Diffusion equations in inhomogeneous solid having arbitrary gradient concentration

A quantum kinetic equation is obtained for an inhomogeneous solid having arbitrary gradient concentration and chemical potential. We find, starting from nonequilibrium statistical operator, a new equation to describe atom migration in solid states. In continuous approximation, this equation turns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Bilotsky, Y., Gasik, M., Lev, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2017
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/156532
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Diffusion equations in inhomogeneous solid having arbitrary gradient concentration / Y. Bilotsky, M. Gasik, B. Lev // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13201: 1–5. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156532
record_format dspace
spelling irk-123456789-1565322019-06-19T01:27:33Z Diffusion equations in inhomogeneous solid having arbitrary gradient concentration Bilotsky, Y. Gasik, M. Lev, B. A quantum kinetic equation is obtained for an inhomogeneous solid having arbitrary gradient concentration and chemical potential. We find, starting from nonequilibrium statistical operator, a new equation to describe atom migration in solid states. In continuous approximation, this equation turns into a non-linear diffusion equation. We derive conditions for which this equation can be reduced to Fick’s or Cahn equation. Виведено кiнетичне рiвняння дифузiї i знайдено хiмiчний потенцiал для дифундуючих атомiв в неоднорiдному твердому тiлi при довiльному градiєнтi концентрацiї. Базуючись на нерiвноважному статистичному операторi, знайдено нове рiвняння, що описує мiграцiю атомiв в твердому тiлi. Отримане рiвняння в неперервному випадку перетворюється в нелiнiйне рiвняння дифузiї, яке при вiдповiдних умовах може бути трансформоване у добре вiдомi рiвняння Фiка або Кана. Отримано вiдповiднi розв’язки для таких рiвнянь. 2017 Article Diffusion equations in inhomogeneous solid having arbitrary gradient concentration / Y. Bilotsky, M. Gasik, B. Lev // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13201: 1–5. — Бібліогр.: 18 назв. — англ. 1607-324X DOI:10.5488/CMP.20.13201 arXiv:1703.10372 PACS: 23.23.+x, 56.65.Dy http://dspace.nbuv.gov.ua/handle/123456789/156532 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A quantum kinetic equation is obtained for an inhomogeneous solid having arbitrary gradient concentration and chemical potential. We find, starting from nonequilibrium statistical operator, a new equation to describe atom migration in solid states. In continuous approximation, this equation turns into a non-linear diffusion equation. We derive conditions for which this equation can be reduced to Fick’s or Cahn equation.
format Article
author Bilotsky, Y.
Gasik, M.
Lev, B.
spellingShingle Bilotsky, Y.
Gasik, M.
Lev, B.
Diffusion equations in inhomogeneous solid having arbitrary gradient concentration
Condensed Matter Physics
author_facet Bilotsky, Y.
Gasik, M.
Lev, B.
author_sort Bilotsky, Y.
title Diffusion equations in inhomogeneous solid having arbitrary gradient concentration
title_short Diffusion equations in inhomogeneous solid having arbitrary gradient concentration
title_full Diffusion equations in inhomogeneous solid having arbitrary gradient concentration
title_fullStr Diffusion equations in inhomogeneous solid having arbitrary gradient concentration
title_full_unstemmed Diffusion equations in inhomogeneous solid having arbitrary gradient concentration
title_sort diffusion equations in inhomogeneous solid having arbitrary gradient concentration
publisher Інститут фізики конденсованих систем НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156532
citation_txt Diffusion equations in inhomogeneous solid having arbitrary gradient concentration / Y. Bilotsky, M. Gasik, B. Lev // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13201: 1–5. — Бібліогр.: 18 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT bilotskyy diffusionequationsininhomogeneoussolidhavingarbitrarygradientconcentration
AT gasikm diffusionequationsininhomogeneoussolidhavingarbitrarygradientconcentration
AT levb diffusionequationsininhomogeneoussolidhavingarbitrarygradientconcentration
first_indexed 2025-07-14T08:52:17Z
last_indexed 2025-07-14T08:52:17Z
_version_ 1837611759213477888
fulltext Condensed Matter Physics, 2017, Vol. 20, No 1, 13201: 1–5 DOI: 10.5488/CMP.20.13201 http://www.icmp.lviv.ua/journal Diffusion equations in inhomogeneous solid having arbitrary gradient concentration Y. Bilotsky1, M. Gasik1, B. Lev2 1 Aalto University, School of Chemical Technology, Materials Processing, PO Box 16200 FI-00076 AALTO Finland 2 Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-b Metrolohichna St., 03143 Kyiv, Ukraine Received November 17, 2016, in final form January 6, 2017 A quantum kinetic equation is obtained for an inhomogeneous solid having arbitrary gradient concentration and chemical potential. We find, starting from nonequilibrium statistical operator, a new equation to describe atom migration in solid states. In continuous approximation, this equation turns into a non-linear diffusion equation. We derive conditions for which this equation can be reduced to Fick’s or Cahn equation. Key words: nonequilibrium statistical operator, solid state, diffusion process PACS: 23.23.+x, 56.65.Dy Diffusion phenomena in solidmatter have attracted substantial attention for a long time (see as exam- ples [1–5]). The basis of most approaches to the investigation of these phenomena is expansion in powers of concentration gradients. In our approach, the atom migrates through grain cross-boundary in solid al- loys. The application of this concept to the investigation of atomic migration trough cross-boundary grain in solid alloys turns out to be unknown so far. Despite the fact that atomic flux through grain bound- ary can be moderate, the concentration gradient can be extremely large. Therefore, the linear diffusion theory is not applicable. This fact has been used in constructing our model. An important assumption in our model is that the concentration of migrating atoms and the temperature can be described by a quasi-equilibrium distribution function. This article is based on thewell-known fact that diffusion jumping time is longer than other character- istic time scales in a crystal. The jumping times are normally longer than 10−10 s even at themelting point, and may become larger at low temperature. Thus, the mean interval between jumps is longer compared with the phonon oscillation period ω−1 ∼ 10−13 s as well as with the lifetime of a phonon. Consequently, dynamic correlations between jumps may be neglected. Therefore, let us start with the Hamiltonian of a system of particles which interact only with a phonon: Ĥ =∑ i ,k E i k â+ i ,k âi ,k + ∑ i ,q ħωi q b̂+ i ,q b̂i ,q + Ĥ i , jint , (1) where E i k is the energy of a particle and ħωi q is the energy of a phonon on i sites, â+ i ,k and b̂+ i ,q areoperators of the birth of a particle and a phonon. The spectrum of energy in different spatial points is different. The Hamiltonian of interacting atoms and phonons can be written in the form: Ĥ i , jint = ∑ k,q,k ′,q ′ ( Φ i , j k,q,k ′,q ′ â + i ,k b̂+ i ,q â j ,k ′ b̂ j ,q ′ +Φ+ i , j k,q,k ′,q ′ â + i ,k b̂+ i ,q â j ,k ′ b̂ j ,q ′ ) , (2) where Φi , j k,q,k ′,q ′ is a matrix element. Interaction between two particles in different locations can be un-derstood as a process for which one particle interacts with a phonon, receiving additional energy and can jump to another place in a crystal if this place is not occupied by another particle. If this place is free, a © Y. Bilotsky, M. Gasik, B. Lev, 2017 13201-1 https://doi.org/10.5488/CMP.20.13201 http://www.icmp.lviv.ua/journal Y. Bilotsky, M. Gasik, B. Lev particle can irradiate the other phonon and sit on the free site. Particle number operator N̂ i =∑ k â+ i ,k âi ,ksatisfies the dynamic equation: ˙̂N i =− 1 iħ [ N̂ i , Ĥ ] = ∑ k,q,k ′,q ′ ( Φ i , j k,q,k ′,q ′ â + i ,k b̂+ i ,q â j ,k ′ b̂ j ,q ′ −Φ+ i , j k,q,k ′,q ′ â + i ,k b̂+ i ,q â j ,k ′ b̂ j ,q ′ ) . (3) The next step involves the use of Zubarev’s non-equilibrium statistical operator approach [6]: ρ =Q−1 exp −∑ i βi Ĥ +∑ i βiµi N̂ i +∑ i 0∫ −∞ dt eεtµiβi ˙̂N i  . (4) In this case, we will ignore the interaction between particles at distant points. The flux is small but the difference between temperature or chemical potential can be arbitrary. The time derivative of the aver- age number of the particles located in the lattice node i comes (by using this non-equilibrium statistical operator) as follows: 〈 ˙̂N i 〉 = 0∫ −∞ dt eεt 1∫ 0 〈 ˙̂N i e−τB̂ ˙̂N i eτB̂ 〉 l , (5) where 〈. . .〉l means the average value on the quasi-equilibrium distribution. ρ̂l =Q−1e−B̂ , B̂ =∑ i βi ( Ĥ i −µi N̂ i ) . (6) The equation (5) is simplified to 〈 ˙̂N i 〉 =βAL ˙̂N i ˙̂N i (7) if the equilibrium distribution is used in the right-hand side of equation (5). Here, A is the difference of chemical potentials in the external and initial states and LṄ i Ṅ i ≡β−1 0∫ −∞ β∫ 0 eεt 〈Ṅ i Ṅ i (t + iħτ) 〉 0dtdτ. (8) This relation for chemical reactions was obtained in [7, 8]. The equation is valid for small flux and linear dependence on the thermodynamic force. From the equations e−τB̂ âi ,k eτB̂ = e βi ( E i k−µi ) âi ,k , e−τB̂ â+ i ,k eτB̂ = e −βi ( E i k−µi ) â+ i ,k , (9) we have e−τB̂ â+ i ,k b̂+ i ,q â j ,k ′ b̂ j ,q ′eτB̂ = e ( −βi E i k+βi E j k′+βiħωi q−βiħω j q+ ∑ i βiµi ) τ â+ i ,k b̂+ i ,q â j ,k ′ b̂ j ,q ′ . (10) Using this non-equilibrium statistical operator and Wick’s theorem one can obtain a kinetic equation for Ni [6] Ṅ i = ∑ k,q,k ′,q ′ W i ,i+1 k,q,k ′,q ′ [ −N i k f i q ( 1−N i+1 k ′ )( 1+ f i+1 q ′ ) +N i+1 k ′ f i+1 q ( 1−N i k )( 1+ f i q ′ )] + ∑ k,q,k ′,q ′ W i−1,i k,q,k ′,q ′ [ −N i k ′ f i q ( 1−N i−1 k )( 1+ f i−1 q ′ ) +N i−1 k f i−1 q ( 1−N i k ′ )( 1+ f i q ′ )] , (11) where W i ,i+1 k,q,k ′,q ′ = 2π ħ ∣∣Φi , j k,q,k ′,q ′ ∣∣2 δ ( E i k +ħωi q −E j k ′ −ħω j q ′ ) (12) is the matrix element which takes into account the interaction between two sites, while f i q is distributionfunction of the phonon and N i k is distribution function for particles in i site. It is significant that the function N i k on the right-hand side of the equation depends on two indexes: index i indicates the atom’s position in the lattice and index k belongs to the internal degrees of freedom of the atom, while the 13201-2 Diffusion equations in inhomogeneous solid having arbitrary gradient concentration derivative of N i on the left-hand side of the equation describes the change on the average numbers of atoms located in the lattice node i regardless of the index k. Let us introduce the coefficient Dk (x) as a2(Ai k + Ai−1 k )/2 and present ∂Dk (x)/∂x as a(Ai k − Ai−1 k )/a, where Ai+1 k = ∑ q,k ′,q ′ W i ,i+1 k,q,k ′,q ′ f i q f i+1 q ′ in the linear approximation of ni k in a continuum approximation when the lattice constant a → 0. Only the states of the particle involved in diffusion process should be counted in this summation Dk (x) = 1 2 ∑ q,q ′ [ Wk,q,q ′ fq ′ (x +a)+Wk,q,q ′ fq ′ (x −a) ] fq (x). For high temperature we can take fq (x) ≈ 1 β(x)ħωq (x) .In the continuous approach, the kinetic equation can be written as: Ṅ (x) = ∂ ∂x ∑ k ′ Dk (x) ∂N k ∂x . (13) Therefore, the flux in this case is JN = ∑ k Dk (x) ∂N k ∂x . If the diffusion coefficient is constant Dk (x) = 1 2 ∑ q,q ′ [ Wq,q ′ fq ′ (x +a)+Wq,q ′ fq ′ (x −a) ] fq (x) ≡ D , the diffusion equation is reduced to a well-known simple form: Ṅ (x) = D ∂2N ∂x2 . (14) The spatial dependence of the particles numberNk (x) can be expressed in terms of the chemical potential and the energy activation as functions of coordinates. The∑′ k N (Ek ) takes into account only the states of a particle from which this particle can make a jump in the nearest sites. The distribution function for high temperature of the particles is of the form N (Ek ) = e−β(x)[Ek (x)−µ(x)]. Let us introduce a new variable mk (x) ≡ e−β(x)Ek (x). Using this variable we can write N (Ek ) = eβ(x)µ(x)mk (x) and the diffusion equation for the 3D case becomes as follows: Ṅ (r) =∇∇∇ { ∇∇∇ [ eβ(r)µ(r) ]∑ k Dk (r)mk (r)+eβ(r)µ(r) ∑ k Dk (r)∇∇∇mk (r) } . (15) This is an equation of diffusion of a particle in solid matters with different energy, chemical potential and temperature reliefs (the internal degrees of freedom are taken into account in it). By introducing new functions D(r) ≡ ∑ k Dk (r)mk (r) and V(r) ≡ ∑ k Dk (r)∇∇∇mk (r), the diffusion equation can be written as follows: Ṅ (r) =∇∇∇ { D(r)eβ(r)µ(r)∇∇∇[β(r)µ(r)]+V(r)eβ(r)µ(r) } . (16) This equation is correlated with the equation of grain boundary diffusion in a standard form which was obtained in the [9], and the model for diffusion in a pipe filled with a Knudsen gas [10]. In our case, the external field can be considered as the effect of the inhomogeneous structure of solid matter. This information is included in the coefficient V(r) which is dependent on the particle spectrum. Let us consider some special cases: 1. Fick’s diffusion equation comes from equation (16); if we take into consideration that the diffusion coefficient D(r ) varies in space, the chemical potential is the function of concentration only and β(r)µ(r) ¿ 1 Ṅ (r) =∇∇∇ { D∇∇∇ [ eβ(r)µ(r) ]} =∇∇∇{ D∇∇∇[β(r)µ(r)] } . (17) If we consider the migration of atoms as a gas with chemical potential µ= ln N V ( 2πħ2β m ) 3 2 , then this equation is converted into the well-known diffusion equation. This is valid for a small concentra- tion of additional atoms in a solid. 2. Let us consider that the chemical potential is characteristic of the system and is determined by the free energy of the system and by the relation µ= δF δN ≡ 1 V δF δc , which is the function of concentration c(r) ≡ N (r) V . In this general approach, we may write the kinetic diffusion equation in the form: Ṅ (r) =∇∇∇ { D(r)eβ(r) δF (r) δN ∇∇∇ [ β(r) δF (r) δN ] +V(r)eβ(r) δF (r) δN } , (18) 13201-3 Y. Bilotsky, M. Gasik, B. Lev where all coefficients vary in space. This equation simplifies greatly if the coefficients D and β are constants. This is the well-know diffusion equation [11–13]: Ṅ (r) = Dβ∇2 δF δN ≡ M∇2 δF δN , M ≡ Dβ. (19) 3. The free energy functional for the inhomogeneous system is [14]: F = ∫ V [ f (c)+κ(∇∇∇c)2]dV , (20) which takes into account the arbitrary inhomogeneous distribution of particles. The chemical po- tential in this case can be determined from the thermodynamic relation: µ≡ 1 V δF δc = 1 V ∫ V [ ∂ f (c) ∂c + ∂κ δc (∇∇∇c)2 −2κ∇2c ] dV. (21) This is a famous Cahn nonlinear diffusion equation [15]: ċ(r) =∇∇∇M∇∇∇µ(r) = M [ ∂2 f (c) ∂c2 ∇2 −2κ∇4c ] . (22) 4. Now, consider a stationary condition ∇∇∇ { D(r)∇∇∇ [ eβ(r) δF (r) δN ] +V(r)eβ(r) δF (r) δN } = 0, (23) therefore, the flux J = D(r)∇∇∇[ eβ(r) δF (r) δN ]+V(r)eβ(r) δF (r) δN is constant and in equilibrium transforms to zero, and thus ∇∇∇[ β(r)µ(r) ]=− V(r) D(r) . (24) This equation has a simple solution µ(r) =− 1 β(r) r∫ 0 Vl (r′) D(r′) dx ′ l . (25) Here, the chemical potential is a function of concentration. This approximation can be used to write the Cahn equation for nonzero V(r) M [ ∂2 f (c) ∂c2 ∇2c −2κ∇4c ] +divV = 0. (26) In the non-equilibrium case, when there exists a stationary flux: D(r)∇∇∇ [ eβ(r) δF (r) δN ] +V(r)eβ(r) δF (r) δN = J0(r), (27) there is a solution exp[β(r)µ(r)] = S exp [ − r∫ 0 Vl (r′) D(r′) dx ′ l ] +exp [ − r∫ 0 Vl (r′) D(r′) dx ′ l ] · r∫ 0 J0(r) D(r) exp [ + r∫ 0 Vl (r′) D(r′) dx ′ l ] , (28) where S is an arbitrary constant. Thereby, we found a new relationship between temperature, chemical potential, the flux of particles and diffusion coefficient. 13201-4 Diffusion equations in inhomogeneous solid having arbitrary gradient concentration In this article we received a new self-consistent equation for a description of themigration of atoms in solid matter by starting with the quantum non-equilibrium statistical operator [6]. This nonlinear differ- ential equation is written in terms of macroscopic variables, i.e., concentration of migrating atoms. The kinetic characteristics of the system with different (small or large) gradients of concentrations and inho- mogeneous distribution of particles can be calculated using this approach. This equation is reduced to a diffusion equation or even to Cahn’s nonlinear diffusion equation under certain conditions (see above). Finally, we have to note that there are several ways to receive macroscopic transport equation starting from quantum mechanical statistics. See, for example [16–18]. We prefer to use Zubaryev’s techniques which give a straightforward result in our case. However, the choice of the method is a matter of one’s own opinion. References 1. Flynn C.P., Stoneham A.M., Phys. Rev. B, 1970, 1, 3966; doi:10.1103/PhysRevB.1.3966. 2. Weiner J.H., Phys. Rev., 1968, 169, 570; doi:10.1103/PhysRev.169.570. 3. Flynn C.P., Phys. Rev. B, 2005, 71, 085422; doi:10.1103/PhysRevB.71.085422. 4. Flynn C.P., Phys. Rev., 1968, 171, 682; doi:10.1103/PhysRev.171.682. 5. Wert C., Zener C., Phys. Rev., 1949, 76, 1169; doi:10.1103/PhysRev.76.1169. 6. Zubaryev D., Nonequilibrium Statistical Thermodynamics, Nauka, Moskow, 1971 (in Russian). 7. Yamamoto T.J., J. Chem. Phys., 1960, 33, 281; doi:10.1063/1.1731099. 8. Aroeste H., In: Advances in Chemical Physics Vol. 6, Prigogine I. (Ed.), John Wiley & Sons, Inc., Hoboken, New Jersey, 1964, 1–83; doi:10.1002/9780470143520.ch1. 9. Smoluchowski R., Phys. Rev., 1952, 87, 482; doi:10.1103/PhysRev.87.482. 10. Van Kampen N.G., J. Math. Phys., 1961, 2, 592; doi:10.1063/1.1703743. 11. Lifshitz E.M., Pitaevskii L.P., Physical Kinetics, Pergamon Press, London, 1981. 12. Goryachev S.B., Phys. Rev. Lett., 1994, 72, 1850; doi:10.1103/PhysRevLett.72.1850. 13. Metiu H., Kitahara K., Ross J., J. Chem. Phys., 1976, 64, 292; doi:10.1063/1.431920. 14. Khachaturyan A.G., Theory of Phase Transformations and Structure of Solid Solutions, Nauka, Moscow, 1974 (in Russian). 15. Cahn J.W., Acta Metall., 1961, 9, 795; doi:10.1016/0001-6160(61)90182-1. 16. Weiss U., Quantum Dissipative Systems, 4th Edn., World Scientific, Singapour, 2012. 17. Schaller G., Open Quantum Systems Far from Equilibrium, Springer International Publishing, 2014; doi:10.1007/978-3-319-03877-3. 18. Breuer H.-P., Petruccione F., Theory of Open Quantum Systems, Cambridge University Press, Cambridge, 2000. Рiвняння дифузiї у неоднорiдному твердому тiлi при довiльному градiєнтi концентрацiї Є. Бiлоцький1,М. Гасiк1, Б. Лев2 1 Унiверситет Аальто,Школа хiмiчної технологiї та обробки матерiалiв, абонентська скринька 16200, Аальто, Фiнляндiя 2 Iнститут теоретичної фiзики iм.М.М. Боголюбова НАН України, вул.Метрологiчна, 14-б, 03143 Київ, Україна Виведено кiнетичне рiвняння дифузiї i знайдено хiмiчний потенцiал для дифундуючих атомiв в неоднорi- дному твердому тiлi при довiльному градiєнтi концентрацiї. Базуючись на нерiвноважному статистично- му операторi, знайдено нове рiвняння, що описує мiграцiю атомiв в твердому тiлi. Отримане рiвняння в неперервному випадку перетворюється в нелiнiйне рiвняння дифузiї, яке при вiдповiдних умовах може бути трансформоване у добре вiдомi рiвняння Фiка або Кана. Отримано вiдповiднi розв’язки для таких рiвнянь. Ключовi слова: нерiвноважний статистичний оператор, тверде тiло, дифузiйний процес 13201-5 https://doi.org/10.1103/PhysRevB.1.3966 https://doi.org/10.1103/PhysRev.169.570 https://doi.org/10.1103/PhysRevB.71.085422 https://doi.org/10.1103/PhysRev.171.682 https://doi.org/10.1103/PhysRev.76.1169 https://doi.org/10.1063/1.1731099 https://doi.org/10.1002/9780470143520.ch1 https://doi.org/10.1103/PhysRev.87.482 https://doi.org/10.1063/1.1703743 https://doi.org/10.1103/PhysRevLett.72.1850 https://doi.org/10.1063/1.431920 https://doi.org/10.1016/0001-6160(61)90182-1 https://doi.org/10.1007/978-3-319-03877-3