The binding properties of some novel ruthenium (III) complexes with human serum transferrin

Aim. The transferrin cycle gained increased interest in recent years and it holds promise as an attractive system for strategies of drug targeting to tumors. Neoplasic cells exhibit a large demand of iron and therefore express highly transferrin receptors. As a consequence, transferrin conjugates c...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Uivarosi, V., Mitrea, N., Dragoi, C.M., Nicolae, A., Arsene, A.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2011
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156401
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The binding properties of some novel ruthenium (III) complexes with human serum transferrin / A.L. Arsene, V. Uivarosi, N. Mitrea, C.M. Dragoi, A. Nicolae // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 141-146. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156401
record_format dspace
spelling irk-123456789-1564012019-06-19T01:24:56Z The binding properties of some novel ruthenium (III) complexes with human serum transferrin Uivarosi, V. Mitrea, N. Dragoi, C.M. Nicolae, A. Arsene, A.L. Biomedicine Aim. The transferrin cycle gained increased interest in recent years and it holds promise as an attractive system for strategies of drug targeting to tumors. Neoplasic cells exhibit a large demand of iron and therefore express highly transferrin receptors. As a consequence, transferrin conjugates can preferentially interact with cancer cells. This strategy is exploited nowadays for targeting novel anti-cancer drugs. Recent data showed that ruthenium (III) compounds possess antitumor and antimetastatic effects, due to their affinity for crucial biomolecules (like transferrin). Methods. The paper presents the transferrin-binding properties of some novel ruthenium (III) complexes with general formula RuL2 (DMSO) mCl3 ·nH2O ((Ru-nf) L: norfloxacin (nf), m = 1, n = 1; (Ru-cpx) L: ciprofloxacin (cpx), m = 2, n = 2; (Ru-oflo) L: ofloxacin (oflo), m = 1, n = 1; (Ru-levo) L: levofloxacin (Levo), m = 2, n = 8; (Ru-pip) L: pipemidic acid (pip), m = 1, n = 2, DMSO: dimethylsulfoxide). We investigated, in vitro, the interactions of these ligands with human transferrin through spectroscopic techniques, with the ultimate goal of preparing adducts with good selectivity for cancer cells. Results. All studied complexes interact with human serum transferrin; the molar ratio [complex]/[transferrin] strongly influences the binding affinity. Conclusions. The best interaction between the complexes studied and transferrin is achieved for a molar ratio of 8; the best interaction was registered for Ru-pip, followed by Ru-nf. Keywords: ruthenium (III) complexes, transferrin. Мета. Останніми роками трансфериновий цикл викликає по - силений інтерес як перспективна система цільової доставки протипухлинних препаратів безпосередньо в пухлину. Неопластичні клітини потребують багато заліза, через що експресують велику кількість трансферинових рецепторів. Внаслідок цього кон ’югати трансферину здатні насамперед взаємодіяти з раковими клітинами. Цю стратегію у наш час використовують для пошуку нових протиракових препаратів. Останні дані демонструють, що сполукам рутенію (III) притаманні протипухлинні і антиметастатичні ефекти завдяки їхній афінності до важливих біомолекул (таких як трансферин). Методи. У статті представлено трансферин-зв’язувальні властивості деяких нових комплексів рутенію (III) загальною формулою RuL2 (DMSO) mCl3 ×nH2O ((Ru-nf) L: норфлоксацин (nf), m = 1, n = = 1; (Ru-cpx) L: ципрофлоксацин (cpx), m = 2, n = 2; (Ru-of) L: офлоксацин (oflo), m = 1, n = 1; (Ru-levo) L: левофлоксацин (Levo), m = 2, n = 8; (Ru-pip) L: піпемідинова кислота (pip), m = = 1, n = 2, DMSO: диметилсульфоксид). Ми вивчали взаємодію in vitro цих лігандів з трансферином людини методом спектроскопії для одержання адуктів з високою селективністю до ракових клітин. Результати і висновки. Всі досліджувані комплекси взаємодіють з сироватковим трансферином людини, молярне співвідношення [комплекс]/[трансферин] значно впливає на зв’язувальні властивості. Найкращу взаємодію між аналізованими комплексами і трансферином відмічено при молярному співвідношенні 8:1, а також для Ru-pip і Ru-nf. Ключові слова: комплекси рутенію (III), трансферин. Цель. В последние годы трансферриновый цикл вызывает повышенный интерес как перспективная система целевой доставки противоопухолевых препаратов непосредственно в опухоль. Неопластические клетки испытывают высокую потребность в железе и, следовательно, экспрессируют много трансферриновых рецепторов. Вследствие этого конъюгаты трансферрина способны преимущественно взаимодействовать с раковыми клетками. Эту стратегию в настоящее время используют для поиска новых противораковых препаратов. Последние данные показывают, что соединения рутения (III) обладают противоопухолевым и антиметастатическим эффектами благодаря их аффинности к важным биомолекулам (таким как трансферрин). Методы. В статье представлены трансферрин-связывающие свойства некоторых новых комплексов рутения (III) с общей формулой RuL2 (DMSO) mCl3 ×nH2O ((Ru-nf) L: норфлоксацин (nf), m = 1, n = 1; (Ru-cpx) L: ципрофлоксацин (cpx), m = 2, n = 2; (Ru-of) L: офлоксацин (oflo), m = 1, n = 1; (Ru-levo) L: левофлоксацин (Levo), m = 2, n = 8; (Ru-pip) L: пипемидиновая кислота (pip), m = 1, n = 2, DMSO: диметилсульфоксид). Мы изучили взаимодействие in vitro этих лигандов с человеческим трансферрином методом спектроскопии для получения аддуктов, обладающих хорошей селективностью к раковым клеткам. Результаты и выводы. Все исследуемые комплексы взаимодействуют с человеческим сывороточным трансферрином, молярное соотношение [комплекс]/ [трансферрин] сильно влияет на связывающие свойства. Наилучшее взаимодействие между изучаемыми комплексами и трансферрином отмечено при молярном соотношении 8:1, а также для Ru-pip и Ru-nf. Ключевые слова: комплексы рутения (III), трансферрин. 2011 Article The binding properties of some novel ruthenium (III) complexes with human serum transferrin / A.L. Arsene, V. Uivarosi, N. Mitrea, C.M. Dragoi, A. Nicolae // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 141-146. — Бібліогр.: 20 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00008D http://dspace.nbuv.gov.ua/handle/123456789/156401 611.018.54 + 661.896 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Biomedicine
Biomedicine
spellingShingle Biomedicine
Biomedicine
Uivarosi, V.
Mitrea, N.
Dragoi, C.M.
Nicolae, A.
Arsene, A.L.
The binding properties of some novel ruthenium (III) complexes with human serum transferrin
Вiopolymers and Cell
description Aim. The transferrin cycle gained increased interest in recent years and it holds promise as an attractive system for strategies of drug targeting to tumors. Neoplasic cells exhibit a large demand of iron and therefore express highly transferrin receptors. As a consequence, transferrin conjugates can preferentially interact with cancer cells. This strategy is exploited nowadays for targeting novel anti-cancer drugs. Recent data showed that ruthenium (III) compounds possess antitumor and antimetastatic effects, due to their affinity for crucial biomolecules (like transferrin). Methods. The paper presents the transferrin-binding properties of some novel ruthenium (III) complexes with general formula RuL2 (DMSO) mCl3 ·nH2O ((Ru-nf) L: norfloxacin (nf), m = 1, n = 1; (Ru-cpx) L: ciprofloxacin (cpx), m = 2, n = 2; (Ru-oflo) L: ofloxacin (oflo), m = 1, n = 1; (Ru-levo) L: levofloxacin (Levo), m = 2, n = 8; (Ru-pip) L: pipemidic acid (pip), m = 1, n = 2, DMSO: dimethylsulfoxide). We investigated, in vitro, the interactions of these ligands with human transferrin through spectroscopic techniques, with the ultimate goal of preparing adducts with good selectivity for cancer cells. Results. All studied complexes interact with human serum transferrin; the molar ratio [complex]/[transferrin] strongly influences the binding affinity. Conclusions. The best interaction between the complexes studied and transferrin is achieved for a molar ratio of 8; the best interaction was registered for Ru-pip, followed by Ru-nf. Keywords: ruthenium (III) complexes, transferrin.
format Article
author Uivarosi, V.
Mitrea, N.
Dragoi, C.M.
Nicolae, A.
Arsene, A.L.
author_facet Uivarosi, V.
Mitrea, N.
Dragoi, C.M.
Nicolae, A.
Arsene, A.L.
author_sort Uivarosi, V.
title The binding properties of some novel ruthenium (III) complexes with human serum transferrin
title_short The binding properties of some novel ruthenium (III) complexes with human serum transferrin
title_full The binding properties of some novel ruthenium (III) complexes with human serum transferrin
title_fullStr The binding properties of some novel ruthenium (III) complexes with human serum transferrin
title_full_unstemmed The binding properties of some novel ruthenium (III) complexes with human serum transferrin
title_sort binding properties of some novel ruthenium (iii) complexes with human serum transferrin
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2011
topic_facet Biomedicine
url http://dspace.nbuv.gov.ua/handle/123456789/156401
citation_txt The binding properties of some novel ruthenium (III) complexes with human serum transferrin / A.L. Arsene, V. Uivarosi, N. Mitrea, C.M. Dragoi, A. Nicolae // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 141-146. — Бібліогр.: 20 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT uivarosiv thebindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT mitrean thebindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT dragoicm thebindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT nicolaea thebindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT arseneal thebindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT uivarosiv bindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT mitrean bindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT dragoicm bindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT nicolaea bindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
AT arseneal bindingpropertiesofsomenovelrutheniumiiicomplexeswithhumanserumtransferrin
first_indexed 2025-07-14T06:26:59Z
last_indexed 2025-07-14T06:26:59Z
_version_ 1837602619631075328
fulltext The binding properties of some novel ruthenium (III) complexes with human serum transferrin A. L. Arsene1, V. Uivarosi2, N. Mitrea1, C. M. Dragoi1, A. Nicolae1 1Department of Biochemistry of University of Medicine and Pharmacy «Carol Davila», Faculty of Pharmacy 6th Traian Vuia St., 020956, Bucharest, Romania 2Department of Inorganic Chemistry of University of Medicine and Pharmacy «Carol Davila», Faculty of Pharmacy 6th Traian Vuia St., 020956, Bucharest, Romania andreeanitulescu@hotmail.com Aim. The transferrin cycle gained increased interest in recent years and it holds promise as an attractive system for strategies of drug targeting to tumors. Neoplasic cells exhibit a large demand of iron and the- refore express highly transferrin receptors. As a consequence, transferrin conjugates can preferentially in- teract with cancer cells. This strategy is exploited nowadays for targeting novel anti-cancer drugs. Recent data showed that ruthenium (III) compounds possess antitumor and antimetastatic effects, due to their affi- nity for crucial biomolecules (like transferrin). Methods. The paper presents the transferrin-binding pro- perties of some novel ruthenium (III) complexes with general formula RuL2(DMSO) mCl3·nH2O ((Ru-nf) L: norfloxacin (nf), m = 1, n = 1; (Ru-cpx) L: ciprofloxacin (cpx), m = 2, n = 2; (Ru-oflo) L: ofloxacin (oflo), m = 1, n = 1; (Ru-levo) L: levofloxacin (Levo), m = 2, n = 8; (Ru-pip) L: pipemidic acid (pip), m = 1, n = 2, DMSO: dimethylsulfoxide). We investigated, in vitro, the interactions of these ligands with human transfer- rin through spectroscopic techniques, with the ultimate goal of preparing adducts with good selectivity for cancer cells. Results. All studied complexes interact with human serum transferrin; the molar ratio [com- plex]/[transferrin] strongly influences the binding affinity. Conclusions. The best interaction between the complexes studied and transferrin is achieved for a molar ratio of 8; the best interaction was registered for Ru-pip, followed by Ru-nf. Keywords: ruthenium (III) complexes, transferrin. Introduction. A number of biological studies have hi- ghlighted in the last years a novel mechanism of action for anticancer drugs, regardless their covalent binding with the DNA. The literature presents experimental evidence for an important affinity between the chemo- therapeutic medicines and other crucial biomolecules like plasma proteins. In this regard, transferrin became an interesting and promising biomolecule over the last years for the deve- lopment of new biochemical mechanisms of drug tar- geting to tumor tissues [1–3]. Neoplasic cells demand high amounts of iron for their growth and therefore express the transferrin receptor at a high rate. As a con- sequence, transferrin conjugates can preferentially interact with cancer cells through transferrin receptors. This strategy is exploited nowadays for targeting novel anti-cancer drugs. In the last years, following the success of cisplatin, several metal complexes other than platinum have been considered as possible alternatives. It was particularly found that ruthenium (III) compounds possess anti- tumor and antimetastatic activities [4]. Four classes of ruthenium (III) complexes were imposed as promising antitumor agents. Ammine-chloro derivatives comple- 141 ISSN 0233–7657. Biopolymers and Cell. 2011. Vol. 27. N 2. P. 141–146  Institute of Molecular Biology and Genetics NAS of Ukraine, 2011 xes like cis-[Ru(III)(NH3)4Cl2] + and fac-[Ru(III) (NH3)3Cl3] were developed by M. Clarke [5]. A large number of ruthenium (II) and ruthenium (III) mixed complexes with sulfoxide ligands were synthesized and characterized by the group of Alessio [6]. Between them, Na{trans-[Ru(III)Cl4(DMSO)(Him)]} (Him = = imidazole), nicknamed NAMI, and the more stable [H2Im][trans-Ru(III)Cl4(DMSO)(Him)], also known as NAMI-A are very promising [7]. Anionic ruthenium (III) complexes with heterocyclic nitrogen ligands of general formula RuCl4L2 have been synthesized by Keppler et al. [8]. The derivatives with the formula trans- [RuCl4(L)2] –, where L is imidazole (KP418) or indazole (KP1019 and KP1339), and the counterion (LH)+ or Na+ are very promising. KP1019 completed phase-I cli- nical trials [9]. Ruthenium polyaminocarboxylate complexes, a class of ruthenium (III) complexes with polydentate mixed donor ligands from the H4EDTA family were prepared and tested by the group of Gonzalez-Vilchez [10]. The literature studies demonstrated the affinity of these complexes for transferrin and provide evidence for formation of stable adducts between them [11–16]. Therefore transferrin is investigated presently as a na- tural carrier of the drugs to the tumor tissue, mainly because of the high affinity of this iron-protein and the large number of transferrin receptors on the surface of tumor cells. This paper presents the transferrin-binding proper- ties of some novel ruthenium (III) complexes with mixed ligands of the type RuL2(DMSO) mCl3·nH2O ((Ru-nf) L: norfloxacin (nf), m = 1, n = 1; (Ru-cpx) L: ciprofloxacin (cpx), m = 2, n = 2; (Ru-oflo) L: ofloxa- cin (of), m = 1, n = 1; (Ru-levo) L: levofloxacin (Levo), m = 2, n = 8; (Ru-pip) L: pipemidic acid (pip), m = 1, n = 2, DMSO: dimethylsulfoxide) [17–20]. All comp- lexes display an octahedral stereochemistry with the quinolone ligand acting as monodentate coordinated through N4 atom of piperazinyl ring. The structures of the ligands and the general structure of complexes are presented in Fig. 1. Materials and methods. During the experiment the following reagents were used: Tris («Merck», Ger- many), serum transferrin («Merck»), working soluti- ons of the studied ruthenium (III) complexes. The experimental procedure implied the following steps: The first step implied the preparation of Tris buffer pH 7 (5⋅10–3 M Tris, 5⋅10–2 M NaCl). The preparation of each of the ruthenium comple- xes stock solutions 10–5 M, using Tris buffer pH 7 as solvent. When using this stock solution it was diluted 1:10 with Tris buffer (final complex working solution 10–6 M). It was prepared a 10–5 M stock solution of human serum transferrin in pH 7 Tris buffer: in a 10 ml volumetric flask 0.0077g of human seric transferrin were weighed and disolved in pH 7 Tris buffer. When using this stock solution it was diluted 1:10 with Tris buffer (final transferrin working solution 10–6 M). For each studied complex we used 6 test tubes con- taining the reagents, as described in Table 1. The test tubes (performed in triplicate) were incu- bated for 24 hours at room temperature, in the dark. Af- terwards, the UV spectra (λ = 275 nm) were immedia- tely recorded using an UV-Vis Cary 100 Bio spectro- photometer («Varian Inc.», USA). Results and discussion. In this study we conduc- ted an extensive in vitro characterization of adducts 142 ARSENE A. L. ET AL. NX1 X2 N N O COOHR2 N X1 X2 N N R3 R2 O HOOC R3 ClCl Cl DMSO R1 R1 Ru Compound X1 X2 R1 R2 R3 Pipemidic acid N N C2H5 H H Norfloxacin H H C2H5 F H Ciprofloxacin H H F H Ofloxacin H H F CH3 Levofloxacin H H F CH3 Fig. 1. Structures of the investigated quinolones and general structure of their Ru (III) complexes between some possible ruthenium (III) drugs (newly synthesized) and human serum transferrin and we gained insight into the intriguing chemistry of these complexes. It is to mention that we also possess unpu lished data regarding the interactions of our newly syn- thesized ruthenium (III) complexes with human serum albumin (HSA) and DNA, but their affinity and bin- ding to both HSA and DNA is importantly different, compared with the interactions with transferrin (from with the interaction stoichiometry to the reactivity patterns). The present study evoked that there exists chemical binding between the substances investigated and trans- ferrin and also that this interaction (including the che- mical stoichiometry) is complicated and needs proper investigations in respect to their solution behaviour (re- flected in the organisms fluids behaviour) and their protein binding ability. Nevertheless, the accurate knowledge of this binding (interaction) is crucial at this stage of the development of a newly possible antitumor drug since it directly reflects in the IC50 and toxicity. The knowledge of the transferrin cycle has rapidly increased in recent years and it holds promise as an at- tractive system for strategies of drug targeting to tumor tissues. Indeed, tumor cells exhibit a large demand of iron for their growth and therefore express the transfer- rin receptor at a high rate. As a consequence, transfer- rin conjugates that retain a good affinity for the trans- ferrin receptor can preferentially interact with cancer cells. This strategy is exploited nowadays for targeting novel anti-cancer drugs. For example, Keppler’s com- plexes were the first ruthenium (III) complexes whose interactions with human serum transferrin were inves- tigated in solution by various techniques, including spectrophotometry, at different stoichiometry binding stages [8, 9, 14]. Also, such a strategy was used to achi- eve targeting on adriamycin to neoplastic tissues [2]. In our case, the major behaviour of our ruthenium (III) complexes reflected in the transferrin spectrosco- pic absorbance. In this regard transferrin absorbance in UV was modified (has decreased) in the presence of the studied ruthenium complexes, as it can be seen in Table 2 and Fig. 2–6. The studied ruthenium complexes interact in vitro with transferrin. This fact has been experimentally ob- served by the diminish of the absorbance value of trans- ferrin in UV, consequent to the direct contact complex- transferrin. By analyzing the obtained results, it can be conclu- ded that the complex Ru-nf produces the most impor- tant decrease in the UV transferrin absorbance, when used in the molar ratio [Ru-nf]/[transferrin] = 1/1. The decrease in the UV absorbance of this protein due to an interaction with the research complexes (molar ratio [complex]/[transferrin] = 1/1) has varied as follows: Ru-nf > Ru-pip > Ru-levo > Ru-oflo > Ru-cpx. 143 THE BINDING OF RUTHENIUM (III) COMPLEXES WITH TRANSFERRIN Molar ratio [Ru-cx]/[transferrin] Procentual decrease of the transferrin absorbance due to the complex, % Ru-cpx Ru-nf Ru-oflo Ru-pip Ru-levo 1 0.118624 15.77699 12.93001 15.18387 13.04864 2 10.32028 37.01068 30.60498 45.43298 31.55397 4 12.81139 45.67023 43.89087 57.33096 37.84104 8 17.55635 50.77106 44.72123 67.61566 45.90747 Table 2 Procentual decrease of the transferrin absorbance due to the interaction with the studied ruthenium complexes Reagents P1 P2 P3 P4 Transferrin blank Complex blank AutoComplex solution, 10–6 M 1 ml 2 ml 4 ml 8 ml – 4 ml Transferrin solution, 10–6 M 1 ml 1 ml 1 ml 1 ml 4 ml – Molar ratio [complex]/[transferrin] 1/1 2/1 4/1 8/1 – – Table 1 Working tehnique for studing the interactions of the studied complexes with transferrin When using the molar ratio [complex]/[transfer- rin] = 2/1 it was observed, as well, a decrease of the UV absorbance of human serum transferrin, in vitro. The procentual dynamics of this phenomenon is: Ru-pip > > Ru-nf > Ru-levo > Ru-oflo > Ru-cpx. When using the molar ratio [complex]/[transfer- rin] = 4/1 it was observed a decrease of the UV absor- bance of human serum transferrin, in vitro. The pro- centual variation of the absorbances was as follows: Ru-pip > Ru-nf > Ru-oflo > Ru-levo > Ru-cpx. When using the molar ratio [complex]/[transfer- rin] = 8/1 it was observed a decrease of the UV absor- bance of human serum transferrin, in vitro. The pro- centual dynamics of the absorbances was as follows: Ru-pip > Ru-nf > Ru-levo > Ru-oflo > Ru-cpx. Our further studies will focus on other critical drug development issues, like testing of these complexes and on in vivo tumor models. Conclusions. The experimental results regarding the interaction of the studied ruthenium complexes with human serum transferrin have revealed a series of important aspects: All the studied complexes interact in vitro with transferrin, fact proved by the decrease of transferrin UV absorbance due to the contact with these compo- unds, in all concentrations; The ruthenium complex with pipemidic acid inten- sively reduces the transferrin UV absorbance, followed by the ruthenium complex with norfloxacin; The weakest interaction complex-transferrin has been registered in the case of ruthenium-ciprofloxacin; The molar ratio [complex]/[transferrin] = 8/1 has presented the strongest UV detectable interactions, in the chosen experimental conditions, for all the evalua- ted complexes. 144 ARSENE A. L. ET AL. % 16 0 2 4 6 8 10 12 14 1 2 3 4 5 Fig. 2 Dynamics of human serum transferrin UV absorbance after the interaction with the studied complexes (molar ratio [complex]/[trans- ferrin] = 1/1); y axis – absolute values of transferrin absorbance in- hibition for a molar ratio of interaction [complex]/[transferrin] = 1/1: 1 – [transferrin]/[Ru-cpx]; 2 – [transferrin]/[Ru-nf]; 3 – [transferrin]/ [Ru-oflo]; 4 – [transferrin]/[Ru-pip]; 5 – [transferrin]/[Ru-levo] 0 10 20 30 40 50 60 1 2 3 4 5 % Fig. 4 Dynamics of human serum transferrin UV absorbance after the interaction with the studied complexes (molar ratio [complex]/[trans- ferrin] = 4/1); y axis – absolute values of transferrin absorbance in- hibition for a molar ratio of interaction [complex]/[transferrin] = 4/1: 1 – [transferrin]/[Ru-cpx]; 2 – [transferrin]/[Ru-nf]; 3 – [transferrin]/ [Ru-oflo]; 4 – [transferrin]/[Ru-pip]; 5 – [transferrin]/[Ru-levo] 0 10 20 30 40 50 1 2 3 4 5 % Fig. 3 Dynamics of human serum transferrin UV absorbance after the interaction with the studied complexes (molar ratio [complex]/[trans- ferrin] = 2/1); y axis – absolute values of transferrin absorbance in- hibition for a molar ratio of interaction [complex]/[transferrin] = 2/1: 1 – [transferrin]/[Ru-cpx]; 2 – [transferrin]/[Ru-nf]; 3 – [transferrin]/ [Ru-oflo]; 4 – [transferrin]/[Ru-pip]; 5 – [transferrin]/[Ru-levo] Acknowledgements. This work was partially sup- ported by the PNII grant nr. 61048/2007 of the Roma- nian Ministry of Education and Research. А. Л. Арсене, В. Уйва розі, Н. Мітреа, С. М. Дра гой, А. Ніко лае Зв’я зу вальні влас ти вості де я ких но вих ком плексів ру тенію (ІІІ) з си ро ват ко вим транс фе ри ном лю ди ни Ре зю ме Мета. Останніми ро ка ми транс фе ри но вий цикл вик ли кає по - си ле ний інте рес як пер спек тив на сис те ма цільо вої дос тав ки про ти пух лин них пре па ратів без по се ред ньо в пу хли ну. Неоплас- тичні клітини по тре бу ють ба га то заліза, че рез що експре су - ють ве ли ку кількість транс фе ри но вих ре цеп торів. Внаслідок цього кон ’ю га ти транс фе ри ну здатні на сам пе ред взаємодіяти з ра ко ви ми кліти на ми. Цю стра тегію у наш час ви ко рис то ву - ють для по шу ку но вих про ти ра ко вих пре па ратів. Останні дані де мо нстру ють, що спо лу кам ру тенію (III) при та манні про ти- пух линні і ан ти ме тас та тичні ефек ти за вдя ки їхній афінно- сті до важ ли вих біомо ле кул (таких як транс фе рин). Ме то ди. У статті пред став ле но транс фе рин-зв’я зу вальні влас ти вості де я ких но вих ком плексів ру тенію (III) за галь ною фор му лою RuL2(DMSO) mCl3⋅nH2O ((Ru-nf) L: нор флок са цин (nf), m = 1, n = = 1; (Ru-cpx) L: цип роф лок са цин (cpx), m = 2, n = 2; (Ru-of) L: офлок са цин (oflo), m = 1, n = 1; (Ru-levo) L: ле воф лок са цин (Levo), m = 2, n = 8; (Ru-pip) L: піпеміди но ва кис ло та (pip), m = = 1, n = 2, DMSO: ди ме тил суль фок сид). Ми вив чали взаємодію in vitro цих лігандів з транс фе ри ном лю ди ни ме то дом спект- рос копії для одержання адуктів з ви со кою се лек тивністю до рако вих клітин. Ре зуль та ти і вис нов ки. Всі досліджу вані комплек си взаємодіють з си ро ват ко вим транс фе ри ном лю ди - ни, мо ляр не співвідно шен ня [ком плекс]/[транс фе рин] знач но впли ває на зв’я зу вальні влас ти вості. Най кра щу взаємодію між аналізо ва ни ми ком плек са ми і транс фе ри ном відмічено при мо - ляр но му співвідно шенні 8:1, а та кож для Ru-pip і Ru-nf. Клю чові сло ва: ком плек си ру тенію (III), транс фе рин. А. Л. Арсене, В.Уйва ро зи, Н. Мит реа, С. М. Дра гой, А. Ни ко лае Свя зы ва ю щие сво йства не ко то рых но вых ком плек сов ру те ния (III) с че ло ве чес ким сы во ро точ ным транс фер ри ном Ре зю ме Цель. В по след ние годы транс фер ри но вый цикл вы зы ва ет по- вы шен ный ин те рес как пер спек тив ная сис те ма це ле вой до- став ки про ти во о пу хо ле вых пре па ра тов не пос ре дствен но в опу холь. Не оп лас ти чес кие клет ки ис пы ты ва ют вы со кую по - треб ность в же ле зе и, сле до ва тель но, экс прес си ру ют мно го транс фер ри но вых ре цеп то ров. Всле дствие это го конъ ю га ты транс фер ри на спо соб ны пре и му щес твен но вза и мо де йство - вать с ра ко вы ми клет ка ми. Эту стра те гию в на сто я щее вре - мя ис поль зу ют для по ис ка но вых про ти во ра ко вых пре па ра тов. Пос лед ние дан ные по ка зы ва ют, что со е ди не ния ру те ния (III) об ла да ют про ти во о пу хо ле вым и ан ти ме тас та ти чес ким эф - фек та ми бла го да ря их аф фин нос ти к важ ным би о мо ле ку лам (та ким как транс фер рин). Ме то ды. В статье пред став ле ны транс фер рин-свя зы ва ю щие сво йства не ко то рых но вых ком - плек сов ру те ния (III) с об щей фор му лой RuL2(DMSO) mCl3⋅nH2O ((Ru-nf) L: нор флок са цин (nf), m = 1, n = 1; (Ru-cpx) L: цип роф - лок са цин (cpx), m = 2, n = 2; (Ru-of) L: офлок са цин (oflo), m = 1, n = 1; (Ru-levo) L: ле воф лок са цин (Levo), m = 2, n = 8; (Ru-pip) L: пи пе ми ди но вая кис ло та (pip), m = 1, n = 2, DMSO: ди ме тил - суль фок сид). Мы из учи ли вза и мо де йствие in vitro этих ли ган - дов с че ло ве чес ким транс фер ри ном ме то дом спек трос ко пии для по лу че ния ад дук тов, об ла да ю щих хо ро шей се лек тив но- стью к ра ко вым клет кам. Ре зуль та ты и вы во ды. Все ис сле ду - е мые ком плек сы вза и мо де йству ют с че ло ве чес ким сы во ро- точ ным транс фер ри ном, мо ляр ное со от но ше ние [ком плекс]/ [транс фер рин] силь но вли я ет на свя зы ва ю щие сво йства. На и - луч шее вза и мо де йствие меж ду из уча е мы ми ком плек са ми и транс фер ри ном от ме че но при мо ляр ном со от но ше нии 8:1, а так же для Ru-pip и Ru-nf. Клю че вые сло ва: ком плек сы ру те ния (III), транс фер рин. 145 THE BINDING OF RUTHENIUM (III) COMPLEXES WITH TRANSFERRIN 0 10 20 30 40 50 60 1 2 3 4 5 % Fig. 5 Dynamics of human serum transferrin UV absorbance after the interaction with the studied complexes (molar ratio [comp- lex]/[trans- ferrin] = 8/1); y axis – absolute values of transferrin absorbance in- hibition for a molar ratio of interaction [complex]/[transferrin] = 8/1: 1 – [transferrin]/[Ru-cpx]; 2 – [transferrin]/[Ru-nf]; 3 – [transferrin]/ [Ru-oflo]; 4 – [transferrin]/[Ru-pip]; 5 – [transferrin]/[Ru-levo] Molar ratio [complex]/[transferrin] 0 10 20 30 40 50 60 70 80 1 2 3 4 % 1 2 3 5 4 Fig. 6 Comparative procentual values of human serum transferrin UV absorbance after binding with the studied ruthenium complexes; y axis – absolute values of transferrin absorbance inhibition after comp- lex binding; 1 – [transferrin]/[Ru-cpx]; 2 – [transferrin]/[Ru-nf]; 3 – [transferrin]/[Ru-oflo]; 4 – [transferrin]/[Ru-pip]; 5 – [transferrin]/ [Ru-levo] REFERENCES 1. Singh M. Transferrin as a targeting ligand for liposomes and anticancer drugs // Curr. Pharm. Des.–1999.–5, N 6.–P. 443– 451. 2. Wagner E., Curiel D., Cotten M. Delivery of drugs, proteins and genes into cells using transferrin as a ligand for re- ceptor-mediated endocytosis // Adv. Drug. Deliver. Rev.– 1994.–14, N 1.–P. 113–135. 3. Sun H., Li H., Sadler P. J. Transferrin as a metal ion mediator // Chem. Rev.–1999.–99, N 9.–P. 2817–2842. 4. Srivastava S. C., Mausner L. F., Clarke M. J. Radioruthe- nium-labeled compounds for diagnostic tumor imaging // Prog. Clin. Biochem. Med.–1989.–10.–P. 111–149. 5. Clarke M. J., Zhu F., Frasca D. R. Non-platinum chemothera- peutic metallopharmaceuticals // Chem. Rev.–1999.–99, N 9.– P. 2511–2534. 6. Mestroni G., Alessio E., Sava G., Pacor S., Coluccia M., Boc- carelli A. Water-soluble ruthenium(III)-dimethyl sulfoxide complexes: chemical behaviour and pharmaceutical proper- ties // Met. Based Drugs.–1994.–1, N 1.–P. 41–63. 7. Alessio E., Mestroni G., Bergamo A., Sava G. Ruthenium anti- metastatic agents // Curr. Top. Med. Chem.–2004.–4, N 15.– P. 1525–1535. 8. Lipponer K. G., Vogel E., Keppler B. K. Synthesis, characte- rization and solution chemistry of trans-indazoliumtetrachlo- robis(indazole) ruthenate(III), a new anticancer ruthenium complex. IR, UV, NMR, HPLC investigations and antitumor activity. Crystal structures of trans-l-methyl-indazoliumtet- rachlorobis-(1-methylindazole)ruthenate(III) and its hydro- lysis product trans-monoaquatrichlorobis-(1-methylindazole)- ruthenate(III) // Met. Based Drugs.–1996.–3, N 5.–P. 243–260. 9. Hartinger C. G., Zorbas-Seifried S., Jakupec M. A., Kynast B., Zorbas H., Keppler B. K. From bench to bedside – pre- clinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthena- te(III)] (KP1019 or FFC14A) // J. Inorg. Biochem.– 2006.– 100, N 5–6.–P. 891–904. 10. Vilaplana-Serrano R., Basallote M. G., Ruiz-Valero C., Gutier- rez-Puebla E., Gonzalez-Vilchez F. Synthesis and X-ray struc- tural study of a novel ruthenium (III)–ethylenediaminetetraace- tate complex. The first compound showing an unusual coordi- nation site for a carboxylic (glycine) group // J. Chem. Soc. Chem. Commun.–1991.–N 2.–P. 100–101. 11. Frasca D. R., Gehrig L. E., Clarke M. J. Cellular effects of transferrin coordinated to // J. Inorg. Biochem.–2001.–83, N 2– 3.–P. 139–149. 12. Messori L., Kratz F., Alessio E. The interaction of the antitu- mor complexes Na[trans-RuCl4(DMSO)(Im)] and Na[trans- RuCl4(DMSO)(Ind)] with apotransferrin: a spectroscopic study // Met. Based Drugs.–1996.–3, N 1.–P. 1–9. 13. Bergamo A., Messori L., Piccioli F., Cocchietto M., Sava G. Biolo- gical role of adduct formation of the ruthenium(III) complex NAMI-A with serum albumin and serum transferring // Invest. New Drugs.–2003.–21, N 4.–P. 401–411. 14. Kratz F., Keppler B. K., Messori L., Smith C., Baker E. N. Pro- tein-binding properties of two antitumour Ru(III) complexes to human apotransferrin and apolactoferrin // Met. Based Drugs.– 1994.–1, N 2–3.–P. 169–173. 15. Piccioli F., Sabatini S., Messori L., Orioli P., Hartinger Ch. G., Keppler B. K. A comparative study of adduct formation between the anticancer ruthenium(III) compound HInd trans-[RuCl4 (Ind)2] and serum proteins // J. Inorg. Biochem.–2004.–98, N 6.–P. 1135–1142. 16. Gonzalez V. F., Vilaplana R., Blasco G., Messori L. Solution studies of the antitumor complex dichloro 1,2-propylendiamine- tetraacetate ruthenium (III) and of its interactions with proteins // J. Inorg. Biochem.–1998.–71, N 1–2.–P. 45–51. 17. Badea M., Olar R., Marinescu D., Uivarosi V., Iacob D. Ther- mal decomposition of some biologically active complexes of ru- thenium (III) with quinolone derivatives // J. Therm. Anal. Ca- lorim.–2009.–97, N 2.–P. 735–739. 18. Badea M., Olar R., Marinescu D., Uivarosi V., Nicolescu T. O., Iacob D. Thermal study of some new quinolone ruthenium(III) complexes with potential cytostatic activity // J. Therm. Anal. Calorim.–2010.–99, N 3.–P. 829–834. 19. Rau G., Mogosanu G.-D., Stanciulescu C. E. Synthesis and cha- racterization of some novel azoderivatives // Farmacia.–2009.– 57, N 5.–P. 648–658. 20. Jurca T., Marian E. Scanning electronic microscopy study of new pyrazinamide compounds with metallic ions // Farmacia.– 2009.–57, N 2.–P. 247–253. UDC611.018.54 + 661.896 Received 10.01.11 146 ARSENE A. L. ET AL.