Dickson's theorem for Bol loops

Dickson characterized groups in terms of one-sided invertibility. In this note, we give comparable characterizations for Bol and Moufang loops.

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Movsisyan, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156639
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dickson's theorem for Bol loops / Y. Movsisyan // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 297-301. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156639
record_format dspace
spelling irk-123456789-1566392019-06-19T01:29:15Z Dickson's theorem for Bol loops Movsisyan, Y. Dickson characterized groups in terms of one-sided invertibility. In this note, we give comparable characterizations for Bol and Moufang loops. 2017 Article Dickson's theorem for Bol loops / Y. Movsisyan // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 297-301. — Бібліогр.: 13 назв. — англ. 1726-3255 2010 MSC:20N05. http://dspace.nbuv.gov.ua/handle/123456789/156639 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Dickson characterized groups in terms of one-sided invertibility. In this note, we give comparable characterizations for Bol and Moufang loops.
format Article
author Movsisyan, Y.
spellingShingle Movsisyan, Y.
Dickson's theorem for Bol loops
Algebra and Discrete Mathematics
author_facet Movsisyan, Y.
author_sort Movsisyan, Y.
title Dickson's theorem for Bol loops
title_short Dickson's theorem for Bol loops
title_full Dickson's theorem for Bol loops
title_fullStr Dickson's theorem for Bol loops
title_full_unstemmed Dickson's theorem for Bol loops
title_sort dickson's theorem for bol loops
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156639
citation_txt Dickson's theorem for Bol loops / Y. Movsisyan // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 297-301. — Бібліогр.: 13 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT movsisyany dicksonstheoremforbolloops
first_indexed 2025-07-14T09:01:29Z
last_indexed 2025-07-14T09:01:29Z
_version_ 1837612337375215616
fulltext “adm-n4” 22:47 page #119 Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 24 (2017). Number 2, pp. 297–301 © Journal “Algebra and Discrete Mathematics” Dickson’s theorem for Bol loops∗ Yuri Movsisyan Communicated by A. V. Zhuchok Abstract. Dickson characterized groups in terms of one- sided invertibility. In this note, we give comparable characterizations for Bol and Moufang loops. Introduction Dickson [3] characterized groups as follows: a group is a semigroup Q which possesses a left (right) unit, under which every element of Q is left (right) invertible. In this note we prove the similar result for the left (right) Bol loops ([1],[2],[5]–[12]). As a consequence we formulate a similar result for the Moufang loops. Definition 1. A groupoid Q(·) is called: 1) a right division groupoid (right quasigroup) if the equation a · x = b has a solution (unique solution) x ∈ Q for every a, b ∈ Q; 2) a left division groupoid (left quasigroup) if the equation y · a = b has a solution (unique solution) y ∈ Q for every a, b ∈ Q; 3) a quasigroup (division groupoid) if Q(·) is a right and left quasigroup (right and left division groupoid); ∗This research was supported by the State Committee of Science of the Republic of Armenia, grants: 10-3/1-41 and 15T-1A258. 2010 MSC: 20N05. Key words and phrases: left (right) Bol identity, left (right) quasigroup, quasi- group, loop, left (right) Moufang identity. “adm-n4” 22:47 page #120 298 Dickson’s theorem for Bol loops 4) left cancellative if the equation a · x = b has no more than one solution x ∈ Q for every a, b ∈ Q, i.e. for arbitrary a, x1, x2 ∈ Q: a · x1 = a · x2 −→ x1 = x2; 5) right cancellative if the equation y · a = b has no more than one solution x ∈ Q for every a, b ∈ Q, i.e. for arbitrary a, y1, y2 ∈ Q: y1 · a = y2 · a −→ y1 = y2; 6) a loop if Q(·) is a quasigroup with a unit; 7) a left Bol loop if Q(·) is a loop satisfying the left Bol identity: (x · yx)z = x(y · xz); (1) 8) a right Bol loop if Q(·) is a loop satisfying the right Bol identity: z(xy · x) = (zx · y)x; (2) 9) a Moufang loop if Q(·) is a loop satisfying one of the following left and right Moufang identities: x(y · xz) = (xy · x)z, (3) (zx · y)x = z(x · yx); (4) 10) right (left) alternative if Q(·) satisfies the right (left) alternative identity: y(x · x) = (y · x)x, (x · x)y = x(x · y); 11) alternative if Q(·) is a right and left alternative. It is well known that the Moufang identities (3) and (4) are equivalent in the class of loops ([1], [6], [9]). For applications of right (left) quasigroup operations in geometry and topology (knot theory) see [4,8,10]. For right (left) loops see [13]. 1. The main result Let us start at the following auxiliary result. Lemma 1. 1) Every idempotent element of a left alternative and right division groupoid Q(·) is a left unit of Q(·); 2) Every idempotent element of a right alternative and left division groupoid Q(·) is a right unit of Q(·); 3) Every idempotent element of an alternative and division groupoid is a unit of Q(·). “adm-n4” 22:47 page #121 Yu. Movsisyan 299 Proof. 1) Let e ∈ Q be an idempotent element of Q(·), i.e. e · e = e. For any b ∈ Q there exist x ∈ Q such that e · x = b, then by left alternativity: e · b = e(e · x) = (e · e)x = e · x = b. Theorem 1. 1) Let Q(·) be a left cancellative groupoid with a right unit, satisfying the left Bol identity (1). If every element of Q is a right invertible under one of the right units, then Q(·) is a loop (left Bol loop). 2) Let Q(·) be a right cancellative groupoid with a left unit, satisfying the right Bol identity (2). If every element of Q is a left invertible under one of the left units, then Q(·) is a loop (right Bol loop). Proof. 1) Let e be a right unit of Q(·) and for every a ∈ Q there exist an element a′ ∈ Q that a · a′ = e. Let us denote: a′′ = (a′)′. First, we prove that a′ · a = e. Namely, by the Bol left identity (1) we have: a′ · (a · a′) = a′ · e = a′, a′ · a = a′ · (a · e) = a′ · (a · (a′ · a′′)) = (a′ · (a · a′)) · a′′ = = (a′ · e) · a′′ = a′ · a′′ = e. It is evident the uniqueness of the inverse element a′ ∈ Q by left cacellativity of Q(·). Hence, a′′ = a. Moreover, by the left Bol identity (1) we obtain: (x · x′x)z = x(x′ · xz) and (x · e)z = x(x′ · xz), i.e. x · z = x(x′ · xz). According to the left cancellative property, we obtain: z = x′ · xz for arbitrary x, z ∈ Q. For any a, b ∈ Q the unique solution of a · x = b is the x = a′ · b. Indeed, if x = a′ · b, then a · x = b, since a′′(a′ · b) = b and a′′ = a. Let us consider the equation: y · a = b, where a, b ∈ Q. If y · a = b, then (a · ya)a′ = ab · a′, i.e. a(y · aa′) = ab · a′ by the left Bol identity (1), or ay = ab · a′, y = a′(ab · a′). And from y = a′(ab · a′) it follows that y · a = b by the left Bol identity (1): y · a = (a′ · (ab · a′)) · a = a′(ab · a′a) = a′(ab · e) = a′(ab) = b. “adm-n4” 22:47 page #122 300 Dickson’s theorem for Bol loops Hence, Q(·) is a quasigroup. In order to prove that the right unit e ∈ Q is a unit of Q(·), first we note that by setting y = e in the left Bol identity (1), we immediately obtain the left alternative law: (x · x)z = x(x · z). Now, according to the previous Lemma 1, every idempotent element of Q(·) is a left unit of Q(·). In particular, the right unit e ∈ Q is a unit of Q(·). 2) The proof is dual to the proof of 1). Corollary 1. 1) Let Q(·) be a left cancellative groupoid with a right unit, satisfying the left Moufang identity (3). If every element of Q is a right invertible under one of the right units, then Q(·) is a loop (Moufang loop). 2) Let Q(·) be a right cancellative groupoid with a left unit, satisfying the right Moufang identity (4). If every element of Q is a left invertible under one of the left units, then Q(·) is a loop (Moufang loop). Proof. 1) Note, that by setting z = e (which is a right unit of Q(·)) in the left Moufang identity (3) we obtain the flexible law: (xy)x = x(yx). Hence, the identity (3) is converted to the left Bol identity (1). So we can use the result 1) of the previous Theorem 1. 2) The proof is similar to the proof of 1). Corollary 2. 1) Every left cancellative, alternative and division groupoid with the left Bol identity (1) is a loop (Moufang loop). 2) Every right cancellative, alternative and division groupoid with the right Bol identity (2) is a loop (Moufang loop). Proof. 1) For any element a ∈ Q there exists an element ea ∈ Q such that a · ea = a, since Q(·) is a division groupoid. Applying this equality in the identity of right alternativity, we find: a · e2 a = (a · ea) · ea = a · ea, i.e. ea is an idempotent element of Q(·): e2 a = ea by left cancellativity of Q(·). Hence, Q(·) has a unit by the previous Lemma 1. Consequently, we can use the result 1) of the previous theorem. Thus, Q(·) is a left Bol loop. Then the right alternative low together with the left Bol identity (1) implies that: (x · yx)x = x(y · xx) = x(yx · x). “adm-n4” 22:47 page #123 Yu. Movsisyan 301 Setting yx = z, we get the flexible law: (xz)x = x(zx), which implies that the left Bol loop Q(·) is a Moufang loop. 2) The proof is similar to the proof of 1). References [1] V.D. Belousov, Foundations of The Theory of Quasigroups and Loops, Nauka, Moscow, 1967 (Russian). [2] G. Bol, Gewebe und Gruppen, Math. Ann., N.114, 1937, pp.414-432. [3] L.E. Dickson, Definitions of a group and a field by independent postulates, Trans. Amer. Math. Soc., N.6, 1905, pp.198-204. [4] S.V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119(1) (1982), pp.78-88. [5] R. Moufang, Zur struktur von Alternativkörpern, Math. Ann., N.10, 1935, pp.416- 430. [6] Yu.M. Movsisyan, Introduction of The Theory of Algebras with Hyperidentities, Yerevan State University Press, Yerevan, 1986 (Russian). [7] Yu.M. Movsisyan, Hyperidentitties in algebras and varieties, Uspekhi Mat. Nauk., 53(1),1998,61–114; (Russian) English transl. in Russian Math. Surveys 53, 1998, 57–108. [8] V. Pambuccian, Euclidean geometry problems rephrased in terms of midpoints and point-reflections, Elem. Math., 60(2005), pp.19-24. [9] H.O. Pflugfelder, Quasigroups and Loops, Introduction, Helderman Verlag Berlin, 1990. [10] J. H. Przytycki, Knot and distributive homology: from arc colorings to Yang-Baxter homology, in: New Ideas in Low Dimensional Topology, 2015, pp. 413-488. [11] I.P. Shestakov, A.I. Shirshov, A.M. Slinko, K.A. Zhevlakov, Rings That are Nearly Associative, Nauka, Moscow, 1978 (Russian); English transl. Academic Press, New York, 1982. [12] L.A. Skornyakov, Right alternative fields, Izvestia Akad. Nauk SSSR, Ser. Mat., N.15, 1951, pp.177-184. [13] J.D.H. Smith, A.B. Romanowska, Post-Modern Algerbra, Wiley, New York, 1999. Contact information Yu. Movsisyan Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia E-Mail(s): movsisyan@ysu.am Web-page(s): www.ysu.am Received by the editors: 15.10.2016 and in final form 15.02.2017.