The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants

It was shown that the action of synthetic growth activators on growth and development of isolated «non-decapitated» embryonic axes was analogous to action on embryonic axes of the intact haricot bean seeds; for the 72-hours period size increase of the embryonic axes depended on incubative medium com...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Tsygankova, V.A., Zayets, V.N., Galkina, L.A., Blume, Y.B.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 1999
Назва видання:Биополимеры и клетка
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156804
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants / V.A. Tsygankova, V.N. Zayets, L.A. Galkina, Y.B. Blume // Биополимеры и клетка. — 1999. — Т. 15, № 5. — С. 432-441. — Бібліогр.: 47 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156804
record_format dspace
spelling irk-123456789-1568042019-07-05T17:06:29Z The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants Tsygankova, V.A. Zayets, V.N. Galkina, L.A. Blume, Y.B. Клеточная биология It was shown that the action of synthetic growth activators on growth and development of isolated «non-decapitated» embryonic axes was analogous to action on embryonic axes of the intact haricot bean seeds; for the 72-hours period size increase of the embryonic axes depended on incubative medium composition: distilled water< lutidine N-oxide-6-methylthiouracil< (IAA). Growth and development of «decapitated» embryonic axes in the same media sharply differed from the growth of «non-decapitated» axes: distilled water > lutidine N-oxide - 6-methylthiouracil < (IAA). In the experiments with embryonic axes in both of which one cotyledon was preserved («monocotyledonous seedlings») size increase was identical to size increase of embryonic axes in intact haricot bean seeds, as in the case of «non-decapitated» and «decapitated» embryonic axes, and it also depended on the incubative medium composition: distilled water < lutidine N-oxide - 6-methylthiouracil < (IAA). Investigation of the fractional composition of new synthesized [¹⁴C] impulse labelled proteins using the method of one-dimensional PAG-etectrophoresis and gel fluorography approach showed that lutidine N-oxide intensifies the synthesis of all cellular proteins fractions with predominating increase of the synthesis of some high-molecular and low-molecular polypeptides, and 6-methylthiouracil intensifies the synthesis of only one polypeptide with molecular weight of 30 kDa. The data obtained are examined accordingly as evidence in favour of ideas, developing in our investigation about phytohormone-mediated action of the synthetic plant growth regulators and different-direction mechanisms growth activating action of lutidine N-oxide and 6-methylthiouracil The scheme of phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants is proposed. Показано, що дія синтетичних активаторів росту на розви­ток та ріст ізольованих «недекапітованих» зародкових осей була аналогічною за своїм характером до дії на зародкові осі інтактного насіння квасолі; за 72-годинний період збільшення розмірів зародкових осей залежало від складу середовища ін­кубації: дистильована вода < N-окис лутидину - 6-метилтіо- урацил < ЮК. Ріст і розвиток «декапітованих» осей на тих самих середовищах різко відрізнявся від росту «недекапіто­ваних»: дистильована вода > N-окис лутидину - 6-метилтіо-урацил < ЮК В експериментах із зародковими осями, у яких збережено по одній сім'ядолі («однодольні» кільчики), як у випадку з «недекапітованими», так і «декапітованими» зарод­ковими осями збільшення розмірів було ідентичним такому зародкових осей інтактного насіння квасолі і також залежало від складу інкубаційного середовища: дистильована вода < N-окис лутидину - 6-метилтіоурацил < ЮК Вивчення фракцій­ного складу новосинтезованих [ ¹⁴С ]-мічених білків зародкових осей методом одномірного ПАГ-електрофорезу з наступною флюорографією гелів засвідчило, що N-окис лутидину підсилює синтез усіх фракцій клітинних білків з переважаючим збільшенням синтезу деяких високо- і низькомолекулярних полі­пептидів, а 6-метилтіоурацил підсилює синтез тільки одного поліпептиду з молекулярною масою 30 кДа. Отримані дані можуть розглядатися відповідно як доказ висунутих нами положень стосовно фітогормон-опосередкованої дії синтетич­них регуляторів росту рослин та різноспрямованості ме­ханізмів рістактивуючої дії N-окису лутидину та 6-метил-тіоурацилу. Запропоновано схему опосередкованого фітогормо­нами механізму дії синтетичних регуляторів на ріст клітин розтягненням у вищих рослин. Показано, что действие синтетических ростактиваторов на рост и развитие изолированных «недекапитированных» зародышевых осей было аналогичным по своему характеру дейст­вию на зародышевые оси интактных семян фасоли; за 72-ча­совой период увеличение размеров зародышевых осей зависело от состава среды инкубации зародышей: диситиллированная вода < N-окись лутидина - 6-метилтиоурацил < МУК. Рост и развитие «декапитированных» зародышевых осей на тех же средах резко отличались от роста «недекапитированных» осей: дистиллированная вода > N-окись лутидина - 6-метил­тиоурацил < МУК В опытах с зародышевыми осями, у кото­рых было сохранено по одной семядоле («однодольные» проро­стки), как в случае с «недекапитированными», так и «декапитированными» зародышевыми осями увеличение размера было идентично таковому зародышевых осей в интактных семенах фасоли и также зависело от состава инкубационной среды: диситиллированная вода < N-окись лутидина в 6-метилтиоу­рацил < [¹⁴C] Изучение фракционного состава новосинтезированных ([¹⁴С]-импульсно меченных) белков зародышевых осей методом одномерного ПАГ-электрофореза с последующей флюорографией гелей показало, что N-окись лутидина усили­вает синтез всех фракций клеточных белков с преобладающим увеличением синтеза некоторых высоко- и низкомолекулярных полипептидов, а 6-метилтиоурацил усиливает синтез только одного полипептида с молекулярной массой 30 кДа. Полученные данные рассматриваются соответственно как доказа­тельство в пользу развиваемых нами представлений о фитогормон-опосредуемом действии синтетических регуляторов роста растений и о разнонаправленности механизмов ростактивирующего действия N-окиси лутидина и 6-метилтиоурацила. Предложена схема опосредуемого фитогормонами ме­ханизма действия синтетических регуляторов на рост кле­ток растяжением у высших растений. 1999 Article The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants / V.A. Tsygankova, V.N. Zayets, L.A. Galkina, Y.B. Blume // Биополимеры и клетка. — 1999. — Т. 15, № 5. — С. 432-441. — Бібліогр.: 47 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00053B http://dspace.nbuv.gov.ua/handle/123456789/156804 631.811.98 en Биополимеры и клетка Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Клеточная биология
Клеточная биология
spellingShingle Клеточная биология
Клеточная биология
Tsygankova, V.A.
Zayets, V.N.
Galkina, L.A.
Blume, Y.B.
The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants
Биополимеры и клетка
description It was shown that the action of synthetic growth activators on growth and development of isolated «non-decapitated» embryonic axes was analogous to action on embryonic axes of the intact haricot bean seeds; for the 72-hours period size increase of the embryonic axes depended on incubative medium composition: distilled water< lutidine N-oxide-6-methylthiouracil< (IAA). Growth and development of «decapitated» embryonic axes in the same media sharply differed from the growth of «non-decapitated» axes: distilled water > lutidine N-oxide - 6-methylthiouracil < (IAA). In the experiments with embryonic axes in both of which one cotyledon was preserved («monocotyledonous seedlings») size increase was identical to size increase of embryonic axes in intact haricot bean seeds, as in the case of «non-decapitated» and «decapitated» embryonic axes, and it also depended on the incubative medium composition: distilled water < lutidine N-oxide - 6-methylthiouracil < (IAA). Investigation of the fractional composition of new synthesized [¹⁴C] impulse labelled proteins using the method of one-dimensional PAG-etectrophoresis and gel fluorography approach showed that lutidine N-oxide intensifies the synthesis of all cellular proteins fractions with predominating increase of the synthesis of some high-molecular and low-molecular polypeptides, and 6-methylthiouracil intensifies the synthesis of only one polypeptide with molecular weight of 30 kDa. The data obtained are examined accordingly as evidence in favour of ideas, developing in our investigation about phytohormone-mediated action of the synthetic plant growth regulators and different-direction mechanisms growth activating action of lutidine N-oxide and 6-methylthiouracil The scheme of phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants is proposed.
format Article
author Tsygankova, V.A.
Zayets, V.N.
Galkina, L.A.
Blume, Y.B.
author_facet Tsygankova, V.A.
Zayets, V.N.
Galkina, L.A.
Blume, Y.B.
author_sort Tsygankova, V.A.
title The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants
title_short The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants
title_full The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants
title_fullStr The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants
title_full_unstemmed The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants
title_sort phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants
publisher Інститут молекулярної біології і генетики НАН України
publishDate 1999
topic_facet Клеточная биология
url http://dspace.nbuv.gov.ua/handle/123456789/156804
citation_txt The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants / V.A. Tsygankova, V.N. Zayets, L.A. Galkina, Y.B. Blume // Биополимеры и клетка. — 1999. — Т. 15, № 5. — С. 432-441. — Бібліогр.: 47 назв. — англ.
series Биополимеры и клетка
work_keys_str_mv AT tsygankovava thephytohormonemediatedactionofthesyntheticregulatorsoncellextensiongrowthinhigherplants
AT zayetsvn thephytohormonemediatedactionofthesyntheticregulatorsoncellextensiongrowthinhigherplants
AT galkinala thephytohormonemediatedactionofthesyntheticregulatorsoncellextensiongrowthinhigherplants
AT blumeyb thephytohormonemediatedactionofthesyntheticregulatorsoncellextensiongrowthinhigherplants
AT tsygankovava phytohormonemediatedactionofthesyntheticregulatorsoncellextensiongrowthinhigherplants
AT zayetsvn phytohormonemediatedactionofthesyntheticregulatorsoncellextensiongrowthinhigherplants
AT galkinala phytohormonemediatedactionofthesyntheticregulatorsoncellextensiongrowthinhigherplants
AT blumeyb phytohormonemediatedactionofthesyntheticregulatorsoncellextensiongrowthinhigherplants
first_indexed 2025-07-14T09:08:11Z
last_indexed 2025-07-14T09:08:11Z
_version_ 1837612759342120960
fulltext I S S N 0 2 3 3 - 7 6 5 7 . Б и о п о л и м е р ы и к л е т к а . 1 9 9 9 . Т . 1 5 . № 5 К Л Е Т О Ч Н А Я Б И О Л О Г И Я The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants Victoria A. Tsygankova, Vladimir N. Zayets, Larisa A. Galkina1, Yaroslav B. Blume Institute of Ce l l B i o l o g y a n d G e n e t i c E n g i n e e r i n g , N a t i o n a l A c a d e m y of S c i e n c e s of U k r a i n e A c a d . Z a b o l o t n o h o vu l . , 1 4 8 , K y i v , 2 5 2 6 2 7 , U k r a i n e Institute of B i o o r g a n i c C h e m i s t r y a n d P e t r o c h e m i s t r y , N a t i o n a l A c a d e m y of S c i e n c e s of U k r a i n e Murmanska vu l . , 1 , K y i v , 2 5 2 6 0 0 , U k r a i n e It was shown that the action of synthetic growth activators on growth and development of isolated «поп-decapitated» embryonic axes was analogous to action on embryonic axes of the intact haricot bean seeds; for the 72-hours period size increase of the embryonic axes depended on incubative medium composition: distilled water< lutidine N-oxide ж6-methylthiouracil< (IAA). Growth and development of «decapitated» embryonic axes in the same media sharply differed from the growth of «поп-decapitated» axes: distilled water > lutidine N-oxide - 6-methylthiouracil < (IAA). In the experiments with embryonic axes in both of which one cotyledon was preserved ( «monocotyledonous seedlings») size increase was identical to size increase of embryonic axes in intact haricot bean seeds, as in the case of «поп-decapitated» and «decapitated» embryonic axes, and it also depended on the incubative medium composition: distilled water < lutidine N-oxide - 6-methylthiouracil < (IAA). Investigation of the fractional composition of new synthesized [XAC] impulse labelled proteins using the method of one-dimensional PAG-electrophoresis and gel fluorography approach showed that lutidine N-oxide intensifies the synthesis of all cellular proteins fractions with predominating increase of the synthesis of some high-molecular and low-molecular polypeptides, and 6-methylthiouracil intensifies the synthesis of only one polypeptide with molecular weight of 30 kDa. The data obtained are examined accordingly as evidence in favour of ideas, developing in our investigation about phytohormone-mediated action of the synthetic plant growth regulators and different- direction mechanisms growth activating action of lutidine N-oxide and 6-methylthiouracil The scheme of phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants is proposed. Introduction. In p u b l i s h e d works [ 1 , 2 ] devoted to screening a n d peculiarity of t h e biological act ion of synthet ic p lants growth regulators w e s ta ted h y ­ pothes i s about m e d i a t e d act ion of the syn t he t i c act i ­ vators through e n d o g e n o u s pool of p h y t o h o r m o n e s . It is known that t h e prominent role in m e c h a n i s m s of cel ls growth by e x t e n s i o n (which is d o m i n a n t in plants e m b r y o s o n early period of s e e d s germinat ion , etc. at the start of «dark phase») b e l o n g s both to a u x i n - d e p e n d e n t a s wel l a s g i b b e r e l l i n - d e p e n d e n t cell wall e n z y m e s . In dicot plants ( in w h i c h the x y l o - glucan s idecha ins are a b u n d a n t c o m p o n e n t s of h e m i - cel lulose matrix of cell wal l ) such e n z y m e is 1 -* 4 ^ - e n d o g l u c a n a s e [ 3 , 4 ] . In this c a s e the cell wall e longat ion is control led by growth h o r m o n e a u x i n , © V. A. TSYGANKOVA, V N. ZAYETS, L- A. GALKJNA, Ya. В BLUME, 1 9 9 9 which c a u s e s acidif icat ion of the cel l wal l , activation of e n d o g l u c a n a s e activity a n d re l ease of xy log lucan fragments , which are wel l k n o w n as nona (x9) a n d hepta (x7) sacchar ide repeats . In monocot plants (which conta in 5 % xy log lucan in their cel l wall; whi l e the arabinogalactan s idecha ins are a b u n d a n t c o m p o n e n t s of hemice l lu lo se matrix of cel l wal l ) this role is carried out b y d e x t r a n a s e e n z y m e ( a - l , 6 - D - g l u c a n - 6 - g l u c a n o h y d r o l a s e ) [5 ] . T h i s e n z y m e is k n o w n to b e an a u x i n - d e p e n d e n t a n d its function c o m e s to fo l lowing: d e x t r a n a s e breaks d o w n arabinogalactan cross l inks of the hemice l lu lose microfibrillar matr ix of t h e cel l wall with the re lease of arab inose a n d g lucose . T h e breaking of t h e s e cross l inks will impart t h e n e c e s s a r y plasticity to the wall for cell e x t e n s i o n to occur pass ive ly u n d e r the inf luence of intracel lular o smot i c pressure , formed by the vacuole . 4 3 2 A P H Y T O H O R M O N E - M E D I A T E D ACTION OF T H E REGULATORS ON CELL T h e conclus ion about d e p e n d e n c e of d e x t r a n a s e activity from a u x i n concentrat ion in plant t i s sues w a s m a d e on the base of data obta ined about h igh activity of this e n z y m e in normal ly growing , aux in -r i ched oat coleopti les and low activity of d e x t r a n a s e in «decapi - tated» (deprived of top growth zone ) coleopt i les with low aux in content in t h e m [ 5 ] . Parallel with above m e n t i o n e d e n z y m e s the x y l o ­ glucan endotransg lucosy lase ( X E T ) recent ly w a s fo ­ und to b e a n g ibbere l l in-act ivated [ 6 ] . X E T can internally c leave the g lucan b a c k b o n e of a cross l inking xy log lucan molecular a n d remode l or rearrange the c e l l u l o s e / h e m i c e l l u l o s e network in the wal l to a c c o m ­ modate the insert ion of n e w microfibrils a n d therefore permit or even drive e x t e n s i o n [ 7 ] . X E T activity correlates with gibberel l ic a c i d - i n d u c e d , but not a u ­ x i n - i n d u c e d , growth of pea s t e m s , with growing regions of ma ize roots , e longat ing carrot s u s p e n s i o n ce l l s , a n d with ripening kiwi fruit ce l l s . T h e methodica l approach [ 5 ] , b a s e d o n apical dominant p h e n o m e n o n ex i s t ing at p lants (etc. that top and bottom «dominant centers» or pole growth points operate plant growth a n d deve lopment ) w a s adapted in our invest igat ion to verify direct or med ia ted through p h y t o h o r m o n e s act ion of synthet i c growth st imulators us ing the embryon ic a x i s of haricot bean as a mode l . So , the a im of our invest igat ion w a s to s tudy: 1) the act ion of lut id ine N - o x i d e a n d 6 - methylthiouraci l o n growth a n d deve lopment of i s o ­ lated both intact a n d «decapitated» haricot bean embryonic a x e s (it is known that its growth to b e real ized by hypocoty l en largement in early pos t - embryogenes i s o n l y ) ; 2) t h e peculiarity of protein syn thes i s in embryon ic ax i s ce l l s of haricot bean s e e d s at s t imulated germinat ion . Materials and M e t h o d s . In our exper iment s h a ­ ricot bean s e e d s (Phaseolus vulgaris L.) of t h e variety «Bie lozernaya» w e r e u s e d . Iso lated embryon ic a x e s were incubated b e t w e e n layers of filter paper m o i s ­ tened by dist i l led water (control) or by growth activators: lut idine N - o x i d e (ivin) or by 6 - m e t h y l ­ thiouracil (methyur) in concentrat ion 1 m g / L Incu­ bation was carried out in the dark, in thermostat at 26 °С during 7 2 h . For «feeding» embryon ic a x e s the mixture conta in ing a m i n o ac ids of protein case in hydro lyzate a n d g lucose at f inal ly concentrat ion in solution 0 , 0 0 2 % accordingly were a d d e d to probes in the end of 48 h. In o n e case separated from c o t y l e d o n e s w h o l e embryonic a x e s were taken for t h e exper iment ( e t c ones conta in ing full se t of primary organs — root, hypocotyl and l ea f ) , in o ther c a s e , — «decapitated», e t c with separated top growth z o n e ( leaf) , from which , by analogy with co leopty les , t h e phytohor - m o n e enter ing into bot tom part of e m b r y o - h y p o c o t y l to real ize . Labelling of proteins. E m b r y o n i c a x e s w e r e incu­ bated dur ing 1 h at t h e p r e s e n c e l 1 4 C ] - p r o l i n e (specific radioactivity — 9 8 7 0 m B k / m M ) , w h o s e c o n ­ centrat ion in the s a m p l e s w a s 100 m B k / m l . Extraction of embryonic axes proteins. T h e t i s sue s a m p l e s w e r e frozen in l iquid n i t rogen a n d powdered carefully in a c h i n a mortar at 2 0 °С, a n d then d i sso lved in 2 0 m M s o d i u m p h o s p h a t e extract ing buffer, p H 6 .8 , cons i s t ing of 7 5 m M N a C l , 2 0 0 mM of dithiothreitol ( D T T ) , 1 m M of p h e n y l m e t h y l - sul fonyl f luoride a n d 100 /ug of c y c l o h e x i m i d e ( the ratio b e t w e e n triturated mater ia l a n d extract ing buffer be ing 1 : 1 0 ) , H o m o g e n a t e w a s p a s s e d through the filter «Miracloth», f i ltrate w a s p laced in prel iminari ly coo led centrifugal t e s t - t u b e s a n d w a s centr i fuged consecut ive ly at 1 8 0 0 0 g ( 1 5 m i n ) a n d at 1 0 5 0 0 0 g (1 h ) . T h e temperature in c a m e r a w a s 4 °С. T o precipitate t h e so lub le p lasmat ic prote ins 4 vo lumes of acidif ied a c e t o n e (pH 4 ,0 ) to final concentrat ion ( 8 0 %) w e r e a d d e d to t h e s a m p l e s . T h e denatured prote ins w e r e precipitated b y centr i fugat ion at 8 0 0 0 g (15 min) a n d after th is precipitate w a s twice w a s h e d out by 8 0 % — e thano l a n d dried by ace tone . Electrophoresis of proteins. Pro te ins were d i s ­ solved in 100 /Л of the buffer conta in ing 0 . 0 6 2 5 M tr i s -HCl , pH 6 .8 , 1 % of S D S , 10 m M of D D T , 7 % of phyco le (or sucrose) a n d 0 . 0 2 5 % of bromphenol dark blue; 15 fig so lut ions of prote ins w e r e placed o n each gel stripe. Vertical e l ec trophores i s w a s carried out in 5 — 2 0 % gradient a c r y l a m i d e gel at ratio acry lamide : b i sacry lamide — 1 4 : 1 in Laemmli buff­ er s y s t e m [8 ] accord ing to Smith m e t h o d [9 ] . T h e gel w a s po lymer ized in a block 1 6 , 5 x 1 6 , 5 x 0 , 1 cm. Pree lectrophores i s w a s rea l ized at vol tage 7 0 V before s ta in enter ing into separat ing ge l . T h e n the e lect ­ rophores is w a s co nt i nued at 120 V during 14 h. After prote ins separat ion ge l strips w e r e f ixed b y 10 % acet ic acid a n d 4 0 % isopropanol (25 min) a n d s ta ined by 0 . 2 5 % C o o m a s s i e bril l iant b lue solut ion R - 2 5 0 in 10 % acet ic acid a n d 2 0 % isopropanol (25 m i n ) . T h e gel w a s w a s h e d out b y a few vo lumes of 7 % acet ic acid wi th 5 % isopropanol a n d dried us ing a heat ing v a c u u m - d r y e r («LKB», S w e d e n ) . Fluorography of gel proteins. For this a i m gel w a s saturated with f luorescent reagent 2 , 5 - d i p h e n y I o x a - zo le a n d e x p o s e d wi th X - r a y film dur ing two m o n t h s at - 7 0 ° С Resul t s and D i s c u s s i o n . T h e results of pecul ia­ rities of growth i so la ted haricot b e a n embryon ic a x e s at the present bo th synthe t i c regulators a n d a u x i n are s h o w n on fig, 1. In the control exper iment (at incubat ion of e m b r y o n i c a x e s in d is t i l led water 4 3 3 Fig . I . T h e pecul iar i ty of the g r o w t h of e m b r y o n i c a x e s i so la ted from har ico t b e a n s e e d s on di f ferent m e d i a : a a n d b\ с a n d d\ e a n d / ; g a n d h — the g r o w t h « п о п - d e c a p i t a t e d » a n d ^ d e c a p i t a t e d * e m b r y o n i c a x e s re spec t ive ly ( s e e c o n s e c u t i v e l y from left to r ight ) : on dist i l led wa ier a n d so lut ions of ivin, m e t h y u r a n d IAA w i t h o u t a n y r e g u l a t o r s d u r i n g 72 h) t h e l e n g t h of « п о п - d e c a p i t a t e d » e m b r y o n i c a x e s h a s b e e n i n c r e a s e d a p p r o x i m a t e l y in two t i m e s , w h i l e t h e g r o w t h of « d e c a p i t a t e d » e m b r y o n i c a x e s w a s p e r c e p t i b l e l agg ing b e h i n d g r o w t h of n a t i v e e m b r y o n i c a x e s (fig. 1, a, b). At t h e s a m e t i m e , a s well a s in e x p e r i m e n t s w i th in tac t ha r i co t b e a n s e e d s ( 1 , 2 ] , t h e g r o w t h of « п о п - d e c a p i t a t e d » e m b r y o n i c a x e s s t i m u l a t e d b y ivin a n d m e t h y u r w a s s h a r p l y i n c r e a s e d (fig. 1, c, e) in c o m p a r i s o n wi th c o n t r o l . T h e c o n t r a r y s i t u a t i o n w a s o b s e r v e d wi th « d e c a p i t a t e d » e m b r y o n i c a x e s s t i m u ­ l a t ed by s y n t h e t i c g r o w t h r e g u l a t o r s . In t h e s e e x p e ­ r i m e n t s t h e g r o w t h of h y p o c o t y l e s ( un l i ke con t ro l g r o w t h ) w a s i n h i b i t e d c o m p l e t e l y , e t c t h e i r l e n g t h r e m a i n e d on level of in i t i a l o n e (fig. 1, d,f) a n d w h a t is m o r e , a f t e r 72 h t h e i r a u t o l y s i s b e g a n . S t r i k i n g e x p e r i m e n t s w e r e t u r n e d ou t wi th n a t u r e a u x i n (fig. 1, g, h). IAA s h a r p l y a c t i v a t e d g r o w t h a n d d e v e l o p ­ m e n t of i so la ted b o t h « п о п - d e c a p i t a t e d » a n d « d e c a p i - t a t e d » e m b r y o n i c a x e s , a n d w h a t ' s m o r e , t h e g r o w t h of na t ive e m b r y o n i c a x e s e x c e e d g r o w t h of o n e s in m e d i a wi th ivin a n d m e t h y u r , w h i l e g r o w t h of « d e c a - p i t a t e d » o n e s in m e d i u m wi th IAA w a s a p p r o x i m a t e l y s a m e t h a t « п о п - d e c a p i t a t e d » in m e d i a w i th s y n t h e t i c p l an t g r o w t h r e g u l a t o r s . As d e p i c t e d in fig. і b o t h u n d e r t he ac t ion of s y n t h e t i c g r o w t h r e g u l a t o r s a n d a u x i n in pecu l i a r i t y , no t o n l y e l o n g a t i o n of e m b r y o n i c a x e s s ize occu r s d u r i n g 72 h , bu t t h e d e v e l o p m e n t of roo t s y s t e m from p r i m a r y roo t b e g i n s . C o n s e q u e n t l y , t h e d e v e l o p m e n t of e m b r y o n i c a x e s o c c u r s n o r m a l l y in all c a s e s (with t h e e x c e p t i o n of o n e s , « d e c a p i t a t e d » in m e d i a with s y n t h e t i c g r o w t h r e g u l a t o r s ) , b u t f u r t h e r g rowth of e m b r y o n i c a x e s w a s d i s c o n t i n u e d in all v a r i a n t s of e x p e r i m e n t s o w i n g to i ts s e p a r a t i o n f rom c o t y l e d o n s from w h i c h , a s is k n o w n , t h e m a i n c o m i n g in p lan t e m b r y o s p h y t o h o r m o n e s ( m a i n l y g i b b e r e l l i n s a n d cy ­ t o k i n e s [10 J> a s well a s n u t r i e n t s u b s t a n c e s occu r s . T h e r e f o r e , t h e s e e x p e r i m e n t s s y n o n y m o u s l y have p roved t h a t s y n t h e t i c p l a n t g r o w t h r e g u l a t o r s un l ike e x o g e n o u s a u x i n to ac t no t d i r e c t , b u t e x a c t l y m e d i a ­ ted t h r o u g h e n d o g e n o u s p h y t o h o r m o n e s w a y . Most l ike ly , a t e a r l y s t a g e s t h e i n c r e a s e of cell a u x i n c o n c e n t r a t i o n in t o p g r o w t h z o n e ( p r i m a r y leaf) a n d 434 A P H Y T O H O R M O N E - M E D I A T E D ACTION O F T H E REGULATORS ON CELL after a whi le the p h y t o h o r m o n e s transport into e m ­ bryonic a x e s from c o t y l e d o n s of sprouting s e e d s s t imulated by growth activators real ize . T h e fol lowing fact testif ies in this favour: in exper iment s with both «decapitated» a n d «поп-decapi ta ted» embryon ic a x e s with preserved at t h e m o n e c o t y l e d o n s ( « m o n o - coty ledonous sprouts») an acce lerat ion of growth a n d deve lopment of embryon ic a x e s s t imulated with both synthet ic a n d nature regulators occurred a s wel l a s in the case of intact s e e d s . It is ev ident that t h e accelerat ion of hypocoty l ex tens ion growth (s t imulated with both synthe t i c a n d nature regulators) is to b e c a u s e d first of all by indirect , med ia ted through p h y t o h o r m o n e s act ivation of the 1 -» 4 /# -endoglucanase (probably a n d X E T ) e n z y m e s or by direct increase of its (their) catalyt ic activity or by increase of its (their) s y n t h e s i s . T h e results of invest igat ions publ i shed recent ly [ 1 1 , 1 2 ] confirm our h y p o t h e s i s a n d prove that: 1) e x o g e n o u s growth s t imulators increase repeated ly concentrat ion of e n d o g e n o u s pool of p h y t o h o r m o n e s ; 2) ivin ( lut idine N - o x i d e ) p o s s e s s e s aux in - l ike activi­ ty (but, probably , a l so g ibbere l l in -cytokin in act iv i ty) . At the s a m e t ime C o o k e et al . [ 1 3 — 1 5 ] have shown earlier that u n d e r the act ion 2 , 4 - D the IAA s y n t h e s i s in cal lus cel ls takes place on unusual m e a n s with use tryptophane a s a precursor, moreover a m o ­ unt IAA reaches 6 0 0 n g / g of fresh we ight , that vast ly e x c e e d s an usual level . W h e n removing 2 , 4 - D from nutrient m e d i u m the IAA concentrat ion falls a n d reaches 1 5 — 3 0 n g / g of fresh we ight , moreover its s y n t h e s i s be ing real ized through biochemical pa th ­ w a y s , where tryptophane isn' t to b e u s e d . A s a rule , plants use themse lves th is w a y of IAA b i o s y n t h e s i s in natural condi t ions . C o o k e et al . suppose that growth of cal lus cel ls are induced by synthe t i c ana logue of aux in rais ing IAA concentrat ion ins ide ce l l , wi th use tryptophane as a precursor. Short - term expos i t ion plant explants at the presence extracel lular synthe t i c aux in ( 2 , 4 - D ) can to induce proembryonic structure formation. According to i d e a s C o o k e et al . w h e n removing 2 , 4 - D from nutr ient m e d i u m occurs a reco­ vering IAA s y n t h e s i s to natural w a y , that , as a consequence , brings about transit ion of proembryonic structure into p h a s e of somat ic e m b r y o g e n e s i s [ 1 5 ] . According to l iterary f indings m e n t i o n e d in J. H e y n ' s article 15 ] , t h e processes of D N A , R N A a n d proteins s y n t h e s i s are necessary «attribute» of cel ls growth by en largement . It is real ly that increase of cell s ize in length , accompanied by formation a great number new cel ls from o n e cell by m e a n s of formation intracellular partit ions s imul taneous ly with dupl ica­ tion a n d transmiss ion of g e n e material [7 ] , a s well a s their differentiation occurring are a t t ended with n e ­ cess i ty to s y n t h e s i z e ( in add i t i on to preex is t ing) new structural a n d funct ional e l e m e n t s of different pur­ poses : D N A or D N P , R N A a n d R N P , structural , functional a n d regulatory prote ins , l ip ids , carbo­ h y d r a t e s a n d o t h e r s . A n d i t ' s rea l i zed , probably , by fol lowing «scenario»: at first, m o s t l ike ly , ampl i ­ fication of ribosome g e n e s takes p lace , t h e n activation of r R N P a n d m R N P g e n e s , s y n t h e s i s of ribosome a n d m R N P - s u b p a r t i c l e s [ 1 6 ] , t R N A a n d probably other types of R N A a n d further o n cha in — the s y n t h e s i s of structural a n d o ther funct ional prote ins of cel l wall (which p lays a central regulat ive role in both cel ls d i f f e r e n t i a t i o n a n d s p e c i a l i z a t i o n at ear ly p o s t - e m b r y o g e n e s i s of e m b r y o o r g a n i s m a s wel l a s at s ta lk's growth o n fo l lowing s t a g e s of plant deve lop­ ment [ 1 7 — 2 2 ] ) ; prote ins for repl icat ion D N A as well a s c h r o m o s o m e prote ins , a n d prote ins ( e n z y m e s ) cata lyz ing s y n t h e s i s of n o n - p r o t e i n wall c o m p o n e n t s . For t h e a im to u n d e r s t a n d t h e peculiarity of prote ins s y n t h e s i s t h e fract ional compos i t ion of new s y n t h e s i z e d so luble prote ins of e m b r y o n i c a x e s cel ls in early period at s t imula ted a n d non-s t imula ted haricot b e a n s e e d s germinat ion have b e e n invest igated comparat ively in present work. T h e e lectrophoregram of separated s u m m a r y s ta ined a n d so lub le cytozo le proteins of e m b r y o n i c a x e s ce l l s of haricot b e a n s e e d s with s t imulated a n d n o n s t imula ted germinat ion are s h o w n at t h e fig. 2 , Л , a-c (on t h e le f t ) . As it w a s to b e e x p e c t e d , it w a s not poss ib le to de termine the fractions of n e w s y n t h e s i z e d prote ins (accounting 1—2 % prote ins from all prote ins m a s s ) us ing o n e - d i m e n s i o n a l P A G E aga ins t a background of the diversity of ce l lu lar prote ins s ince n e w s y n t h e s i z e d proteins be ing m a s k e d b y preex i s t ing major protein b a n d s . In contrast to th i s , n e w s y n t h e s i z e d proteins b e c o m e se lect ive ly apparent at t h e f luorography of proteins of the s a m e gel labe l led before isolat ion by [ , 4 C ] - p r o l i n e (fig. 2 , /? , a'-c'). O n e can s e e the increas ing s y n t h e s i s of all prote ins fract ions, s y n ­ thes i z ing dur ing ivin s t imulat ion , a l though the s y n ­ thes i s of a n y h i g h - m o l e c u l a r a n d low-molecu lar pro­ te ins fractions v is ib ly p r e d o m i n a t e s . However , m e ­ thyur s t imulates ma in ly s y n t h e s i s of o n l y o n e protein with molecu lar we ight 3 0 k D a . A s it w a s noted earlier [ 2 ] , protein 3 0 k D a w a s d i scovered by us in abnor ­ mal ly h igh quant i t ies in haricot b e a n s e e d s s t imulated by methyur; total cel l prote ins w e r e a n a l y z e d us ing two-d imens iona l ge l - e l ec trophores i s , a n d a l so by f luo­ rography of s y n t h e s i z e d [ 3 5 S ]- label led proteins in ce l l - free s y s t e m from rabbit ' s ret iculocytes us ing of p o l y ( A ) + R N A a s template R N A s , i so lated from e m ­ bryonic a x e s ce l l s processed b y methyur . T o date , rev iewed b y Showal ter [21 ] , five c las ses of prote ins that are a b u n d a n t in cell wall have b e e n 4 3 5 TSYGANKOVA V. A. E T AL A — W С (kDa) a h с a' b" c' \:\g. 2. і A G E - e l e c t r o p h o r e s i s [ U C ] - p r o l i n e l a b e l l e d in vivo s u m ­ m a r i z e d proteins of ce l l e m b r y o n i c a x e s a t s t i m u l a t e d a n d n o n - s t i m u l a t e d by growth regu la tors g e r m i n a t i o n of har icot b e a n s e e d s : Л — fractional composition of proteins by stain; В — ge l f luo - rography of prote ins ; C — m a r k e r prote ins : a a n d a' — prote in fractions of e m b r y o n i c a x e s of g e r m i n a t i n g har ico t b e e n s e e d s st imulated by ivin; в и в' — prote ins from e m b r y o n i c a x e s of har ico t bean s e e d s with і ю п - s l i m u l a t e d g e r m i n a t i o n ( c o n t r o l ) ; с a n d c f — proteins from e m b r y o n i c a x e s of g e r m i n a t i n g har icot b e a n s e e d s s t i m u l a t e d by rnethyur s tud i ed in va r ious p l a n t s . T h e s e a r e h y d r o x y p r o l i n e - rich g l y c o p r o t e i n s ( H R G P s ) , g l y c i n e - r i c h p r o t e i n s ( G R P s ) , p r o i i n e - r i c h p r o t e i n s ( P R P s ) , s o l a n a c e o u s lec t ins , a n d a r a b i n o g a l a c t a n p r o t e i n s . AH of th i s c l asses of p r o t e i n s m a y b e evo lu t iona r i l y a n d func t io ­ na l ly r e l a t ed to e ach o t h e r b e c a u s e t h e y a r e e n r i c h e d in h y d r o x y p r o l i n e r e s i d u e s o r s h a r e n u c l e o t i d e s e q u e ­ nce s imi l a r i t y . It is n e c e s s a r y to m e n t i o n t h a t t h e s e a r e not t he on ly cell wall p r o t e i n s t h a t a r e k n o w n . O t h e r s ex i s t , s u c h a s c y s t e i n e - r i c h t h i o n i n s , 2 8 - a n d 7 0 - k D w a t e r - r e g u l a t e d p r o t e i n s , a h i s t i d i n e - t r y p t o - p h a n - r i c h p r o t e i n , a n d m a n y cell wall e n z y m e s s u c h as p e r o x y d a s e s , p h o s p h a t a s e s , i n v e r t a s e s , a - m a n n o - s i d a s e s , / J - m a n n o s i d a s e s , / M , 3 - g l u c a n a s e s , fi-l ,4-glu- c a n a s e s , p o l y g a l a c t u r o n a s e , pec t in m e t h y {es te rases , m a l a t e d e h y d r o g e n a s e , a r a b i n o s i d a s e s , a - g a l a c t o s i d a s e s , ^ - g a l a c t o s i d a s e s , / і - g l u c u r o n o s i d a s e s , p - x y l o s i d a s e s , p r o t e a s e s , a n d a s c o r b i c ac id o x i d a s e a n d a l so a b o v e m e n t i o n e d d e x t r a n a s e . E x t e n s i n s a r e a fami ly of H R G P s a n d c o n s t i t u t e t h e m a j o r p r o t e i n c o m p o n e n t s in cell wal ls of dicot p l a n t s ( t h e m o l e c u l a r m a s s of g l y c o p r o t e i n is 86 k D a , w h i l e i ts p o l y p e p t i d e w i t h o u t c a r b o h y d r a t e pa r t fo rms p rec i se ly 3 0 k D a ) [ 1 8 1 . E x t e n s i n s c o m p r i s e s 5—10 % from all p r o t e i n s of cell wall a n d e x e c u t e s plural func t ions for cel l , in p a r t i c u l e t a k e par t in o r g a n i ­ za t i on of c a r b o h y d r a t e c a r c a s s of p r i m a r y ceil wall a n d t h u s p lay e s s e n t i a l ro le at cell e x t e n s i o n g r o w t h . A c c o r d i n g wi th t h e s e w o r k s 3 0 k D a p o l y p e p t i d e is pos i t ive ly c h a r g e d wi th h igh i soe lec t r ic poin t (pi of 9 ,9) d u e to a h igh c o n t e n t of Lys a n d / o r Hi s , d e p e n d i n g on t h e m o l e c u l e , a n d so lub l e in wa te r m e d i u m p r e c u r s o r of e x t e n s i n . T h i s po lypep t i de is s y n t h e s i z e d a n d g l y c o s y l a t e d by p o s l t r a n s l a t i o n a l mo difi cat ions in c y t o p l a s m a n d t h e n i n t e g r a t e d in to t h e cell wall s p a c e . T h e e x p r e s s i o n o n e of the e x t e n s n t g e n e family ( S b H R G P 3 ) i n c r e a s e s with s e e d l i n g m a - t u r a t i o n , a n d i ts e x p r e s s i o n is re la t ive ly high in the m a t u r e r e g i o n s of t h e h y p o c o t y l a n d in the root of s o y b e a n s e e d l i n g s . Qi et a l . ( 2 3 ] r ecen t ly s h o w e d s o m e e v i d e n c e t h a t e x t e n s i n s c ro s s l i nk pec t in s in cell wa l l s . S e c o n d , t h e y c o n t r i b u t e to p lan t d e f e n s e , h e l p i n g to p ro tec t m e c h a n i c a l w o u n d i n g or aga ins t p a t h o g e n a t t a c k (22 ] ( t h e l a t t e r p r o b a b l y r e su l t s from posi t ive ly c h a r g e d e x t e n s i n s mo lecu le s i n t e r a c t i n g io- n ica l ly wi th nega t ive ly c h a r g e d su r f ace s of plant p a t h o g e n s ) . As it w a s s t a t e d in o u r p rev ious p a p e r [2 1 t h e p r o t e i n 3 0 k D a d i s cove red by us a n d 30 kDa p o l y p e p t i d e of g l y c o p r o t e i n e x t e n s i n a r e to be qui te a c c o r d i n g to t h e i r p h y s i c o - c h e m i c a l c h a r a c t e r i s t i c s . T h e d e t e r m i n a t i o n of th i s p ro t e in is an і in por ta nt goal . G R P s a r e c h a r a c t e r i z e d by t h e i r repe t i t ive pr ima ry s t r u c t u r e , wh ich c o n t a i n s up to 70 % glyc ine a r r a n g e d in s h o r t a m i n o ac id r e p e a t u n i t s . T h e r e a r e at l eas t two b r o a d c l a s se s of G R P s , O n e c lass is found in cell wall a n d is d e v e l o p m e n t a l l y r e g u l a t e d , w h e r e a s t h e s e c o n d c lass is found s o m e w h e r e in c y t o p l a s m a n d is r e g u l a t e d by a v a r i e t y of s t r e s s c o n d i t i o n s , inclu­ d i n g absc i s i c a s i d a n d d r o u g h t s t r e s s . Both G R P c l a s s e s a r e r e p r e s e n t e d in d ico t a n d in monocot p l a n t s . P R P s r e p r e s e n t a n o t h e r re la t ive ly newly iden tified c lass of p l a n t cell wall p r o t e i n s of which at lea: і s o m e , a n d p e r h a p s a l l , m e m b e r s con t a in h v d r o - x y p r o l i n e . T h e r e a r e at leas t two b r o a d s u b c l a s s e s oi P R P s : t h o s e t ha t a r e c o m p o n e n t s of n o r m a l plant eel і 436 A P H Y T O H O R M O N E - M E D I A T E D A C T I O N O F T H E REGULATORS ON CELL walls and those that are plant nodul ins (i. е. , prote ins produced in re sponse to infect ion by n i trogen- f ix ing bacteria) and const i tute part of the nodu le cel l wal l . Prol ines a s well a s e x t e n s i n s take part in both growth and deve lopment regulat ion, cell wall structurization and counteract to s tress factors . So lanaceous lect ins are specific o n e s for ea ch plant spec ies a n d appertain to ch i t in-uni t ing protein c lass . So lanaceous lect ins cons i s t of a t least two distinct protein d o m a i n s ; o n e is rich in ser ine and hydroxypro l ine a n d conta ins the carbohydrate m o ­ iety , a n d the o thers are rich in g lyc ine a n d c y s t e i n e . T h e ser ine -hydroxypro l ine -r i ch g lycopept ide d o m a i n of So lanaceous lect ins bears a striking biochemical re semblence to the e x t e n s i n s . S o m e previously pro- poused roles for the so lanaceous lect ins inc lude cell wall structurization, sugar transport, s tabi l izat ion of s eed storage prote ins , a n d control of cell divis ion. Arabinogalactan prote ins ( A G P s ) are H R G P s that are genera l ly very so luble a n d h igh ly g l y c o ­ sy la ted . A G P s are wide ly dis tr ibuted in plants a n d typically comprise o n l y 2 to 10 % protein b y weight . The ir molecular w e i g h t s are e x t r e m e l y h e t e r o g e n e o u s , presumably reflecting different e x t e n t s of g l y c o s y - lation. T h e protein moie ty of A G P s is typical ly rich in hydroxypro l ine , s er ine , a lan ine , threon ine , a n d g lyc ine a n d is res is tant to proteo lys i s , a property that is presumably conferred by ex tens ive g lycosy la t ion . A G P s have isoelectric points in t h e range of pH 2 to 5 . A G P s have b e e n proposed to act a s g l u e s , l u b ­ ricants, a n d h u m e c t a n t s . T h e i r general a b u n d a n c e in the midd le of the wall a n d in the s ty l e s of a n g i o - sperms and in the medul la of root n o d u l e s m a k e s t hem likely c a n d i d a t e s for funct ioning in cel l -cel l recognit ion. T h e r e is a l so s o m e indicat ion that A G P s accumulate in r e s p o n s e to w o u n d i n g , a n d a role for these A G P s in floral h i s togenes i s a n d differentiat ion is poss ible . Such o n e s are related to p l a s m a l e m m a prote ins , which funct ionate in cy top lasma a n d provide cell wall with structural a n d functional e l e m e n t s [ 4 ] : 1) c e l lu ­ lose s y n t h a s e < /? - l , 4 -g lucansynthase ) -prominent e n ­ z y m e of ce l lu lose s y n t h e s i s ( a s sembly ) from pre­ formed «blocks» (g lucose molecules ) — is local ized a n d funct ionates (as o ther e n z y m e s , participating in synthes i s of ce l lu lose precursors) in p l a s m a l e m m a cel ls (in its t h i c k n e s s ) , a l though , according to s o m e f indings ce l lu lose s y n t h a s e h a s b imodal distribution (etc. is local ized both in cel l wall border ing with p lasmalemma z o n e a n d in p lasmalemma; 2) ca l lose s y n t h a s e is known to b e a major po lymer , produced by higher plant p lasma m e m b r a n e . T h i s e n z y m e provide s y n t h e s i s po lysacchar ide ca l lose ( 1 , 3 - ^ - g l u - cans) [ 2 4 — 2 6 ] . T h e morphogenet i ca l ly important e l e m e n t s that provide spatial informat ion of n e w l y s y n t h e s i z e d ce l ­ lu lose microfibrils (MFs) a n d control the ir or ientat ion are cortical microtubules ( M T s ) [ 2 7 — 3 0 ] . T h e b a s e of M T are prote in tubul in , wh ich cons i s t from alpha a n d beta s u b u n i t s , e x i s t i n g in a 1 : 1 s to ich iometry to o n e a n o t h e r [ 2 7 , 2 8 , 31 ] . T h e g a m m a - t u b u l i n s u b u ­ nits are found too . T h e various tubul in i soforms m a y differential ly m o d u l a t e t h e funct ion of M T s . T h e r e are several poss ib le m e c h a n i s m s b y wh ich cel l might control the stabi l i ty of cortical M T s . T h e most l ikely m e c h a n i s m s are: 1) qual i tat ive c h a n g e s in tubulin g e n e e x p r e s s i o n [31 ] ; 2 ) t y r o s i n a t i o n / d e t y r o s i n a t i o n or acety lat ion of a lpha- tubu l in [ 3 2 — 3 3 ] ; 3) c h a n g e s in M A P interact ions [ 3 4 ] ; 4 ) phosphory la t ion of MT-prote in [ 2 7 ] ; 5 ) f luctuat ions of ca lc ium levels [35 ] . It w a s fond that cel l wall prote in e x t e n s i n takes part in s tabi l izat ion cortical M T s [36 ] . M T / p l a s m a m e m b r a n e ( P M ) assoc ia t ions are the m a i n process of cell wal l format ion a n d , poss ib le , can to real ize b y different m e a n s [ 2 7 ] : 1) M T s m a y assoc ia te direct ly wi th tubulin subun i t s in the PM [ 3 7 ] ; 2) the assoc ia t ion m a y b e via integral or peripheral m e m b r a n e prote ins; 3) peripheral bridging protein a s soc ia te s wi th m e m b r a n e tubul in within the hydrophobic mi l ieu of P M , a n d with M T s in the hydrophi l ic env ironment of t h e cortical cy top lasm; 4) act in microf i laments a l s o presen ted in the cortex can , in s o m e i n s t a n c e s , a l ter t h e organizat ional s tatus of cortical M T s [ 3 8 ] . Ce l lu lo se is s y n t h e s i z e d b y a ce l lu lose s y n t h a s e c o m p l e x , wh ich forms m e m b r a n e roset tes that are be l i eved to b e capable of moving in the p lane of the m e m b r a n e [ 3 9 ] . T h e M T s restrict this m o v e m e n t , thereby providing c h a n n e l s for the c e l l u l o s e - s y n t h e s i z i n g c o m p l e x [ 4 0 ] . A s a result , the order of n e w l y depos i t ed ce l lu lose fibrils reflects that of the under ly ing cortical M T s . D u r i n g cel l e longat ion a n d dif ferent iat ion M T s b e c o m e more ordered into characterist ic t ransverse a r r a n g e m e n t [ 4 1 , 4 2 ] . T h e a d d u c e d above list of prote ins «spectrum» which are presented in cel l wall a n d their any characterist ics d e m o n s t r a t e s c learly that structural a n d functional pecul iari t ies of wall are de termined by its prote ins . But cel lular , t i s sue a n d spec ies specificity of wall not o n l y d e p e n d s o n structural peculiarit ies a n d prote ins set but a l so a n d correlat ion between protein a n d non-prote in cel l wal l c o m p o n e n t s . A m o n g non-prote ins c o m p o n e n t s in wal l , b e s i d e s ce l lu lose a n d hemice l lu lose there are a l so l ignin , propectin, cut in , suber in a n d a n y o t h e r products of secondary s y n t h e s i s [ 1 7 — 2 2 ] . It 's ev ident ly that s t u d y of b ioge ­ n e s i s cell wall prote ins (and o t h e r its components ) as well a s p l a s m a l e m m a prote ins «serving» cell wall at s t imulated plant growth a n d deve lopment , peculiarly 437 TSYGANKOVA V. А. ВТ AL. in early postembryonic period (in the beginning of «dark phase») is h ighly perspect ive for determinat ion action points of growth activators in molecular level . In conc lus ion , on the g r o u n d s of results our invest igat ions a n d l i terature a n a l y s i s , w e composed the s c h e m e of the m e c h a n i s m s of increase e x t e n s i o n cel ls growth b y syn the t i c p h y t o h o r m o n e subst i tutes (fig. 3 ) . S o m e different facts are ref lected in it: 1) the wel l known data that cel l wall before differentiation (that n a m e l y is ab l e to en largement) cons is t s of o n e layer (primary-di f ferent iated wa l l ) . It's main const i tuents are ce l lu lose microfibrils , pro­ te ins a n d o ther s u b s t a n c e s , i m m e r s e d into h e m i ­ cel lulose matrix (ce l lu lose content in matrix is 3 0 % ) . After differentiat ion the s e c o n d layer appears in cell wall , be ing , o n t h e w h o l e , ce l lu lose fibrils , fit framing wall a n d penetrat ing it. T h e s e c o n d a r y , or di f feren­ tiated wall is a lready not poss ib le to e x t e n s i o n (cel lulose content in it wi th respect to general we ight is 6 0 % ) ; 2) the m a i n processes of cel l growth in l ength are en largement a n d dif ferent iat ion of cel l wall; 3) the resul ts o b t a i n e d in our work wi tnes s h y p o t h e s i s , that growth ef fects , c a u s e d by growth st imulators , d e p e n d o n act ion of synthe t i c c o m p o u n d s on t h e s e processes . So , w e sugges t that penetrat ion of growth r e g u ­ lators ins ide ce l l s occurs b y o n e of two fol lowing poss ib le ways : 1) through receptor ce l l s s y s t e m (but availabil ity of receptors , carry ing out such funct ions , is not proved severe ly for p lants , espec ia l ly in c a s e of synthet ic growth regulators ) ; 2) i t ' s m o s t probably , the penetrat ion of growth regulators i s real ized thro­ ugh the c h a n n e l s of A T P - d e p e n d e n t proton pompe (as i t 's s h o w n , for e x a m p l e , in the c a s e of negat ive ly charged a u x i n [43 ] ) . T h e syn the t i c c o m p o u n d s i n s i d e of ce l l s increase active pool of e n d o g e n o u s p h y t o h o r m o n e s wi th growth st imulat ing activity at s i m u l t a n e o u s taking off inhi ­ bitory act ion of ABK. In particular, increase of a u x i n concentrat ion c a u s e s t h e increase of 1 4 ^ - e n d o - g lucanase activity (or a n o t h e r above m e n t i o n e d e n z y ­ m e s with ana logous act ion) wh ich ca ta lyse s cel l wall growth by en largement . U n d e r the act ion e i ther phytohormones act ivated b y growth s t imulators , an amplif ication of ribosome g e n e s , the ir expres s ion a n d express ion of g e n e s , wh ich c o d e structural a n d func­ tional cell wal l prote ins a n d p l a s m a l e m m a prote ins , «serving» cell wall (ce l lu lose s y n t h a s e , real iz ing ce l lu­ lose s y n t h e s i s , a n d tubul in prote in , providing micro­ tubules formation) are to b e induced . T h e micro­ tubules control t h e spatial or ientat ion of newly s y n ­ t h e s i z e d c e l l u l o s e micro f ibr i l s . P r o b a b l y , s e v e r e coordinat ion in t ime of processes e n u m e r a t e d e x i s t s , in which success ion of s y n t h e s i s a n d integration into ceil wall of structural a n d funct ional e l e m e n t s is o n e of the m a i n point. However , t h e events taking place u n d e r action of growth st imulators with sharply different from p h y t o ­ h o r m o n e s synthe t i c structure m a y b e another . T h e pool of e n d o g e n o u s p h y t o h o r m o n e s be ing n o n - p e c u ­ liar for e i ther period of d e v e l o p m e n t , inc luding s e l e c ­ tively uncomple ted c a s c a d e of g e n e s , which control growth process , m a y b e act ivated. A s a result , the d i sharmony in natural ratio of cel l wall component s (first of all in se t of its prote ins) m a y to arise . Superf luous s y n t h e s i s of a n y prote ins a n d deficit of wall in o ther prote ins m a y b e r e a s o n for infr ingement of its dif ferentiat ion (and cel l o n t h e whole ) a n d , as a co ns equence , modif icat ion of plant o n t o g e n e s i s . For e x a m p l e , the picture l ike th i s is observed fol lowing m e t h y u r act ion on sprout ing haricot bean s e e d s (appearing in ce l l s 3 0 k D a protein in large quantity; which i s , probably , precursor of e x t e n i n g lycoprote in , a n d its appearing c a u s e s s h o r t e n i n g of the plant o n t o g e n e s i s a lmost twice [ 2 ] ) . O n the contrary, w h e n sprouting haricot b e a n s e e d s w e r e s t imulated by lut id ine N - o x i d e (that is accompanied by sharp incre­ as ing of all cell prote ins s y n t h e s i s with primary 438 A P H Y T O H O R M O N E M E D I A T E D A C T I O N O F T H E REGULATORS ON CELL synthes i s of s o m e o n e s ) a n intens i f ied deve lopment of vegetative plant organs a n d de lay in deve lopment of generat ive (reproductive) o n e s occur [ 2 ] . Probably , the plant dwarf i sm is c a u s e d b y m u t a ­ tion of those g e n e s which are re lated to wall prote ins b iogenes i s . In this c a s e , most probably , g e n e m u t a ­ t i o n s , p r o g r a m m i n g s y n t h e s i s of p h y t o h o r m o n e s (which regulates activity of g e n e s ( g e n e ) , cod ing protein s y n t h e s i s of the wall) take place. Res torat ion of growth to normal level (or e v e n outstr ipping of normal growth) of dwarfish p lants , treated by e x o ­ genous growth s t imulators (aux in , g ibberel l ins) point out on this [44 ] . Descr ibed in l i terature effects of plant stabi l i ty to different d i s e a s e s a n d s tress factors of the env iron­ ment obta ined under act ion of synthe t i c regulators [ 4 5 — 4 7 J are a l so cond i t i oned , probably , b y increase s y n t h e s i s of a n y cel l wall prote ins , providing e i ther forms of stabil i ty ( the first protective barrier, the second — intracel lular protect ive m e c h a n i s m s ) . For example , increase stabi l i ty to pa thogens m a y b e connected with ris ing the s y n t h e s i s of g lycoprote in ex tens in . Stabil ity to o ther factors m a y b e a l so provided by increase of s y n t h e s i s both this protein a n d other cell wall prote ins b y synthe t i c growth activators on early s tages of p o s t e m b r y o g e n e s i s . O n e can not except a l so at artificially s t imulated growth the possibi l i ty act ivat ion of p l a s m a l e m m a pro­ te ins , complet ing cell wall with structural e l e m e n t s . It is poss ibly that syn the t i c growth regulators through phytohormone pool might qualitatively c h a n g e tubul in g e n e express ion or modify i so types of tubul in s u ­ bunits by above m e n t i o n e d m e c h a n i s m s [ 3 2 , 3 4 , 3 5 J, a n d as a consequence , increase stabil i ty M T s . Therefore , i t 's ev ident ly that s tudy of b i o g e n e s i s , structure a n d function of cell wall c o m p o n e n t s a n d functional proteins of p l a s m a l e m m a , participating in the cell wall formation, of the o n e h a n d ; p h y t o ­ hormone pool act ivated by growth regulators a s wel l as g e n e s activated by p h y t o h o r m o n e s — o n the o ther h a n d , during all period of plant o n t o g e n e s i s will give possibi l i ty to de termine the role of each cell wall protein a n d p l a s m a l e m m a protein, «serving» the wal l , in the processes of cell dif ferentiat ion a n d s p e ­ cial ization, and a l so to d e t e r m i n e , which g e n e s are responsible for t h e s e basic for plant ce l l s processes . В. А. Циганкова, В. H. Заєць, Л. А. Галкіна, Я. Б. Блюм Опосередкована фітогормонами дія синтетичних регуляторів на ріст клітин розтягненням у вищих рослин Резюме Показано, шр дія синтетичних активаторів росту на розви­ ток та ріст ізольованих «недекапітованих» зародкових осей була аналогічною за своїм характером до дії на зародкові осі інтактного насіння квасолі; за 72-годинний період збільшення розмірів зародкових осей залежало від складу середовища ін­ кубації: дистильована вода < N-окис лутидину - 6-метилтіо- урацил < ЮК. Ріст і розвиток «декапітованих» осей на тих самих середовищах різко відрізнявся від росту «недекапіто­ ваних»: дистильована вода > N-окис лутидину - 6-метилтіо- урацил < ЮК В експериментах із зародковими осями, у яких збережено по одній сім'ядолі («однодольні» кільчики), як у випадку з «недекапітованими», так і «декапітованими» зарод­ ковими осями збільшення розмірів було ідентичним такому зародкових осей інтактного насіння квасолі і також залежало від складу інкубаційного середовища: дистильована eoda<N- окис лутидину - 6-метилтіоура^иі < ЮК Вивчення фракцій­ ного складу новосинтезованих [ С J-мічених білків зародкових осей методом одномірного ПАГ-електрофорезу з наступною флюорографією гелів засвідчило, шр N-окис лутидину підсилює синтез усіх фракцій клітинних білків з переважаючим збіль­ шенням синтезу деяких високо- і низькомолекулярних полі­ пептидів, а 6-метилтіоурацил підсилює синтез тільки одного поліпептиду з молекулярною масою ЗО кДа. Отримані дані можуть розглядатися відповідно як доказ висунутих нами положень стосовно фітогормон-опосередкованої дії синтетич­ них регуляторів росту рослин та різноспрямованості ме­ ханізмів рістактивуючої дії N-окису лутидину та 6-метил- тіоурацилу. Запропоновано схему опосередкованого фітогормо­ нами механізму дії синтетичних регуляторів на ріст клітин розтягненням у вищих рослин. В. А. Цыганкова, В. Н. Заец, Л. А. Галкина, Я. Б. Блюм Опосредуемое фитогормонами действие синтетических регуляторов на рост клеток растяжением у высших растений Резюме Показано, что действие синтетических ростактиваторов на рост и развитие изолированных «недекапитированных» заро­ дышевых осей было аналогичным по своему характеру дейст­ вию на зародышевые оси интактных семян фасоли; за 72-ча­ совой период увеличение размеров зародышевых осей зависело от состава среды инкубации зародышей: диситиллированная вода < N-окись лутидина - 6-метилтиоурацил < МУК. Рост и развитие «декапитированных» зародышевых осей на тех же средах резко отличались от роста «недекапитированных» осей: дистиллированная вода > N-окись лутидина - 6-метил­ тиоурацил < МУК В опытах с зародышевыми осями, у кото­ рых было сохранено по одной семядоле («однодольные» проро­ стки), как в случае с «недекапитированными», так и «декапи- тированными» зародышевыми осями увеличение размера было идентично таковому зародышевых осей в интактных семенах фасоли и также зависело от состава инкубационной среды: диситиллированная вода < N-окись лутидина в 6-метилтиоу­ рацил < niffC Изучение фракционного состава новосинтезиро- ванных ([ С]-импульсно меченных) белков зародышевых осей методом одномерного ПАГ-электрофореза с последующей флюорографией гелей показало, что N-окись лутидина усили­ вает синтез всех фракций клеточных белков с преобладающим увеличением синтеза некоторых высоко- и низкомолекулярных полипептидов, а 6-метилтиоурацил усиливает синтез только одного полипептида с молекулярной массой 30 кДа. Получен­ ные данные рассматриваются соответственно как доказа­ тельство в пользу развиваемых нами представлений о фито- гормон-опосредуемом действии синтетических регуляторов роста растений и о разнонаправленности механизмов ростак- тивирующего действия N-окиси лутидина и 6-метилтиоура- цила. Предложена схема опосредуемого фитогормонами ме­ ханизма действия синтетических регуляторов на рост кле­ ток растяжением у высших растений. 4 3 9 TSYGANKOVA V. A. ET AL. REFERENCES 1. Tsygankova V. A , Blame Ya. B. S c r e e n i n g a n d pecul iar i ty of the b io log ica l ac t ion o f s y n t h e t i c p lant g r o w t h regu la tors / / B iopo l imer i і k l e t k a . — 1 9 9 7 . — 1 3 , N 6 . — P . 4 8 4 — 4 9 2 . (In E n g l . ) 2 . Tsygankova V. A., Zayets V. N., Galkina JL A , Prikazchikova L. P., Blume Ya. B. A n u n u s u a l m inor prote in a p p e a r i n g in e m b r y o n i c a x i s c e l l s of h a r i c o t b e a n s e e d s fo l lowing g e r m i n a ­ tion p r o c e s s s t i m u l a t e d b y 6 - m e t h y l t h i o u r a c y l / / B iopo l imer i і k l e t k a . — 1 9 9 8 . — 1 4 , N 5 . — P . 4 3 8 — 4 4 8 . (In E n g l . ) 3 . Farcas V., Hanna R., Maclachlan G. X y l o g l u c a n o l i g o s a c ­ c h a r i d e a - L - f u c o s i d a s e act iv i ty from g r o w i n g p e a s t e m s a n d g e r m i n a t i n g Nasturtium s e e d s / / P h y t o c h e m i s t r y . — 1 9 9 1 . — 3 0 — P . 3 2 0 3 — 3 2 0 7 . 4 . Levy S., Staehelin A S y n t h e s i s , a s s e m b l y a n d funct ion of p l a n t ce l l wal l m a c r o m o l e c u l e s / / Curr . O p i n . C e l l B i o l . — 1 9 9 2 . — 4 . — P . 8 5 6 — 8 6 2 . 5 . Heyn A. N. / . M o l e c u l a r b a s i s of a u x i n - r e g u l a t e d e x t e n s i o n growth a n d ro le o f d e x t r a n a s e / / P r o c . N a t . A c a d . Sc i . U S A . — 1 9 8 1 . — 7 8 , N 1 1 . — P . 6 6 0 8 — 6 6 1 2 . 6 . Poter I., Fry S. C. X y l o g l u c a n e n d o t r a n s g l u c o s y l a s e act ivi ty in p e a i n t e r n o d e s / / P l a n t P h y s i o l . — 1 9 9 3 . — 1 0 3 . — P . 2 3 5 — 2 4 1 . 7. Keith R. T h e p l a n t e x t r a c e l l u l a r matr ix : in a n e w e x p a n s i v e m o o d / / Curr . O p i n . C e l l B i o l . — 1 9 9 4 . — 6 . — P . 6 8 8 — 6 9 4 . 8 . Laemmli V. К C l e a v a g e of s tructural pro te ins d u r i n g the a s s e m b l y of t h e h e a d o f b a c t e r i o p h a g e T 4 / / N a t u r e . — 1 9 7 0 . — 2 2 7 . — P . 6 8 0 — 6 8 5 . 9 . Smith B. J. S D S p o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s of prote in / / M e t h o d s in m o l e c u l a r b i o l o g y . P r o t e i n s / E d . J. M. W a l k e r . — C l i f t o n ; N e w J e r s e y : H u m a n a p r e s s , 1 9 8 4 . — V o l . 1 — P . 4 1 — 5 6 . 10 . Varshavskaya V. B. I d e a s of N . G . K h o l o d n i y a b o u t p lant growth regu la tors in agr icu l tura l prac t i ce / / U k r . B o t . Jurn . ( K y i v ) . — 1 9 8 2 . — 3 9 , N 3 . — P . 8 7 — 9 6 . 1 1 . Terek О., Romaniuk К N., Terec К E n d o g e n o u s p h y t o h o r - m o n e s of p lant s t reated b y g r o w t h r e g u l a t o r s / / 2 Conf . o n p r o g r e s s in p l a n t s c i e n c e s f rom P l a n t B r e e d i n g to g r o w t h R e g u l a t i o n ( 1 5 — 1 7 J u n e 1 9 9 8 , M o s o n m a g y a r o v a r ) : A b s ­ t r a c t s . — B e r g h o l z - R e h b r u c k e , 1 9 9 8 . — P . 6 4 . 1 2 . Romaniuk N., Troyan V., Musiyaka V., Bezveniuk Z., Terec O. Invest igat ion o f g r o w t h r e g u l a t i o n act iv i ty of E m i s t y m , t h e n e w p e r s p e c t i v e p l a n t g r o w t h r e g u l a t o r / / 2 Q d Conf . o n p r o g r e s s in p lant s c i e n c e s from P l a n t B r e e d i n g to g r o w t h R e g u l a t i o n ( 1 5 — 1 7 J u n e 1 9 9 8 , M o s o n m a g y a r o v a r ) : A b s ­ t r a c t s . — B e r g h o l z - R e h b r u c k e , 1 9 9 8 . — P . 7 5 . 1 3 . Michalczuk L., Cooke T. /., Cochen J. D. A u x i n l e v e l s a t d i f ferent s t a g e s of carro t e m b r y o g e n e s i s / / P h y t o c h e m i s t r y . — 1 9 9 2 . — 3 1 . — P . 1 0 9 7 — 1 1 0 3 . 1 4 . Michalczuk L.f Ribnicky D. M.f Cooke T. J., Coken J. D. R e g u l a t i o n of i n d o l e - 3 - a c e t i c a c i d b i o s y n t h e t i c p a t h w a y s in carrot ce l l c u l t u r e s / / F is io l . R a s t e n i j ( R u s s i a ) . — 1 9 9 2 . — 1 0 0 . — P . 1 3 4 6 — 1 5 5 3 . 15 . Cooke T. J., Racusen R. #., Cohen /. D. T h e ro le of a u x i n in p lant e m b r y o g e n e s i s / / P l a n t C e l l . — 1 9 9 3 . — 5 . — P . 1 4 9 4 — 1 4 9 5 . 1 6 . Kukhar V. P., Pushkariov V. M., Galkina L. A , Ponomarenko S. P., Galkin A P. I v i n - y a n i n d u c e d s t imulat ion of c y t o p l a s m i c ribonucleoproteinic par t i c l e b i o s y n t h e s i s in e m b r y o n i c a x i s c e l l s from g e r m i n a t i n g ha r i c o t b e a n s e e d s / / D o p . A N Ukraini Ser . В . — 1 9 8 7 . — № 7 . — P . 7 6 — 7 8 . (In R u s . ) 17 . Wareing P. F.t Phillips I. D. J. G r o w t h a n d di f ferent iat ion in p lants: T r a n s l . from E n g l . — M o s c o w : Mir , 1 9 8 4 . — 5 1 2 p . 1 8 . Chen /., Varner J. E. A n e x t r a c e l l u l a r matr ix prote in in p lants : c h a r a c t e r i z a t i o n of a g e n o m i c c l o n e for carro t e x t e n s i n / / E M B O J . — 1 9 8 5 . — 4 , N 9 — P . 2 1 4 5 — 2 1 5 1 . 1 9 . York W. S., Darvill A. G.f Neil M. M.t Stevenson Т. Т., Albersheim P. Isolation and characterization of plant cell wal l s a n d cell wal l c o m p o n e n t s / / M e t h . E n z y m o l . — 1 9 8 6 . — P . 3 — 4 0 . 2 0 . Evans I. M.y Gatehouse L. A/., Yarwood J. N., Boulter D., Croy R. D. T h e e x t e n s i n g e n e fami ly in o i l s e e d r a p e (Brassica napus L.): c h a r a c t e r i z a t i o n of s e q u e n c e s of representa t ive m e m b e r s of the fami ly / / Мої . a n d G e n . G e n e t . — 1 9 9 0 . — 2 2 3 . — P . 2 7 3 — 2 8 7 . 2 1 . Showalter A M. S tructure a n d funct ion of p lant cel l wall pro te ins / / T h e P l a n t C e l l . — 1 9 9 3 . — 5 , N 1 . — P . 9 — 2 3 . 2 2 . Ann J. #., Choi Y, Kwon Y. M., Kim S. G., Choi Y. D., Lee J. S. A nove l e x t e n s i n g e n e e n c o d i n g a h y d r o x y p r o l i n e - r i c h g l y c o p r o t e i n r e q u i r e s s u c r o s e for its w o u n d - i n d u c i b l e e x p r e s ­ s ion in t r a n s g e n i c p lan t s / / T h e P l a n t C e l l . — 1 9 9 6 . — 8 . — P . 1 4 7 7 — 1 4 9 0 . 2 3 . Qi X., Behrens В. X., West P. R.> Mort A. J. So lubi l i zat ion a n d partial c h a r a c t e r i z a t i o n of e x t e n s i n f ragments from cel l w a l l s of co t ton s u s p e n s i o n cu l tures : e v i d e n c e for a cova l en t c r o s s - l i n k b e t w e e n e x t e n s i n a n d pec t in / / P l a n t P h y s i o l . — 1 9 9 5 . — 1 0 8 . — P . 1 6 9 1 — 1 7 0 1 . 2 4 . Delmer D. P. C e l l u l o s e b i o s y n t h e s i s / / A n n u . R e v . P lant P h y s i o l . — 1 9 8 7 . — 3 8 . — P . 2 5 9 — 2 9 0 . 2 5 . Delmer D. P., Solomon N., Read S. M. D i r e c t P h o t o l a b e l i n g wi th [ P 3 2 ] U D P - g l u c o s e for ident i f i ca t ion of a subun i t of cot ton f i b e r c a l l o s e s y n t h a s e / / P l a n t P h y s i o l . — 1 9 9 1 . — 9 5 — P . 5 5 6 — 5 6 3 . 2 6 . Dhugga К S.t Ray P. M. I soe l ec tr i c f o c u s i n g of p lant p l a s m a m e m b r a n e pro te ins / / P l a n t P h y s i o l . — 1 9 9 1 . — 9 5 . — P . 1 3 0 2 — 1 3 0 5 . 2 7 - Cyr R. J. M i c r o t u b u l e s in p l a n t m o r f o g e n e s i s : ro le of the c o r t i c a l a r r a y / / A n n u . R e v . C e l l . B i o l . — 1 9 9 4 . — 1 0 . — P . 1 5 3 — 1 8 0 . 2 8 . Goddard R. H., Wick S. W.f Silflow С. IX, Snustad D. P. M i c r o t u b u l e c o m p o n e n t s of the p lant cel l c y t o s k e l e t o n / / P lant P h y s i o l . — 1 9 9 4 . — 1 0 4 . — P . 1 — 6 . 2 9 . Giddings Т. H., Staehelin JL A M i c r o t u b u l e - m e d i a t e d control o f microfibril d e p o s i t i o n : a r e - e x a m i n a t i o n of t h e h y p o t h e s i s / / T h e c y t o s k e l e t a l b a s i s of p l a n t g r o w t h a n d form / E d . C . W . L l o y d . — S a n D i e g o : A c a d e m i c , 1 9 9 1 . — P . 8 5 — 1 0 0 . 3 0 . Morejohn L. C. T h e m o l e c u l a r p h a r m a c o l o g y of p lant tubul in a n d m i c r o t u b u l e s / E d . C . W . L l o y d . — S a n D i e g o : A c a d e m i c , 1 9 9 1 . — P . 2 9 — 4 4 . 3 1 . Hussey P. J. у Silflow C. D. T u b u l i n g e n e e x p r e s s i o n in h i g h e r p l a n t s / / E d . C . W . L l o y d . — S a n D i e g o : A c a d e m i c , 1 9 9 1 . — P . 1 5 — 2 8 . 3 2 . Smertenko A , Blume Ya. B.t Viklicky V., Opatrny Z . , Draber P. Pos t t rans la t iona l m o d i f i c a t i o n s a n d mult ip le i soforms of tubul in in Nicotiana tabacum c e l l s / / P l a n t a . — 1 9 9 7 . — 2 0 1 . — P . 3 4 9 — 3 5 8 . 3 3 . Blume Ya., Smertenko A., Ostapets N. N., Viklicky V., Draber P. Pos t t rans la t iona l m o d i f i c a t i o n s of p lant tubul in / / Cel l Bio l . I n t . — 1 9 9 8 . — 2 1 , N 1 2 . — P . 9 1 8 — 9 2 0 . 3 4 . Hotani #., Horio T. D y n a m i c s of m i c r o t u b u l e s v i sua l i sed by darkf i e ld m i c r o s c o p y : t r eadmi l l i ng a n d d y n a m i c instabi l i ty / / C e l l M o u l . C y t o s k e l e t o n . — 1 9 8 8 . — 1 0 . — P . 2 2 9 — 2 3 6 . 3 5 . Cyr R. J. C a l c i u m / c a l m o d u l i n a f f ec t s micro tubule stabil i ty in l y s e d protop las t s / / J. Ce l l S c i . — 1 9 9 1 . — 1 0 0 . — P . 3 1 1 — 3 1 7 . 3 6 . Akashi Т., Kavasaki S., Shibaoka H. S tab i l i za t ion of cort ical m i c r o t u b u l e s b y t h e ce l l wal l in c u l t u r e d t o b a c c o cell / / P l a n t a . — 1 9 9 0 . — 1 8 2 . — P . 3 6 3 — 3 6 9 . 3 7 . Laporte K, Rossignol M., Traas J. A Interact ion of tubul in w i th p l a s m a m e m b r a n e - t u b u l i n is p r e s e n t in puri f ied p l a s - m a l e m m a a n d b e h a v e s a s in tegra l m e m b r a n e prote in / / P l a n ­ t a — 1 9 9 3 . — 1 9 1 . — P . 4 1 3 — 4 1 6 . 3 8 . Staiger С J., Yan M., Valenta R.f Shaw P. Warn R. M. M i c r o i n j e c t e d profi l in a f f ec t s c y t o p l a s m i c s t r e a m i n g in plant 4 4 0 A P H Y T O H O R M O N E - M E D I A T E D ACTION O F T H E REGULATORS O N CELL ce l l s b y rap id ly d e p o l y m e r i z i n g ac t in microf i laments / / Curr . B i o l . — 1 9 9 4 . — 4 . — P . 2 1 5 — 2 1 9 . 3 9 . Staehelin L. A . , Giddings Т. H. M e m b r a n e - m e d i a t e d contro l of cel l wall microfibri l lar o r d e r / / D e v e l o p m e n t a l order : its or ig in a n d regula t ion / E d s S. S u b t e l n y , P . B . G r e e n . — N e w York: Liss , 1 9 8 2 — P . 1 3 3 — 1 4 7 . 4 0 . Staehelin L. A., Giddings T. / / . Spat ia l r e l a t i o n s h i p b e t w e e n microtubules a n d p l a s m a - m e m b r a n e r o s e t t e s d u r i n g t h e d e p o s i ­ tion of pr imary wal l microf ibri ls in Closterium sp. II P l a n t a . — 1 9 8 8 . — 1 7 3 . — P . 2 2 — 3 0 . 4 1 . Laskowski M . J. M i c r o t u b u l e or i en ta t ion in p e a s tem ce l l s : a c h a n g e in or ienta t ion fo l lows the ini t iat ion of g r o w t h rate d e c l i n e / / P l a n t a — 1 9 9 0 — 1 8 1 . — P . 4 4 — 5 2 . 4 2 . Baluska F.t Parker J. S.f Barlow P. W. Spec i f i c pa t t erns of cort ical a n d e n d o p l a s m i c m i c r o t u b u l e s a s s o c i a t e d with ce l l growth a n d t issue d i f ferent ia t ion in roots o f m a i z e (Zea mays L.) II J. Cel l S c i — 1 9 9 2 — 1 0 3 — P . 1 9 1 — 2 0 0 . 4 3 . Ranjeva R. S i g n a l t r a n s d u c t i o n in p l a n t g r o w t h a n d d e v e l o p ­ m e n t / / P l a n t S c i e n c e — 1 9 9 7 . — 1 2 6 , N 2 , 8 . — P . 2 2 7 — 2 2 8 . 4 4 . P l a n t g r o w t h a n d i t ' s r e g u l a t i o n ( g e n e t i c s a n d p h y s i o l o g i c a l a s p e c t s ) / E d s В . I. K e f e l y , S . I. T o m a . — K i s h i n e v : Sht i in t sa , 1 9 8 5 . — P . 2 2 2 . 4 5 . Plant g r o w t h r e g u l a t o r s / E d s V . S . S h e v e l u c h a , V . P . K u k h a r , A . A . S o z i n o v . — K y i v , 1 9 9 2 . — 1 7 8 p . 4 6 . Plant g r o w t h r e g u l a t o r s in agr icu l tura l / E d s A . O . S h e v - c h e n k o . — K y i v , 1 9 9 8 . — 1 4 3 p . 4 7 . Kornyeyev D. Yu., Kochubey S. M., Ponomarenko S. P., Borovikova G. S., Shevchenko О. V. T h e i n c r e a s e of the ma ize s e e d l i n g s t o l e r a n c e to t h e h i g h t e m p e r a t u r e s t res s u p o n treat­ m e n t wi th p l a n t g r o w t h r e g u l a t o r emis t im С / / II Int. S y m p . o n P l a n t B i o t e c h n o l . ( 4 — 8 O c t o b e r 1 9 9 8 ) : A b s t r a c t s — K y i v , 1 9 9 8 . — 1 7 5 p . У Д К 6 3 1 . 8 1 1 . 9 8 R e c e i v e d 2 4 . 0 2 . 9 9 441