Investigating inequality: a Langevin approach

Inequality indices are quantitative scores that gauge the divergence of wealth distributions in human societies from the “ground state” of pure communism. While inequality indices were devised for socioeconomic applications, they are effectively applicable in the context of general non-negative siz...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Eliazar, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2017
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156558
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Investigating inequality: a Langevin approach / I. Eliazar // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13001: 1–10. — Бібліогр.: 97 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156558
record_format dspace
fulltext
spelling irk-123456789-1565582019-06-19T01:28:38Z Investigating inequality: a Langevin approach Eliazar, I. Inequality indices are quantitative scores that gauge the divergence of wealth distributions in human societies from the “ground state” of pure communism. While inequality indices were devised for socioeconomic applications, they are effectively applicable in the context of general non-negative size distributions such as count, length, area, volume, mass, energy, and duration. Inequality indices are commonly based on the notion of Lorenz curves, which implicitly assume the existence of finite means. Consequently, Lorenz-based inequality indices are excluded from the realm of infinite-mean size distributions. In this paper we present an inequality index that is based on an altogether alternative Langevin approach. The Langevin-based inequality index is introduced, explored, and applied to a wide range of non-negative size distributions with both finite and infinite means. Iндекси нерiвностi є кiлькiсними показниками, якi вимiрюють вiдхилення розподiлу багатства в людських суспiльствах вiд “основного стану ” чистого комунiзму. Хоча iндекси нерiвностi були розробленi для застосування в соцiоекономiцi, вони виявилися ефективно застосовними в контекстi загальних ненегативних розподiлiв розмiрiв, таких як кiлькiсть, довжина, площа, об’єм, маса, енергiя та тривалiсть. Iндекси нерiвностi зазвичай базуються на поняттi кривих Лоренца, що неявно припускають iснування скiнчених середнiх. Як наслiдок, Лоренц-базованi iндекси нерiвностi вилучаються з множини нескiнчених середнiх вiд розподiлiв розмiрiв. В цiй статтi ми представляємо iндекс нерiвностi, який базується на загалом альтернативному пiдходi Ланжевена. Ланжевен-базованi iндекси нерiвностi вводяться, вивчаються i застосовуються до широкого дiапазону ненегативних розподiлiв розмiру як зi скiнченими, так i з нескiнченими середнiми. 2017 Article Investigating inequality: a Langevin approach / I. Eliazar // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13001: 1–10. — Бібліогр.: 97 назв. — англ. 1607-324X PACS: 02.50.-r, 89.65.-s DOI:10.5488/CMP.20.13001 arXiv:1703.10360 http://dspace.nbuv.gov.ua/handle/123456789/156558 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Inequality indices are quantitative scores that gauge the divergence of wealth distributions in human societies from the “ground state” of pure communism. While inequality indices were devised for socioeconomic applications, they are effectively applicable in the context of general non-negative size distributions such as count, length, area, volume, mass, energy, and duration. Inequality indices are commonly based on the notion of Lorenz curves, which implicitly assume the existence of finite means. Consequently, Lorenz-based inequality indices are excluded from the realm of infinite-mean size distributions. In this paper we present an inequality index that is based on an altogether alternative Langevin approach. The Langevin-based inequality index is introduced, explored, and applied to a wide range of non-negative size distributions with both finite and infinite means.
format Article
author Eliazar, I.
spellingShingle Eliazar, I.
Investigating inequality: a Langevin approach
Condensed Matter Physics
author_facet Eliazar, I.
author_sort Eliazar, I.
title Investigating inequality: a Langevin approach
title_short Investigating inequality: a Langevin approach
title_full Investigating inequality: a Langevin approach
title_fullStr Investigating inequality: a Langevin approach
title_full_unstemmed Investigating inequality: a Langevin approach
title_sort investigating inequality: a langevin approach
publisher Інститут фізики конденсованих систем НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156558
citation_txt Investigating inequality: a Langevin approach / I. Eliazar // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13001: 1–10. — Бібліогр.: 97 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT eliazari investigatinginequalityalangevinapproach
first_indexed 2025-07-14T08:54:53Z
last_indexed 2025-07-14T08:54:53Z
_version_ 1837611922510315520