Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro
Microbe-associated molecules (MAM) are known to exert stimulating effect on the dendritic cell (DC) maturation. The aim of this investigation was a comparative study of the effect of different MAMs, used separately and in combination, on human monocyte-derived DC maturation in vitro. Methods. The st...
Saved in:
Date: | 2012 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Published: |
Інститут молекулярної біології і генетики НАН України
2012
|
Series: | Вiopolymers and Cell |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/156716 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro / L.M. Skivka, Yu.V. Shvets, N.M. Khranovska, O.G. Fedorchuk, V.V. Pozur, N.V. Senchilo // Вiopolymers and Cell. — 2012. — Т. 28, № 1. — С. 50-55. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-156716 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1567162019-06-19T01:29:54Z Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro Skivka, L.M. Shvets, Yu.V. Khranovska, N.M. Fedorchuk, O.G. Pozur, V.V Senchilo, N.V. Structure and Function of Biopolymers Microbe-associated molecules (MAM) are known to exert stimulating effect on the dendritic cell (DC) maturation. The aim of this investigation was a comparative study of the effect of different MAMs, used separately and in combination, on human monocyte-derived DC maturation in vitro. Methods. The studied MAMs were represented by lipopolysaccharide (LPS) from Escherichia coli and different biopolymers from Staphylococcus aureus Wood 46. DC phenotype was analyzed by flow cytometry. Functional maturity of DC was assessed in the mixed leukocyte reaction. Results. The use of MAMs in combination has been shown to be more efficient for phenotypic and functional maturation of monocyte-derived DCs than utilizing different MAMs separately. The most potent stimulatory effect has been observed for the combination of LPS with peptidoglycan (PepG) or teichoic acid with PepG. Conclusions. Combined use of different MAMs, especially those that activate different signaling pathways (LPS-PepG and teichoic acid-PepG), results in synergistic stimulation of monocyte-derived DC maturation. Відомо, що асоційовані з мікробами молекули (АММ) чинять стимулювальний вплив на дозрівання дендритних клітин (ДК). Мета. Провести порівняльне дослідження дії різних АММ, використаних як самостійно, так і в комбінації, на дозрівання ДК, отриманих з моноцитів периферичної крові людини in vitro. Методи. Як АММ застосовано ліпополісахарид Escherichia coli та біополімери Staphylococcus aureus Wood 46. Фенотипову зрілість ДК охарактеризовано методом проточної цитофлуориметрії. Функціональну зрілість ДК аналізували в реакції змішаної культури лейкоцитів. Результати. Встановлено, що комбіноване використання АММ є більш результативним для стимуляції фенотипового і функціонального дозрівання ДК in vitro порівняно із самостійним застосуванням мікробних біополімерів. Найвиразніший стимулювальний ефект спостерігався за використання комбінації пептидоглікану з ліпополісахаридом та пептидоглікану з тейхоєвою кислотою. Висновки. Показано існування синергічного впливу АММ щодо стимуляції дозрівання ДК, особливо суттєвого у разі комбінованого застосування асоційованих з мікробами молекул, які взаємодіють з ДК, активуючи різні сигнальні шляхи (пептидоглікан у поєднанні з ліпополісахаридом або пептидоглікан у поєднанні з тейхоєвою кислотою). Известно, что ассоциированные с микробамими молекулы (АММ) окзывают стимулирующее действие на созревание дендритных клеток (ДК). Цель. Провести сравнительное исследование влияния различных АММ, использованных как самостоятельно, так и в комбинации, на созревание ДК, полученных из моноцитов периферической крови человека in vitro. Методы. В качестве АММ применяли липополисахарид Escherichia coli и биополимеры Staphylococcus aureus Wood 46. Фенотип ДК характеризовали методом проточной цитофлуориметрии. Функциональную зрелость ДК анализировали в реакции смешанной культуры лейкоцитов. Результаты. Установлено, что комбинированное использование АММ является более результативным для стимуляции фенотипического и функционального созревания ДК in vitro по сравнению с применением бактериальных биополимеров самостоятельно. Наиболее выраженный стимулирующий эффект наблюдали при использовании комбинации пептидогликана с липополисахаридом, а также пептидогликана с тейхоєвой кислотой. Выводы. Показано существование синергического стимулирующего влияния АММ на созревание ДК, наиболее выраженного при комбинированном использовании ассоциированных с микробами молекул, которые взаимодействуют с ДК, активируя различные сигнальные пути (пептидогликан в сочетании с липополисахаридом или пептидогликан в сочетании с тейхоевой кислотой). 2012 Article Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro / L.M. Skivka, Yu.V. Shvets, N.M. Khranovska, O.G. Fedorchuk, V.V. Pozur, N.V. Senchilo // Вiopolymers and Cell. — 2012. — Т. 28, № 1. — С. 50-55. — Бібліогр.: 24 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00002C http://dspace.nbuv.gov.ua/handle/123456789/156716 612.017.1.579.861.2 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Structure and Function of Biopolymers Structure and Function of Biopolymers |
spellingShingle |
Structure and Function of Biopolymers Structure and Function of Biopolymers Skivka, L.M. Shvets, Yu.V. Khranovska, N.M. Fedorchuk, O.G. Pozur, V.V Senchilo, N.V. Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro Вiopolymers and Cell |
description |
Microbe-associated molecules (MAM) are known to exert stimulating effect on the dendritic cell (DC) maturation. The aim of this investigation was a comparative study of the effect of different MAMs, used separately and in combination, on human monocyte-derived DC maturation in vitro. Methods. The studied MAMs were represented by lipopolysaccharide (LPS) from Escherichia coli and different biopolymers from Staphylococcus aureus Wood 46. DC phenotype was analyzed by flow cytometry. Functional maturity of DC was assessed in the mixed leukocyte reaction. Results. The use of MAMs in combination has been shown to be more efficient for phenotypic and functional maturation of monocyte-derived DCs than utilizing different MAMs separately. The most potent stimulatory effect has been observed for the combination of LPS with peptidoglycan (PepG) or teichoic acid with PepG. Conclusions. Combined use of different MAMs, especially those that activate different signaling pathways (LPS-PepG and teichoic acid-PepG), results in synergistic stimulation of monocyte-derived DC maturation. |
format |
Article |
author |
Skivka, L.M. Shvets, Yu.V. Khranovska, N.M. Fedorchuk, O.G. Pozur, V.V Senchilo, N.V. |
author_facet |
Skivka, L.M. Shvets, Yu.V. Khranovska, N.M. Fedorchuk, O.G. Pozur, V.V Senchilo, N.V. |
author_sort |
Skivka, L.M. |
title |
Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro |
title_short |
Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro |
title_full |
Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro |
title_fullStr |
Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro |
title_full_unstemmed |
Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro |
title_sort |
synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2012 |
topic_facet |
Structure and Function of Biopolymers |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156716 |
citation_txt |
Synergistic effect of microbe-associated molecules on human monocyte-derived dendritic cell maturation in vitro / L.M. Skivka, Yu.V. Shvets, N.M. Khranovska, O.G. Fedorchuk, V.V. Pozur, N.V. Senchilo // Вiopolymers and Cell. — 2012. — Т. 28, № 1. — С. 50-55. — Бібліогр.: 24 назв. — англ. |
series |
Вiopolymers and Cell |
work_keys_str_mv |
AT skivkalm synergisticeffectofmicrobeassociatedmoleculesonhumanmonocytederiveddendriticcellmaturationinvitro AT shvetsyuv synergisticeffectofmicrobeassociatedmoleculesonhumanmonocytederiveddendriticcellmaturationinvitro AT khranovskanm synergisticeffectofmicrobeassociatedmoleculesonhumanmonocytederiveddendriticcellmaturationinvitro AT fedorchukog synergisticeffectofmicrobeassociatedmoleculesonhumanmonocytederiveddendriticcellmaturationinvitro AT pozurvv synergisticeffectofmicrobeassociatedmoleculesonhumanmonocytederiveddendriticcellmaturationinvitro AT senchilonv synergisticeffectofmicrobeassociatedmoleculesonhumanmonocytederiveddendriticcellmaturationinvitro |
first_indexed |
2025-07-14T09:04:31Z |
last_indexed |
2025-07-14T09:04:31Z |
_version_ |
1837612528076587008 |
fulltext |
UDC 612.017.1.579.861.2
Synergistic effect of microbe-associated molecules
on human monocyte-derived dendritic cell
maturation in vitro
L. M. Skivka, Yu. V. Shvets, N. M. Khranovska1, O. G. Fedorchuk2,
V. V. Pozur, N. V. Senchilo
Educational and Scientific Center «Institute of Biology», National Taras Shevchenko University of Kyiv
64/13, Volodymyrska Str., Kyiv, Ukraine, 01601
1National Cancer Institute
33/43, Lomonosova Str., Kyiv, Ukraine, 03022
2R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine
45, Vasilkivska Str., Kyiv, Ukraine, 01022
realmed@i.com.ua
Microbe-associated molecules (MAM) are known to exert stimulating effect on the dendritic cell (DC) matu-
ration. The aim of this investigation was a comparative study of the effect of different MAMs, used separately and
in combination, on human monocyte-derived DC maturation in vitro. Methods. The studied MAMs were re-
presented by lipopolysaccharide (LPS) from Escherichia coli and different biopolymers from Staphylococcus
aureus Wood 46. DC phenotype was analyzed by flow cytometry. Functional maturity of DC was assessed in the
mixed leukocyte reaction. Results. The use of MAMs in combination has been shown to be more efficient for phe-
notypic and functional maturation of monocyte-derived DCs than utilizing different MAMs separately. The most
potent stimulatory effect has been observed for the combination of LPS with peptidoglycan (PepG) or teichoic
acid with PepG. Conclusions. Combined use of different MAMs, especially those that activate different sig-
naling pathways (LPS-PepG and teichoic acid-PepG), results in synergistic stimulation of monocyte-derived
DC maturation.
Keywords: dendritic cells, lipopolysaccharide, teichoic acid, peptidoglycan.
Introduction. Dendritic cells (DCs) are highly specia-
lized antigen-presenting cells (APC) that play a critical
role in initiating primary T-cell responses [1]. This
function of DCs makes them attractive target cells for
therapeutic intervention in different pathologic state, in-
cluding inflammatory disease, cancer etc. A main ap-
proach for the DC therapeutic employment is DC vac-
cination [2, 3]. Despite a wide use of DC vaccination in
clinical trials, optimal conditions for the generation of
functionally mature DCs remain to be established. To
produce immature DCs (iDCs), monocytes are usually
incubated with granulocyte-macrophage colony-stimu-
lating factor (GM-CSF) and interleukin-4 (IL-4). Be-
cause mature DCs (mDCs) are better than iDCs to the
stimulation of cytotoxic T-cells, iDCs derived from mo-
nocytes are often treated with various exogenous sti-
muli known to induce DCs maturation [4–6]. Recent
insight in DC biology has provided some guidelines
concerning optimal approaches for generation of matu-
re DCs ex vivo, aimed at elevation of DC migration abi-
lity after the administration to patients. These appro-
aches are based on new data on the role of pattern recog-
nition receptors (membrane-associated and cytoplas-
mic ones) in DC maturation. The recognition receptors
50
ISSN 0233–7657. Biopolymers and Cell. 2012. Vol. 28. N 1. P. 50–55
Institute of Molecular Biology and Genetics, NAS of Ukraine, 2012
recognize endogenous (danger-associated molecular
patterns such as HMGB1 proteins) and exogenous
(MAMs) agonists. Upon in vivo exposure to MAMs, im-
mature DCs switch from antigen-capturing to antigen-
presenting and T-cell-stimulating modes [7–10]. The
сulture of DCs in vitro with such compounds or their
pharmacological analogs (such as the TLR4 ligand li-
popolysaccharide (LPS), the TLR3 ligand polyinosi-
nic:polycytidylic acid – polyI:C, the TLR9 ligand oli-
godeoxynucleotide containing one or more unmethyla-
ted CpG dinucleotides – CpG ODN, etc.) can induce
the phenotypic and functional maturation of cultured
DCs. It is important that the functional DC maturation
could be noticeably augmented by the use of certain
MAM combinations [11–14]. The aim of our work was
to perform a comparative investigation on the effects of
different biopolymers from Staphylococcus aureus Wo-
od 46 used separately and in combination with LPS
from Escherichia coli on maturation of human mono-
cyte-derived DC (MDDC) in vitro.
Materials and methods. Generation of DCs. Mo-
nocyte derived DCs were generated from peripheral
blood mononuclear cells (PBMCs) from 5 healthy
blood donors, as previously described [15, 16]. This
study was approved by the local Ethics Committee. Pe-
ripheral blood samples were placed into heparinized tu-
bes, and PBMCs were isolated by Ficoll-Verografin
gradient centrifugation (density – 1.077 g/ml). After iso-
lation, PBMCs were resuspended in RPMI-1640 me-
dium («Sigma», USA) supplemented with 40 µg/ml gen-
tamycine, seeded in 96-well tissue culture plates in the
appropriate culture microenvironment, and left to ad-
here overnight at 37 oC in a humidified 5 % CO2 atmo-
sphere. After the adherence period, non-adherent cells
were removed. The adherent cells were then cultured in
the appropriate medium supplemented with granulocy-
te colony-stimulating factor (G-CSF) (1000 IU/ml,
«Grastim», Dr. Reddy’s Laboratories Ltd., India) and
10 % autologous serum. The culture medium was re-
placed every three days. On the 7th day, MAMs were ad-
ded into the cultural medium to induce terminal matu-
ration of the generated DCs. On the 8th day, at the end of
culturing, the adherent cells were harvested by gently
scraping with a cotton swab. The obtained mature DCs
were washed in PBS without Ca2+ and Mg2+ and resus-
pended prior to immunophenotyping.
Treatment with MAMs. In our study, the following
MAMs were used: LPS from E. coli («Sigma»); teicho-
ic acid (TA) from S. aureus Wood 46, prepared as des-
cribed earlier [17], peptidoglycan (PepG) and the ex-
tract of cytoplasmic membranes (CPM) from S. aureus
Wood 46, kindly provided by professor V. Pozur.
MAMs used separately and in combination were added
on the 7th day of DCs culturing at the concentration of
0.2 µg/ml for 24 h. All MAMs were singly used at their
maximal effective concentration determined by titrati-
on experiments [18, 19].
Flow cytometry analysis of DC phenotype. The ge-
nerated DCs were washed twice with PBS w/o Ca2+ or
Mg2+ and stained with mouse anti-human monoclonal
antibodies (mAbs). We have used FITC-conjugated an-
tibodies against CD86 («Dako», Denmark) and PE-
conjugated antibodies against HLA-DR («Sorbent»,
Russian Federation). After immunofluorescent stai-
ning, the cells were fixed with 1 % paraformaldehyde
and then analyzed by a FACS Calibur using CellQuest
software («Becton–Dickinson», USA).
Allogeneic mixed leukocyte reaction assay. The DCs
were harvested, washed and resuspended in RPMI-
1640 + 10 % fetal bovine serum. In total, 2⋅105 alloge-
neic T-cells were incubated with DCs (at the ratio 10:1)
in 96-well flat-bottomed plates. Three days later, the cell
cycle distribution of T-cells was analysed by FACS.
Apoptosis assay. T-cell death by apoptosis was as-
sessed by the flow cytometry analysis of DNA content.
Briefly, after incubation with DCs T-cells were washed
twice with PBS, resuspended in ice-cold 70 % ethanol
with gentle vortexing to the final concentration of 1⋅106
cells/ml, and stored at 4 °C until analysis. Before quan-
tification of DNA content, the T-cells were pelleted at
400 g for 5 min, resuspended in PBS, pelleted again,
and resuspended in 200 µl PBS, 0.1 % Triton X-100,
0.1 mmol/l EDTA, and 50 µg/ml DNAse free RNAse
(«Stratagene», USA) with 5 µg/ml PI. The DNA con-
tent was analysed using a FACScan («Becton–Di-
ckinson») with Cellquest acquisition and analysis soft-
ware («Becton–Dickinson»). Cellular debris and doub-
lets were excluded from the analysis by their forward-
light-scatter and right-angle-light-scatter properties.
Statistical analysis. The statistical significance of
the data was determined by Student’s t-test, the values
p < 0.05 were considered as significant.
51
EFFECT OF MICROBE-ASSOCIATED MOLECULES ON MONOCYTE-DERIVED DENDRITIC CELL MATURATION
Results and discussion. In our investigation we ha-
ve used different MAMs that are recognized by TLR2/
TLR4 and are able to trigger MyD88 dependent signa-
ling pathways, which lead to activation of NF-κB and
MAPK. We also have used PepG that are recognized by
TLR2 and/or cytosolic sensors Nod1 and Nod2 associa-
ted with an adaptor molecule, RICK/Rip2/CARDIAK,
through CARD-CARD interaction, which also leads to
the activation of NF-κB and MAPK [20–22]. So, we in-
tended to analyse whether the simultaneous activation
of these signaling cascades would have a synergistic ef-
fect with respect to DC activation. To estimate a contri-
bution of different bacterial polymers, used separately
or in combination, to MDDC maturation, we have cho-
sen the protocol of DC generation in vitro employing
only G-CSF. The LPS-treated DCs that are conven-
tionally used in clinical studies served as a control and
were compared with DC treated with other MAMs se-
parately or in combination [23].
So, MDDC underwent maturation as follows: 1)
control-DC treated with LPS alone; 2) PepG-DC trea-
ted with PepG alone; 3) TA-DC treated with TA alone;
4) CPM-DC treatred with CPM alone; 5) LPS-CPM-
DC treated with LPS in combination with CPM; 6)
LPS-PepG-DC or with LPS in combination with PepG;
7) LPS-TA-DC, treated with LPS in combination with
TA; 8) PepG-TA-DC treated with PepG in combination
with TA.
MAMs induce DC with a mature phenotype. Firstly
we have compared the effects of the different matura-
tion stimuli on the DC phenotype. All maturation sti-
muli have led to generation of phenotypically mature
DC, expressing co-stimulatory molecule CD86 and HLA-
DR molecule (Fig. 1). However, among DCs matured
in the presence of MAMs used separately the most ef-
fective stimulation of CD86 expression was observed
in DCs treated with LPS and DCs treated with CPM
(MyD88 dependent signaling pathway) (Fig. 1, b).
It is necessary to point out that combined MAMs we-
re more effective for phenotypic maturation of MDDCs
than separately used bacterial polymers, especially PepG-
TA-DC and LPS-PepG-DC. These data evidence to the
synergistic effect of combined microbe-associated pat-
terns activating different signaling pathways (MyD88
and RICK/Rip2/CARDIAK dependent signaling path-
ways).
MDDCs treated with TLR-agonists stimulate T-cell
proliferation. The major function of DCs is their ability
to trigger the activation and proliferation of T-cells. The
mixed leukocyte reaction (MLR) was used as functio-
nal endpoint to assess the in vitro lymphocyte proli-
feration in response to DCs treated with the bacterial
52
SKIVKA L. M. ET AL.
0
20
40
60
80
100
a
1 2 3 4 5 6 7 8 9
0
20
40
60
80
100
*
**
b
1 2 3 4 5 6 7 8 9
Fig. 1. Dendritic cells (DCs) treated with
microbe-associated molecules show an in-
creased expression of HLA-DR and CD86
molecules: a – HLA-DR fluorescence in-
tensity; b – CD86 fluorescence intensity
(1 – isotypic control; 2 – control DC; 3 –
PepG-DC; 4 – TA-DC; 5 – CPM-DC; 6 –
LPS-CPM-DC; 7 – LPS-PepG-DC; 8 –
LPS-TA-DC; 9 – PepG-TA-DC); *p <
< 0.05 in comparison with control DC
polymers indicated. DCs treated with MAMs and lym-
phocytes from allogeneic individuals were mixed in a
one-way primary MLR and lymphocyte proliferation
was measured by flow cytometry and estimated at a pro-
liferative index (Fig. 2).
As it is shown in Fig. 2, DC treated with all indi-
cated MAMs stimulated allogeneic lymphocytes proli-
feration, although in the probes with DC treated with
bacterial polymers separately, the stimulation was less
significant. The cell cycle distribution of allogeneic lym-
phocytes stimulated with PepG-DC, TA-DC, CPM-DC
was similar to that in probes with control DC (DC
treated with LPS). The proliferative index in these pro-
bes was at average 24 %. On the contrary, the cell cycle
distribution of allogeneic lymphocytes stimulated with
LPS-PepG-DC and PepG-TA-DC was more similar to
that in positive control (lymphocytes stimulated with
phytohemagglutinin). The mean value of proliferative
index in these probes was 31 %. Increased proliferation
of allogeneic lymphocyte stimulated with DC treated
with combination of MAMs, have demonstrated that
the observed synergy of combined bacterial polymers,
especially those utilizing different signaling pathway,
is related not only to phenotypic maturation of MDDC,
but also to functional maturity of these cells.
An additional criterion of lymphocyte activation by
MDDC, treated with MAMs, was apoptosis (activation-
induced cell death) [24]. As it is shown in Fig. 3, the num-
ber of apoptotic cells in the positive control was 1.5 times
higher than that in the control DC and CPM-DC probes.
In probes with DC, treated with Pep-G and TA, apo-
ptosis level was at average 1.5 times lower than that in
the control DC probes and 2.28 times lower than that in
the positive control.
The highest number of apoptotic cells was observed
in probes with DC treated with LPS in combination with
PepG and with TA in combination with PepG.
Conclusions. MAMs are known to exert stimulating
properties toward DC. Here we have demonstrated a
synergistic stimulating effect of combined use of diffe-
rent bacterial polymers in regard to MDDC maturation,
especially high in the case of MAMs utilizing different
signaling pathway. The synergistic effect of combined
pattern recognition receptors triggering on MDDCs in-
cluded an increase in the expression of costimulatory
CD86 and HLA-DR molecules and stimulation of lym-
phocyte proliferation in mixed leukocyte reaction. These
results might be helpful for the development of new
protocol for in vitro DC generation in DC-based vacci-
nation strategies.
53
EFFECT OF MICROBE-ASSOCIATED MOLECULES ON MONOCYTE-DERIVED DENDRITIC CELL MATURATION
0
20
40
60
80
100
1 2 3 4 5 6 7 8 9
* *
Fig. 2. The effect of dendritic cell (DC)
matured with microbe-associated mole-
cules on cell cycle distribution of alloge-
neic lymphocytes: 1 – positive control; 2 –
control DC; 3 – PepG-DC; 4 – TA-DC; 5 –
CPM-DC; 6 – LPS-CPM-DC; 7 – LPS-
PepG-DC; 8 – LPS-TA-DC; 9 – PepG-
TA-DC. Lymphocytes stimulated with
phytohemagglutinin were used as a positi-
ve control; p < 0.05 in comparison with
control DC
0
5
10
15
20
25
30
1 2 3 4 5 6 7 8 9
*
*
* *
*
**
,** * ,**
* **, Fig. 3. Apoptosis level of lymphocytes in
mixed leukocyte reaction with dendritic
cell (DC), treated with different microbe-
associated molecules and their combina-
tions: 1 – positive control; 2 – control DC;
3 – PepG-DC; 4 – TA-DC; 5 – CPM-DC;
6 – LPS-CPM-DC; 7 – LPS-PepG-DC; 8 –
LPS-TA-DC; 9 – PepG-TA-DC; *p < 0.05
in comparison with positive control; **p <
< 0.05 in comparison with control DC
54
SKIVKA L. M. ET AL.
Л. М. Сківка, Ю. В. Швець, Н. М. Хра но вська, О. Г. Фе дор чук,
В. В. По зур, Н. В. Сен чи ло
Cи нергічний вплив асоційо ва них з мікро ба ми мо ле кул на
фе но ти по ве та функціональ не дозріван ня ден дрит них клітин,
от ри ма них з мо но цитів пе ри фе рич ної крові лю ди ни in vitro
Ре зю ме
Відомо, що асоційо вані з мікро ба ми мо ле ку ли (АММ) чи нять сти -
му лю валь ний вплив на дозріван ня ден дрит них клітин (ДК). Мета.
Про вес ти порівняль не досліджен ня дії різних АММ, ви ко рис та -
них як са мостійно, так і в комбінації, на дозріван ня ДК, от ри ма -
них з мо но цитів пе ри фе рич ної крові лю ди ни in vitro. Ме то ди. Як
АММ за сто со ва но ліпо поліса ха рид Escherichia coli та біополіме-
ри Staphylococcus aureus Wood 46. Фе но ти по ву зрілість ДК оха-
ракте ри зо ва но ме то дом про точ ної ци тоф лу о ри метрії. Функ-
ціональ ну зрілість ДК аналізу ва ли в ре акції зміша ної куль ту ри
лей ко цитів. Ре зуль та ти. Вста нов ле но, що комбіно ва не ви ко ри-
стан ня АММ є більш ре зуль та тив ним для сти му ляції фе но ти по -
во го і функціональ но го дозріван ня ДК in vitro порівня но із само-
стійним за сто су ван ням мікроб них біополімерів. Най ви разніший
сти му лю валь ний ефект спос терігав ся за ви ко рис тан ня комбіна-
ції пеп ти доглікану з ліпо поліса ха ри дом та пеп ти доглікану з тей -
хоєвою кис ло тою. Вис нов ки. По ка за но існу ван ня си нергічного
впли ву АММ щодо сти му ляції дозріван ня ДК, особ ли во суттє-
вого у разі комбіно ва но го за сто су ван ня асоційо ва них з мікро ба ми
мо ле кул, які взаємодіють з ДК, ак ти ву ю чи різні сиг нальні шля хи
(пеп ти доглікан у поєднанні з ліпо поліса ха ри дом або пеп ти доглі-
кан у поєднанні з тей хоєвою кис ло тою).
Клю чові сло ва: ден дритні клітини, ліпо поліса ха рид, тей хоєва
кис ло та, пеп ти доглікан.
Л. М. Скив ка, Ю. В. Швец, Н. Н. Хра нов ская, А. Г. Фе дор чук,
В. В. По зур, Н. В. Сен чи ло
Cи нер ги чес кое вли я ние ас со ци и ро ван ных с мик ро ба ми
мо ле кул на фе но ти пи чес кое и функ ци о наль ное со зре ва ние
ден дрит ных кле ток, по лу чен ных из мо но ци тов пе ри фе ри чес кой
кро ви че ло ве ка in vitro
Ре зю ме
Извес тно, что ас со ци и ро ван ные с мик ро ба ми ми мо ле ку лы (АММ)
окзы ва ют сти му ли ру ю щее де йствие на со зре ва ние ден дрит ных
кле ток (ДК). Цель. Про вес ти срав ни тель ное ис сле до ва ние вли я -
ния раз лич ных АММ, ис поль зо ван ных как са мос то я тель но, так и
в ком би на ции, на со зре ва ние ДК, по лу чен ных из мо но ци тов пе ри -
фе ри чес кой кро ви че ло ве ка in vitro. Ме то ды. В ка чес тве АММ
при ме ня ли ли по по ли са ха рид Escherichia coli и би о по ли ме ры Sta-
phylococcus aureus Wood 46. Фе но тип ДК ха рак те ри зо ва ли ме то -
дом про точ ной ци тоф лу о ри мет рии. Фун кци о наль ную зре лость
ДК ана ли зи ро ва ли в ре ак ции сме шан ной куль ту ры лей ко ци тов.
Ре зуль та ты. Уста нов ле но, что ком би ни ро ван ное ис поль зо ва ние
АММ яв ля ет ся бо лее ре зуль та тив ным для сти му ля ции фе но ти -
пи чес ко го и функ ци о наль но го со зре ва ния ДК in vitro по срав не нию
с при ме не ни ем бак те ри аль ных би о по ли ме ров са мосто я тель но.
На и бо лее вы ра жен ный сти му ли ру ю щий эф фект наблю да ли при
исполь зо ва нии ком би на ции пеп ти дог ли ка на с ли по по ли са ха ри дом,
а так же пеп ти дог ли ка на с тей хоєвой кис ло той. Вы во ды. По ка -
за но су щес тво ва ние си нер ги чес ко го сти му ли ру ю ще го вли я ния
АММ на со зре ва ние ДК, на и бо лее вы ра жен но го при ком би ни ро -
ван ном ис поль зо ва нии ас со ци и ро ван ных с мик ро ба ми мо ле кул, ко -
то рые вза и мо де йству ют с ДК, ак ти ви руя раз лич ные сиг наль ные
пути (пеп ти дог ли кан в со че та нии с ли по по ли са ха ри дом или пеп -
ти дог ли кан в со че та нии с тей хо е вой кис ло той).
Клю че вые сло ва: ден дрит ные клет ки, ли по по ли са ха рид, тей -
хо е вая кис ло та, пеп ти дог ли кан.
REFERENCES
1. Liu K., Nussenzweig M. C. Origin and development of dendritic
cells // Immunol. Rev.–2010.–234, N 1.–P. 45–54.
2. Palucka A. K., Ueno H., Fay J., Banchereau J. Dendritic cells: a
critical player in cancer therapy? // J. Immunother.–2008.–31,
N 9.–P. 793–805.
3. Janikashvili N., Larmonier N., Katsanis E. Personalized dendri-
tic cell-based tumor immunotherapy // Immunotherapy.–2010.–
2, N 1.–P. 57–68.
4. Castiello L., Sabatino M., Jin P., Clayberger C., Marincola F.
M., Krensky A. M., Stroncek D. F. Monocyte-derived DC matu-
ration strategies and related pathways: a transcriptional view //
Cancer Immunol. Immunother.–2011.–60, N 4.–Р. 457–466.
5. Jeras M., Bergant M., Repnik U. In vitro preparation and functio-
nal assessment of human monocyte-derived dendritic cells-po-
tential antigen-specific modulators of in vivo immune responses
// Transpl. Immunol.–2005.–14, N 3–4.–Р. 231–244.
6. Gilboa E. DC-based cancer vaccines // J. Clin. Invest.–2007.–
117, N 5.–Р. 1195–1203.
7. Jensen S. S., Gad M. Differential induction of inflammatory cy-
tokines by dendritic cells treated with novel TLR-agonist and cy-
tokine based cocktails: targeting dendritic cells in autoimmunity
// J. Inflamm. (Lond).–2010.–7.–P. 37–48.
8. Seya T., Akazawa T., Tsujita T., Matsumoto M. Role of Toll-like
receptors in adjuvant-augmented immune therapies // eCAM.–
2006.–3, N 1.–P. 133–137.
9. Hemmi H., Akira S. TLR signalling and the function of dendritic
cells // Chem. Immunol. Allergy.–2005.–86.–P. 120–135.
10. Sato A., Iwasaki A. Induction of antiviral immunity requires
Toll-like receptor signaling in both stromal and dendritic cell
compartments // Proc. Natl Acad. Sci. USA.–2004.–101, N 46.–
P. 1624–1629.
11. Boullart A. C., Aarntzen E. H., Verdijk P., Jacobs J. F., Schuur-
huis D. H., Benitez-Ribas D., Schreibelt G., van de Rakt M. W.,
Scharenborg N. M., de Boer A., Kramer M., Figdor C. G., Punt
C. J., Adema G. J., de Vries I. J. Maturation of monocyte-de-
rived dendritic cells with Toll-like receptor 3 and 7/8 ligands
combined with prostaglandin E2 results in high interleukin-12
production and cell migration // Cancer Immunol. Immuno-
ther.–2008.–57, N 11.–P. 1589–1597.
12. Nguyen-Pham T. N., Lim M. S., Nguyen T. A., Lee Y. K., Jin C.
J., Lee H. J., Hong C. Y., Ahn J. S., Yang D. H., Kim Y. K.,
Chung I. J., Park B. C., Kim H. J., Lee J. J. Type I and II
interferons enhance dendritic cell maturation and migration
capacity by regu- lating CD38 and CD74 that have synergistic
effects with TLR agonists // Cell. Mol. Immunol.–2011.–8, N
4.–P. 341–347.
13. Warger T., Osterloh P., Rechtsteiner G., Fassbender M., Heib
V., Schmid B., Schmitt E., Schild H., Radsak M. P. Synergistic ac-
tivation of dendritic cells by combined Toll-like receptor liga-
tion induces superior CTL responses in vivo // Blood.–2006.–
108, N 2.–Р. 544–550.
14. Krummen M., Balkow S., Shen L., Heinz S., Loquai C., Probst
H., Grabbe S. Release of IL-12 by dendritic cells activated by
TLR ligation is dependent on MyD88 signaling, whereas TRIF
signaling is indispensable for TLR synergy // J. Leukoc. Biol.–
2010.–88, N 1.–Р. 189–199.
15. Khranovska N. Preparation strategy and therapeutic application
results of a new generation autological dendritic cell-based anti-
cancer vaccine // Oncology (Special issue).–2010.–12, N 1 (43).–
P. 134–139.
16. Khranovska N. M., Grinevich Yu. A. Preparation method of auto-
logical dendritic cell-based anticancer vaccines. Methodologi-
cal recommendation.–Kyiv: Naukova dumka, 2006.–8 p.
17. Potebnya G. P., Skivka L. M., Pozur V. V., Rudik M. P., Senchilo
N. V., Fedorchuk O. G., Khranovska N. M. Influence of teichoic
acid from S. aureus on metabolic activity of macrophages and
cytotoxic activity of splenocytes of mice bearing Lewis lung
carcinoma // Exp. Oncol.–2008.–30, N 3.– P. 220–223.
18. Skivka L. M., Trompak O. O., Kudryavets Y. I., Bezdenezhnykh
N. A., Susak Y. M. The effect of NSC-631570 (Ukrain) alone and
in combination with pathogen-associated molecules on cell cyc-
le distribution and apoptosis induction of mouse melanoma cells
with different biological properties // Exp. Oncol.–2010.–32,
N 2.–Р. 92–96.
19. Pozur V. The effect of teichoic acid from Staphylococcus aureus
Wood 46 on the dendritic cells maturation in vitro // Microbiol.
Biotechnol.–2010.–4, N 12.–P. 66–72.
20. Kim H. S., Shin T. H., Yang S. R., Seo M. S., Kim D. J., Kang S.
K., Park J. H., Kang K. S. Implication of NOD1 and NOD2 for
the differentiation of multipotent mesenchymal stem cells deri-
ved from human umbilical cord blood // PLoS One.–2010.–5,
N 10.–Р. 15369.
21. Franchi L., Park J. H., Shaw M. H., Marina-Garcia N., Chen G.,
Kim Y. G., Nunez G. Intracellular NOD-like receptors in innate
immunity, infection and disease // Cell. Microbiol.–2008.–10,
N 1.–Р. 1–8.
22. Kaisho T., Akira S. Regulation of dendritic cell function through
Toll-like receptors // Curr. Mol. Med.–2003.–3, N 4.–Р. 373–
385.
23. Jin P., Han T. H., Ren .J, Saunders S., Wang E., Marincola F.
M., Stroncek D. F. Molecular signatures of maturing dendritic
cells: implications for testing the quality of dendritic cell thera-
pies // J. Transl. Med.–2010.–8.–P. 4–18.
24. Brenner D., Krammer P. H., Arnold R. Concepts of activated
T cell death // Crit. Rev. Oncol. Hematol.–2008.–66, N 1.–
Р. 52–64.
Received 10.05.11
55
EFFECT OF MICROBE-ASSOCIATED MOLECULES ON MONOCYTE-DERIVED DENDRITIC CELL MATURATION
|