Investigating inequality: a Langevin approach
Inequality indices are quantitative scores that gauge the divergence of wealth distributions in human societies from the “ground state” of pure communism. While inequality indices were devised for socioeconomic applications, they are effectively applicable in the context of general non-negative siz...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2017
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156558 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Investigating inequality: a Langevin approach / I. Eliazar // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13001: 1–10. — Бібліогр.: 97 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Inequality indices are quantitative scores that gauge the divergence of wealth distributions in human societies
from the “ground state” of pure communism. While inequality indices were devised for socioeconomic applications, they are effectively applicable in the context of general non-negative size distributions such as count,
length, area, volume, mass, energy, and duration. Inequality indices are commonly based on the notion of
Lorenz curves, which implicitly assume the existence of finite means. Consequently, Lorenz-based inequality
indices are excluded from the realm of infinite-mean size distributions. In this paper we present an inequality
index that is based on an altogether alternative Langevin approach. The Langevin-based inequality index is introduced, explored, and applied to a wide range of non-negative size distributions with both finite and infinite
means. |
---|