional regulation of precore and pregenomic RNAs of hepatitis B virus / / J. Virol.—1992.—66.—P. 4073—4084. 120. Chen I.-H., Huang C. J., Ting L P. Overlapping initiator and TATA box functions in the basal Core promoter of hepatitis B virus Hi. Virol.—1995.—69.—P. 3647—3657. 121. Guo W., Chen M., Yen T. S. B., Ou J. H. Hepatocyte-specific expression of the hepatitis B virus Core promoter depends on both positive and negative regulation / / Мої. Cell. Biol.— 1993.—13.—P. 443—448. 122. Wang Y., Chen P., Wu X., Sun A. L, Wang H., Zhu Y. .· Li Z. P. A new enhancer element, ENII, identified in the X gene of hepatitis B virus / / J. Virol.—1990.—64,—P. 3977— 3981. 123. Yuh C.-H., Ting L P. C/EBP-like proteins binding to the functional box-« and box-/5 of the second enhancer of hepatitis B virus / / Мої. Cell. Biol.—1991.—11.—P. 5044—5052. 124. Zhou υ.-X., Yen T. S. B. Differential regulation of the hepatitis B viral surface gene promoters by a second viral enhancer / / J. Biol. Chem.-1990.—265,—P. 20731—20734. 125. Johartson J. L, Raney A. K., McLachln A. Characterization of a functional hepatocyte nuclear factor 3 binding site in the hepatitis B virus nucleocapsid promoter I l Virology.—1995.— 208.—P. 147—158. 126. Zang P., Raney A. K., McLachln A. Characterization of a functional Spl transcription factor binding sites in the hepatitis B virus nucleocapsid promoter I l J. Virol.—1993.—67.— P. 1472—1481. 127. Rartey A. K, Easton A. J., Milich D. R., McLachlan A. Promoter-specific transactivation of hepatitis B virus transcrip· 120 THE HEPATITIS B VIRUS: GENERAL DESCRIPTION tion by a glutamine- and proline-rich domain of hepatocyte nuclear factor / / J. Virol.—1991,—65.—P. 5774—5781. 128. Hasegawa JC, Huang J., Rogers S. A., Blum H. E., Liang T. J. Enhanced replication of a hepatitis B virus mutant associated with an epidemic of fulminant hepatitis 1 1 1 . Virol.—1994.— 6 8 — P . 1651—1659. 129. Horikita M., Jtoh S., Yamamoto JC, Shibayama T., Tsuda F., Okamoto H. Differences in the entire nucleotide sequence between hepatitis B virus genomes from carriers positive for antibody to hepatitis B e antigen with and without active disease / / J. Med. Virol.—1994.—44,—P. 96—103. 130. Kaneko M., Uchida T., Moriyama M., Arakawa Y., Shikata T., Gotoh K., Mima S- Probable implication of mutations of the X open reading frame in the onset of fulminant hepatitis В Il т. Med. Virol.—1995.—47—P. 204—208. 131. Sato S., Suzuki JC, Akahane Y., Akamatsu JC, Akiyama JC, Yunomura K., Tsuda F., Tanaka T., Okamoto H., Miyakawa Y., Mayumi M. Hepatitis B virus strains with mutations in the Core promoter in patients with fulminant hepatitis / / Ann. Int. Med —1995 —122.—P. 241—248. 132. MoHyama K., Takada T., Tsutsumi Y., Fukada K, Jshibashi H., Niho Y., Maeda Y. Mutations in the transcriptional regulatory region of the precore and Core/pregenome of a hepatitis B virus with defective HBeAg production / / Fukuoka Igaku Zasshl.—1994.—85.—P. 314—322. 133. Okamoto H., Tsuda F., Akahane Y., Sugai Y., Yoshiba M., Moriyama JC, Tanaka T., Miyakawa Y., Mayumi M., Miya- kawa Y., Mayumi M. Hepatitis B virus with mutations in the Core promoter for an e antigen-negative phenotype in carriers with antibody to e antigen / / J. Virol.—1994.—68.— P. 8102—8110. 134. Takahashi K, Aoyama K., Ohno N., Jwata JC, Akahane Y., Baba K.. Yoshizawa H., Mishiro S. The precore / Core promoter mutant (T1762 A1764 ) of hepatitis B virus: clinical significance and an easy method for detection I I I . Gen. Virol.—1995.—76.—P. 3159—3164. 135. Fukuda R., Nguyen X. Y., Jshimura N., Ishihara S., Chowd- hury A., Kohge N., Akagi S., Watanabe M., Fukumoto S. X gene and precore region mutations in the hepatitis B virus genome in persons positive for antibody to hepatitis B e antigen: comparison between asymptomic «healthy» carriers and patients with severe chronic active hepatitis / / J . Infect. Diseases.—1995.—172.—P. 1191—1197. 136. Gotoh 1С, Mima S., Uehida T., Shlkata T., Yoshizawa K, Irie M., Mizui M. Nucleotidd sequence of hepatitis B virus isolated from subjects without serum and hepatitis B core antibody Il J. Med. Virol.—1995.—46.—P. 201—206. 137. Preisler-Adams S., Schlayer H. J., Peters T., Hettler F., Gerok tV., Rasenaek J. Sequence analysis of hepatitis B virus DNA in immunologically negative infection / / Arch. Virol.— 1993.—133.—P. 385—396. 138. Uehida T., Shimojima M., Gotoh 1С, Shikata T., Tanaku E., JCiyosawa K. «Silent* hepatitis B virus mutants are responsible for non-A, non-B, non-C, non-D, non-E, hepatitis / / Mic- robiol. Immunol.—1994.—38.—P. 281—285. 139. Landschulz W. H., Johnson P. F., Adashi E. Y., Graves B. J., McKnight S. L Isolation of a recombinant copy of the gene encoding C/EBP / / Genes Dev.—1988.—2.—P. 786—800. 140. Mitchell P. J., Tjian R. Transcription regulation in mammalian cells by sequence specific DNA binding proteins / / Science.— 1989.—245.—P. 371—378. 141. Maniatis T., Goodbvurn S., Fischer J. A. RegtJaticn of inducible and tissue-specific gene expression / / Science.— 1987.—236.—P. 1237—1245. 142. Hones N. C.„ Rigby P. W. J., Ziff Ε. B. Trans-acting protein factors and the regulation of eukaryotic transcription: lessons from studies on DNA tumor viruses / / Genes Dev.—1988.— 2,—P. 267—281. 143. Meyer К. B., Neuberger M. S. The immunoglobulin к locus contains a second, stronger-cell specific enhancer which is located downstream of the constant region / / EMBO J.— 1989.—8.—P. 1959—1964. 144. Fromental C., Kanrui M., Nomiyama (I., Chambon P. Coo- perativity and hierarchical levels of functional organization in the SV40 enhancer / / Cell.—1988.—54,—P. 943—953. 145. Nomiyama H., Fromental C., Xiao J. H., Chambo α P. Cell-specific activity of the constituent elements of the simian virus 40 enhancer Il Proc. Nat. Acad. Sci. USA.—19(17.— 84,—P. 7881—7885. 146. Ondek B.. Shepard A., Herr W. Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities H EMBO J —1987 —6,—P 1017—1025. 147. Guo W., Bell K. D., Ou J. H. Characterization of the hepatitis B virus Enhl enhancer and X promoter complex Il J. Virol.—1991.—65.—P. 6686—6692. 148. Shaul Y., Rutter W. J., Laub 0. A human hepatitis B viral enhancer element / / IiMBO J.—1985 —4—P. 427—430. 149. Tognoni A., Cattaneo R., Serfling E., Schaffner W A novel expression selection approach allows precise mapping of the hepatitis B virus enhancer / / Nucl. Acids Res.—1985.—113.— P. 7457—7472. 150. Shaul Y., Rutter W. J., Laub 0. A human hepatitis B viral enhancer element / / EMBO J.—1985.—4.—P. 427—430. 151. Chang H. K., Chou C. K., Chang C., Su T. S., Hu C. P., Yoshida M., Ting L. P. The enhancer sequence of human hepatitis B virus can enhancer the activity of its surface gene promoter / / Nucl. Acids Res.—1987.—15.—P. 2261—2268. 152. Yee J.-JC A liver specific enhancer in the core promoter region of human hepatitis B virus / / Science.—1989.—246.— P. 658—661. 153 . Honigwachs J., Factor O., Dikstein R., Shaul Y., Laub O. Liver-specific expression of hepatitis B virus is determined by the combined action of the Core gene promoter and the enhancer Il J. Virol. —1989.—63.—P. 919—924. 154. Roossinck M. J., Jameel S., Uiukin S. H., Siddiqui A. Expression of hepatitis B viral core region in mammalian cells / / Мої. Cell Biol.—1986.—6.—P. 1393—1400 155. Imai M., Hoshi Y., Окатою H., Matsui Т., Tsuritnoto Т., Matsubara К, Miyakawa Y., Mayumi Μ. Free and integrated forms of hepatitis B virus DNA in human hepatocellular carcinoma cells (PLC/342) propagated in Nude mice / / J. Virol.—1987.—61.—P. 3555—3560. 156. Lo W.-Y., Ting L-P. Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus gjnome / / J. Virol.—1994.—68.—P. 1758—1764. УДК 578.2 Received 28.10.98 121