Solvation in atomic liquids: connection between Gaussian field theory and density functional theory
For the problem of molecular solvation, formulated as a liquid submitted to the external potential field created by a molecular solute of arbitrary shape dissolved in that solvent, we draw a connection between the Gaussian field theory derived by David Chandler [Phys. Rev. E, 1993, 48, 2898] and c...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2017
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/157011 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Solvation in atomic liquids: connection between Gaussian field theory and density functional theory / V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis // Condensed Matter Physics. — 2017. — Т. 20, № 3. — С. 33005: 1–14. — Бібліогр.: 75 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157011 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1570112019-06-21T01:26:57Z Solvation in atomic liquids: connection between Gaussian field theory and density functional theory Sergiievskyi, V. Levesque, M. Rotenberg, B. Borgis, D. For the problem of molecular solvation, formulated as a liquid submitted to the external potential field created by a molecular solute of arbitrary shape dissolved in that solvent, we draw a connection between the Gaussian field theory derived by David Chandler [Phys. Rev. E, 1993, 48, 2898] and classical density functional theory. We show that Chandler’s results concerning the solvation of a hard core of arbitrary shape can be recovered by either minimising a linearised HNC functional using an auxiliary Lagrange multiplier field to impose a vanishing density inside the core, or by minimising this functional directly outside the core — indeed a simpler procedure. Those equivalent approaches are compared to two other variants of DFT, either in the HNC, or partially linearised HNC approximation, for the solvation of a Lennard-Jones solute of increasing size in a Lennard-Jones solvent. Compared to Monte-Carlo simulations, all those theories give acceptable results for the inhomogeneous solvent structure, but are completely out-of-range for the solvation free-energies. This can be fixed in DFT by adding a hard-sphere bridge correction to the HNC functional. Для проблеми молекулярної сольватацiї, що формулюється як рiдина в зовнiшньому потенцiальному полi, створеному молекулами довiльної форми, якi розчиненi в розчиннику, ми приводимо зв’язок мiж теорiєю гауссового поля, виведеною Давидом Чандлером [Phys. Rev. E, 1993, 48, 2898] i класичною теорiєю функцiоналу густини (DFT). Ми показуємо, що результати Чандлера щодо сольватацiї твердого кору довiльної форми можуть бути зрегенерованi або шляхом мiнiмiзацiї лiнеаризованого HNC функцiоналу, використовуючи допомiжне поле множникiв Лагранжа для накладання умови зникаючої густини всерединi кору, або мiнiмiзацiєю цього функцiоналу напряму в областi зовнi кору, що є насправдi простiшою процедурою. Цi еквiвалентнi пiдходи порiвнюються з двома варiантами DFT, або в наближеннi HNC, або в наближеннi частково лiнеаризованого HNC, для сольватацiї розчиненої речовини iз взаємодiєю Леннарда-Джонса зi зростаючим розмiром в розчиннику iз леннард-джонсiвською взаємодiєю. Щодо порiвняння з моделюванням методом Монте Карло, всi цi теорiї дають прийнятнi результати для неоднорiдної структури розчинника, але є повнiстю поза дiапазоном для сольватацiйних вiльних енергiй. Це може бу 2017 Article Solvation in atomic liquids: connection between Gaussian field theory and density functional theory / V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis // Condensed Matter Physics. — 2017. — Т. 20, № 3. — С. 33005: 1–14. — Бібліогр.: 75 назв. — англ. 1607-324X PACS: 05.20.Jj, 11.10.-z, 82.60.Lf, 64.75.Bc DOI:10.5488/CMP.20.33005 arXiv:1708.01299 http://dspace.nbuv.gov.ua/handle/123456789/157011 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For the problem of molecular solvation, formulated as a liquid submitted to the external potential field created
by a molecular solute of arbitrary shape dissolved in that solvent, we draw a connection between the Gaussian
field theory derived by David Chandler [Phys. Rev. E, 1993, 48, 2898] and classical density functional theory. We
show that Chandler’s results concerning the solvation of a hard core of arbitrary shape can be recovered by
either minimising a linearised HNC functional using an auxiliary Lagrange multiplier field to impose a vanishing
density inside the core, or by minimising this functional directly outside the core — indeed a simpler procedure.
Those equivalent approaches are compared to two other variants of DFT, either in the HNC, or partially linearised
HNC approximation, for the solvation of a Lennard-Jones solute of increasing size in a Lennard-Jones solvent.
Compared to Monte-Carlo simulations, all those theories give acceptable results for the inhomogeneous solvent
structure, but are completely out-of-range for the solvation free-energies. This can be fixed in DFT by adding a
hard-sphere bridge correction to the HNC functional. |
format |
Article |
author |
Sergiievskyi, V. Levesque, M. Rotenberg, B. Borgis, D. |
spellingShingle |
Sergiievskyi, V. Levesque, M. Rotenberg, B. Borgis, D. Solvation in atomic liquids: connection between Gaussian field theory and density functional theory Condensed Matter Physics |
author_facet |
Sergiievskyi, V. Levesque, M. Rotenberg, B. Borgis, D. |
author_sort |
Sergiievskyi, V. |
title |
Solvation in atomic liquids: connection between Gaussian field theory and density functional theory |
title_short |
Solvation in atomic liquids: connection between Gaussian field theory and density functional theory |
title_full |
Solvation in atomic liquids: connection between Gaussian field theory and density functional theory |
title_fullStr |
Solvation in atomic liquids: connection between Gaussian field theory and density functional theory |
title_full_unstemmed |
Solvation in atomic liquids: connection between Gaussian field theory and density functional theory |
title_sort |
solvation in atomic liquids: connection between gaussian field theory and density functional theory |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157011 |
citation_txt |
Solvation in atomic liquids: connection between Gaussian field theory and density functional theory / V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis // Condensed Matter Physics. — 2017. — Т. 20, № 3. — С. 33005: 1–14. — Бібліогр.: 75 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT sergiievskyiv solvationinatomicliquidsconnectionbetweengaussianfieldtheoryanddensityfunctionaltheory AT levesquem solvationinatomicliquidsconnectionbetweengaussianfieldtheoryanddensityfunctionaltheory AT rotenbergb solvationinatomicliquidsconnectionbetweengaussianfieldtheoryanddensityfunctionaltheory AT borgisd solvationinatomicliquidsconnectionbetweengaussianfieldtheoryanddensityfunctionaltheory |
first_indexed |
2025-07-14T09:21:29Z |
last_indexed |
2025-07-14T09:21:29Z |
_version_ |
1837613596295561216 |
fulltext |
Condensed Matter Physics, 2017, Vol. 20, No 3, 33005: 1–14
DOI: 10.5488/CMP.20.33005
http://www.icmp.lviv.ua/journal
Solvation in atomic liquids: connection between
Gaussian field theory and density functional theory
∗
V. Sergiievskyi1, M. Levesque1, B. Rotenberg2, D. Borgis1,3
1 Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, UMR 8640 PASTEUR, 75005 Paris, France
2 Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234 PHENIX, 4 Place Jussieu, 75005 Paris, France
3 Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay,
91191 Gif-sur-Yvette, France
Received June 23, 2017, in final form July 19, 2017
For the problem of molecular solvation, formulated as a liquid submitted to the external potential field created
by a molecular solute of arbitrary shape dissolved in that solvent, we draw a connection between the Gaussian
field theory derived by David Chandler [Phys. Rev. E, 1993, 48, 2898] and classical density functional theory. We
show that Chandler’s results concerning the solvation of a hard core of arbitrary shape can be recovered by
either minimising a linearised HNC functional using an auxiliary Lagrange multiplier field to impose a vanishing
density inside the core, or by minimising this functional directly outside the core— indeed a simpler procedure.
Those equivalent approaches are compared to two other variants of DFT, either in the HNC, or partially linearised
HNC approximation, for the solvation of a Lennard-Jones solute of increasing size in a Lennard-Jones solvent.
Compared to Monte-Carlo simulations, all those theories give acceptable results for the inhomogeneous solvent
structure, but are completely out-of-range for the solvation free-energies. This can be fixed in DFT by adding a
hard-sphere bridge correction to the HNC functional.
Key words: statistical mechanics, classical fluids, 3-dimensional systems, density functional theory, gaussian
field theory
PACS: 05.20.Jj, 11.10.-z, 82.60.Lf, 64.75.Bc
1. Introduction
In a world of hard-core numerical simulations on huge computers where most problems in solution
chemistry are formulated in terms of molecular dynamics simulations and subsequent data analysis,
it is wise to keep simpler methods that make it possible to derive analytical results or to perform the
calculations with reasonable computer resources. Such methods rely on the statistical mechanics of
atomic and molecular liquids that has been developed in the second half of the last century and are found
by now in classical textbooks [1–3]. Along this vein is the beautiful and appealing recent theoretical work
of Dung Di Caprio and Jean-Pierre Badiali who were able to formulate the description of classical fluids
at equilibrium as a formally exact field theory [4–8]; this formalism was applied to model atomic and
molecular fluids at solid interfaces [9–12]. Other more traditional approaches include molecular integral
equation theories in the reference interaction site (RISM) [13–16], molecular [17–24], or mixed [25, 26]
picture and the density functional theory (DFT) in its atomic [27–29] or molecular version [30–38].
The basic theoretical principles of classical DFT can be found in the seminal paper by Evans [27]
and subsequent excellent reviews by him [27–29] and other authors [39]. The advent in the late 1980’s
of a quasi-exact DFT for inhomogeneous hard sphere mixtures, the fundamental measure theory (FMT)
[40–45], has recently promoted a great deal of applications to atomic-like fluids in bulk or confined
∗This contribution is dedicated to Prof. Jean-Pierre Badiali, who did much for promoting an original field theoretical picture of
classical fluids.
This work is licensed under a Creative Commons Attribution 4.0 International License . Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
33005-1
https://doi.org/10.5488/CMP.20.33005
http://www.icmp.lviv.ua/journal
http://creativecommons.org/licenses/by/4.0/
V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis
conditions or at interfaces. Classical “atomic” DFT can be nowadays considered as a method of choice
for many chemical engineering problems [46, 47]. Much less applications exist for molecular fluids for
which solvent orientations should be considered. The description has been generally limited to generic
dipolar solvents or dipolar solvent/ions mixtures [32–35]; such an approach may be already considered as
“civilized” compared to primitive continuum models [34]. We have proposed an extension of molecular
DFT to arbitrary fluid/solvents (the so-called MDFT method) with the goal of describing the solvation of
three-dimensional molecular object in those solvents [36–38, 48–56]. Note that a 3D-version of the RISM
equations [57–62], as well as a RISM-based DFT approach [63, 64] have also been recently developed
with the same goal.
In this paper, we also elaborate on a field theoretical approach that is different from the one by
di Caprio and Badiali — and certainly starts from a less fundamental ground. We refer to the Gaussian
field theory (GFT) of fluids developed by Chandler and collaborators [65–68]. Our main focus will be to
draw a connection between the GFT approach of Chandler and our favorite classical DFT in the context
of molecular solvation, i.e., a liquid submitted to an external potential field v(r) created by a molecular
solute of arbitrary shape dissolved at infinite dilution in it. For simplicity, we restrict the discussion
to atomic or pseudo-atomic solvents (such as CCl4) modelled by spherical Lennard-Jones particles for
which only the position r matters.
2. Density functional theory and HNC approximation
We begin by recalling the basis of the density functional theory of liquids submitted to an external
potential field v(r). The grand potential density functional for a fluid having an inhomogeneous density
ρ(r) in the presence of an external field v(r) can be defined as [27, 28]
Ω[ρ] = F[ρ] − µs
∫
ρ(r)dr, (2.1)
where F[ρ] is the Helmholtz free energy functional and µs is the chemical potential. The grand potential
can be evaluated relatively to a reference homogeneous fluid having the same chemical potential µs and
particle density ρ0
Ω[ρ] = Ω[ρ0] + F [ρ]. (2.2)
Following the general theoretical scheme introduced by Evans [27, 28], the density functional F [ρ] can
be split into three contributions: an ideal term, an external potential term and an excess free-energy term
accounting for the intrinsic interactions within the fluid,
F [ρ] = Fid[ρ] + Fext[ρ] + Fexc[ρ], (2.3)
with the following expressions of the first two terms
Fid[ρ] = kBT
∫
dr
{
ρ (r) ln
[
ρ (r)
ρ0
]
− ρ (r) + ρ0
}
, (2.4)
Fext[ρ] =
∫
dr v(r)ρ (r). (2.5)
There are several ways of arriving at an exact expression of the excess free-energy, i.e., using an adiabatic
perturbation of the pair potential (the so-called adiabatic connection route in electronic DFT), of the
external potential, or of the density itself. A conventional approximation is to express the excess term as
an expansion around the homogeneous density ρ0
Fexc[ρ] = −
kBT
2
∫
dr1dr2 c(r12; ρ0)∆ρ(r1)∆ρ(r2) + FB[ρ]. (2.6)
The first term is the (two-body) direct correlation function (DCF) of the homogeneous solvent, that
depends on r12 = |r2 − r1 |, and can be thus denoted as c(r12; ρ0). We define the so-called bridge
33005-2
Gaussian field and density functional theory
functional in terms of the higher-order direct correlation functions
FB[ρ] = −
kBT
6
∫
dr1dr2dr3 c(3)(r1, r2, r3; ρ0)∆ρ(r1)∆ρ(r2)∆ρ(r3) +O(∆ρ4), (2.7)
which thus starts with a cubic term in ∆ρ. Setting FB[ρ] = 0 corresponds to the so-called homogeneous
reference fluid (HRF) approximation. It can be shown to be equivalent to the hypernetted chain (HNC)
approximation in integral equation theories [29]. The input of the theory is thus a direct correlation
function of the pure solvent, which can be extracted from simulation or experimental data by measuring
the total correlation function h(r) = g(r) − 1 and solving subsequently the Ornstein-Zernike equation,
i.e., in Fourier space:
1 − ρ0c(k) = [1 + ρ0h(k)]−1 = χ−1(k). (2.8)
χ(r) is the structure factor, or the density susceptibility, measuring density-density correlations at a
given distance in the fluid. The excess free energy can thus be also expressed in terms of the inverse
susceptibility
Fexc[ρ] =
kBT
2
∫
dr1dr2 χ
−1(r12)∆ρ(r1)∆ρ(r2) −
kBT
2ρ0
∫
dr∆ρ(r)2 + FB[ρ]. (2.9)
Minimization of equation (2.3) with respect to ρ gives the equilibrium density
ρ(r1) = ρ0 exp
[
−βv(r1) −
∫
dr2 χ
−1(r12)∆ρ(r2) +
∆ρ(r1)
ρ0
−
δ(βFB)
δρ
(r1)
]
. (2.10)
3. Chandler’s Gaussian field theory
Along the same lines as above, Chandler considered the case of a liquid of density ρ0, characterised
by its intrinsic density susceptibility χ(r), containing a solute creating an external potential v(r) outside
a hard core that defines an inside volume Vin where the density ρ(r) is zero and where by convention
v(r) = 0. Chandler writes a gaussian field Hamiltonian for the pure fluid
HB =
kBT
2
∫
dr1dr2 ∆ρ(r1) χ
−1(r12)∆ρ(r2), (3.1)
and the partition function of the fluid + solute system as a field integral
Z =
∫
Dρ
[ ∏
r inside
δ
(
ρ(r)
) ]
exp
[
−βHB −
∫
dr βv(r) ρ(r)
]
, (3.2)
where the product of delta-functions imposes the constraint of zero-density inside the core. Performing
the Gaussian integral exactly, Chandler arrives at the expression of the solvation free energy
βFeq = − log Z = ρ0
∫
dr βv(r) − 1
2
∫
out
dr1
∫
out
dr2 βv(r1)χ(|r2 − r1 |)βv(r2)
+
1
2
∫
in
dr3
∫
in
dr4 χ
−1
in (r3, r4)
ρ0 −
∫
out
dr1 χ(|r3 − r1 |)βv(r1)
ρ0 −
∫
out
dr2 χ(|r4 − r2 |)βv(r2)
+
1
2
ln (det χin) , (3.3)
and, by functional differentiation with respect to the external potential, at the one-particle equilibrium
density
ρeq(r) = ρ0 −
∫
out
dr1 χ(|r − r1 |)βv(r1) −
∫
in
dr1
∫
in
dr2 χ
−1
in (r1, r2)χ(|r1 − r|)
+
ρ0 −
∫
out
dr3 χ(|r2 − r3 |)βv(r3)
. (3.4)
33005-3
V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis
We stick here to Chandler’s notations, with his u(r) equal to −βv(r). Note that χ−1
in should be understood
as (χin)−1.
One of the main results in Chandler’s paper is that the susceptibility of the medium, defined as
χ(r1, r2) = δ〈ρ(r1)〉/δv(r2), is altered by the presence of the hard core and changed from χ(r1, r2) =
χ(|r1 − r2 |) for the infinite medium to an effective susceptibility
χeff(r1, r2) = χ(|r1 − r2 |) −
∫
in
dr3
∫
in
dr4 χ(|r1 − r3 |) χ
−1
in (r3, r4) χ(|r4 − r2 |) (3.5)
that is not translationally invariant anymore.
4. Linearised and partially-linearised HNC approximations and connec-
tion to Gaussian field theory
The linearised HNC approximation consists in expanding the ideal term in equation (2.4) at dominant
order in ∆ρ
Fid[ρ] =
kBT
2ρ0
∫
dr∆ρ(r)2 (4.1)
so that the functional to be minimised becomes
βF [ρ] =
1
2
∫
dr1dr2 χ
−1(r12)∆ρ(r1)∆ρ(r2) +
∫
dr βv(r)ρ (r). (4.2)
In the presence of a solute with a hard repulsive core [very positive values of the potential v(r)], such
approximationwill obviously fail to give an exponentially vanishing density inside the core. As considered
by Chandler above, this approximation should be complemented by constraints imposing ρ(r) = 0 within
the inside volume Vin. There are two ways to impose those constraints. The first one, not necessarily
the easiest one, is to introduce an auxiliary Lagrange multiplier field λ(r) and minimise the following
constrained functional with respect to ρ(r) and λ(r)
βFc[ρ] =
1
2
∫
dr1dr2 χ
−1(r12)∆ρ(r1)∆ρ(r2) +
∫
dr βv(r)ρ (r) −
∫
in
dr λ(r)ρ (r). (4.3)
Thus, the minimisation equations are as follows:
δ(βF )
δλ(r) = ρ (r) = 0, r ∈ Vin , (4.4)
δ(βF )
δρ(r) = λ(r), (4.5)
λ(r) = 0, r ∈ Vout. (4.6)
These equations can be readily solved by linear algebra to give an equilibrium density that is equivalent
to the one in equation (3.4). Replacement in equation (4.3) does give the equilibrium free energy of
equation (3.3), except the last log-of-determinant term that includes a measure of the fluctuations that
is absent in the functional approach. Numerical estimations shows that it can be safely neglected with
respect to the other terms. We conclude that the Chandler’s Gaussian field approach is, up to a small
log-term correction in the energy, equivalent to a DFT approach with a linearised HNC approximation.
From a DFT perspective, however, a natural way to account for the constraint is to minimise the
functional outside the core only, i.e., for r ∈ Vout. The functional can thus be limited to the outside region
and written as
βF [ρ] =
1
2
∫
out
dr1
∫
out
dr2 χ
−1(r12)∆ρ(r1)∆ρ(r2) +
∫
out
dr βv(r)ρ (r)
− ρ0
∫
out
dr
∫
in
dr1 χ
−1(|r − r1 |) ρ(r) −
1
2
ρ2
0
∫
in
dr1
∫
in
dr2 χ
−1(r12). (4.7)
33005-4
Gaussian field and density functional theory
This functional can be easily numerically minimised on a three-dimensional grid using for example a
quasi-Newton minimiser such as L-BFGS [69] to yield the equilibrium density ρeq and the associated
free energy. Since the above functional is bilinear in ρ(r), the formal solution can be also obtained by
matrix inversion, i.e., outside the core
ρeq(r) = ρ0 +
∫
out
dr1(χ
−1
out)
−1(r, r1)
ρ0
∫
in
dr2 χ
−1(|r2 − r1 |) − βv(r1)
. (4.8)
This solution looks quite different from that in equation (3.4); in the appendix below it is shown that the
two formulas are in fact equivalent.
Thus, we arrive at the main conclusion of this paper: the rather involved formal solutions of the
Gaussian field approach (equivalent to a functional minimization with Lagrange multipliers, as seen
above), which involves the necessity to numerically invert the matrix χin inside the core and then
to perform a double multiplication of this matrix with χ, can be replaced by a simple numerical
minimisation of the LHNC functional (4.7) outside the hard core. The basic input is the homogeneous
bulk inverse susceptibility χ−1(r12) [or equivalently, the homogeneous bulk DCF c(r12; ρ0)], with no
interference whatsoever with the introduction of hard-core conditions. The bulk inverse susceptibility
applies everywhere, inside and outside the hard core. The fact that, as noted by Chandler, the introduction
of such hard-core boundaries modifies the apparent susceptibility of the medium outside the core is a
consequence that applies to the LHNC-DFT approach as it does for the GFT one. It should be also valid
at a HNC level; this effect can be measured numerically as χ(r1, r2) = δ 〈ρ(r1)〉 /δv(r2)— indeed not
an easy task on a 3D spatial grid.
We note that an approximation between HNC and LHNC, referred to as the partially linearised HNC
approximation (PLHNC), can be obtained by writing the ideal free energy as βFid[ρ] =
∫
dr fid
(
ρ(r)
)
with
fid
(
ρ(r)
)
=
∆ρ(r)2
ρ0
(4.9)
for ∆ρ(r) > 0 and the full expression in equation (2.4)
fid
(
ρ(r)
)
= ρ(r) ln
[
1 +
∆ρ(r)
ρ0
]
− ∆ρ(r) (4.10)
for ∆ρ(r) < 0. The overall function remains continuous at ρ(r) = ρ0.
In the following we test the HNC, LHNC (equivalent to Gaussian field theory), and PLHC for the
solvation of a Lennard-Jones sphere of an increasing diameter in a Lennard-Jones liquid, in comparison
with the reference Monte-Carlo generated by Lazaridis [70]. The LJ solvent is characterised by a particle
diameter σ0 and reduced thermodynamic conditions ρ∗ = 0.85, T∗ = 0.88. In figure 1, we display
the solvent structure for 3 solute diameters, σ/σ0 = 0.2, 1, and 2, respectively. The DFT results were
obtained by direct functional minimisation using a home-made spherical 1D code. The hard-core volume
for LHNC was identified to the void region obtained after HNC minimisation [ρ(r) < ρmin, a fixed,
very small value]. The first observation is that none of the approximations is either perfect or clearly off.
Apart from the smaller solute, it is seen that the HNC approximation tends to underestimate the first-peak
position and overestimate its height. The second observation is that, surprisingly, LHNC and PLHNC
give undistinguishable results; for both, the first peak appears now too low for the smaller solutes and
has a correct height but with a shift in position for the biggest, as in HNC. PLHNC can be qualified as
a better theory since the hard core is defined and handled automatically by the functional. The situation
gets really worse when going to the solvation free energies. In figure 2, we compare the results of the
3 approximations when increasing progressively σ/σ0 to the simulation results of Lazaridis. All of them
are off by a large factor and in nearly the same way. The problem has been clearly identified [56, 71, 72]:
all those HNC variants give an apparent pressure which is way too high with respect to the exact pressure,
Pexact, of the LJ fluid, and thus a spurious ∆P∆V contribution where ∆P = PHNC − Pexact, and ∆V is the
solute partial molar volume— close to, but not identical to the inside volumeVin of the solute. This can be
corrected by adding an empirical pressure correction, −∆P∆V , to the DFT-HNC (or LHNC, or PLHNC)
free energy [56, 71]. Herein below we switch to a more fundamental correction for Lennard-Jones that
involves a hard-sphere bridge functional.
33005-5
V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis
Figure 1. (Color online) Reduced solvent density around LJ solutes of different relative diameters ob-
tained by DFT with the HNC, LHNC, and PLHNC approximations (grey, black and dashed black lines,
respectively), and compared to Molecular dynamics results in red. The LHNC and PLHNC results are
indistinguishable on the scale of the figure.
Figure 2. (Color online) Solvation free-energy obtained by DFT in different approximations for a
Lennard-Jones solute of increasing relative diameter. The blue triangles are the Monte-Carlo results
of Lazaridis [70].
33005-6
Gaussian field and density functional theory
5. Hard-sphere bridge correction
Building the thermodynamics of the Lennard-Jones fluid by taking a suitable hard-sphere fluid as a
reference is indeed a classic in liquid-state theory and is at the basis of the Van der Waals theory of fluids.
A variant of this idea is to approximate the bridge functional in equation (2.6) by a hard sphere bridge
(HSB) functional introduced by Rosenfeld as a universal bridge function [73–75].
F HS
B [ρ(r)] = FHS
exc [ρ(r)] − FHS
exc [ρ0] −
δFHS
exc [ρ]
δρ(r)
����
ρ0
∫
dr∆ρ(r)
+
kBT
2
∫
dr1dr2 cHS(r12; ρ0)∆ρ(r1)∆ρ(r2). (5.1)
Here, FHS
exc [ρ(r)] represents the one-component hard-sphere excess functional which, up to a very good
approximation, can be taken as the fundamental measure theory (FMT) functional of Rosenfeld [40] and
Kierlik and Rosinberg [41, 42]. The fourth term involves the direct correlation function of the HS fluid
at the same density, i.e.,
cHS(|r1 − r2 |; ρ0) = −
δ2βFHS
exc [ρ]
δρ(r1)δρ(r2)
����
ρ0
. (5.2)
Note that defined as in equation (5.1), F HB
B [ρ(r)] carries an expansion in ∆ρ of the order 3 and higher
which corrects the second order expansion of the excess free energy in equation (2.6).
We show in figure 3 that this HNC+HSB theory works much better than the HNC variants for the
prediction of solvation properties of dissolved molecular objects. There we again compare the solvation
free energy of the growing LJ sphere to the Monte-Carlo results of Lazaridis [70] using different HS
diameters, d. It can be seen that the results are extremely sensitive to the choice of d, and that the best
agreement is obtained for d = 1.014σ (indeed close to 1, that would be the initial guess value). For that
value, we have plotted in figure 4 the solvent density, g(r) = ρ(r)/ρ0, obtained for solute of different sizes
by direct MD simulations that we have generated, or by DFT in the HNC or HNC+HSB approximation.
It can be seen that the addition of the hard-sphere bridge greatly improves the results compared to the
HNC approximation and furthermore yields a very good structure.
Figure 3. (Color online) Solvation free-energy obtained by DFT using the hard-sphere bridge functional
of equation (5.1) with different HS diameters, compared to the Monte-Carlo results of Lazaridis [70].
33005-7
V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis
Figure 4. (Color online) Reduced solvent density around LJ solutes of different diameters, using the
HNC approximation, or adding a hard-sphere bridge functional with d = 1.014σ. The red curves were
generated by molecular dynamics.
6. Conclusion
In this paper we have shown a close connection between the Gaussian field theory of solvation
introduced by Chandler in [65] and density functional theory in a linearised HNC approximation.
Chandler’s formulae for the solvation density around hard solutes and the associated solvation free
energies can be recovered by minimising the LHNC functional with constraints imposed through an
auxiliary Lagrange multiplier field. A simpler but equivalent formulation arises when minimising the
functional outside the hard core only. Both theories share with the full HNC approximation, or the
intermediate PLHNC approximation, the same caveat of greatly overestimating the solvation free energy
of dissolved objects. Chandler was indeed aware of these limitations and provided further improvements
based on the coupling of GFT at the microscopic scale to a lattice gas model having a correct macroscopic
behaviour at larger scales [68]. In DFT, improvements can be made by considering a bridge functional
beyond the second order expansion in density. For the Lennard-Jones solvent, the natural bridge that
emerges is that of a reference hard fluid, whose hard-sphere diameter should be optimised. The extension
of such an approach to molecular liquids, such as water, has been proposed with some success [51, 63].
This remains to be further explored and improved — since a water molecule is definitely not a spherical
entity.
The interlink between density functional theories and other versions of liquid-state field theories,
such as those developed by Jean-Pierre Badiali and his Parisian and Ukrainian collaborators along the
years, is also a very interesting subject that merits to be explored in depth in the future.
33005-8
Gaussian field and density functional theory
Acknowledgements
We are grateful to late Prof. David Chandler for insightful discussions during a visit in Paris and
for attracting our attention to the problem tackled in this paper. VS was supported by a grant from the
Fondation Pierre-Gilles de Gennes.
A. Connection between “inner” and “outer” DFT formulations, and
Chandler’s GFT
A.1. Notation
Herein below we will use a discrete matrix notation for the fields and associated functionals. Let V
be the liquid volume and be decomposed into an inside volume Vin occupied by the hard-sphere solute
and the remaining volume Vout. We define the functions on a finite three-dimensional grid. Let m points
lie inside the solute and n points outside. In that case, the one-variable functions, like density, can be
represented as vectors of size (m + n) × 1 (e.g. ρ). The two-variables functions, e.g., the susceptibility
function χ(r1, r2) are represented as matrices (m + n) × (m + n) (e.g X). Then, the convolution can be
represented as a matrix multiplication, e.g.,∫
ρ(r1)χ(r1, r2)dr1 ⇐⇒ ∆vρTX, (A.1)
where ∆v is the elementary volume which corresponds to each discretisation point. For simplicity, we
will take below ∆v = 1.
Let the density inside the solute be ρin (m×1 vector), the density outside the solute ρout (n×1 vector).
The free energy functional can be defined as follows:
F [ρin, ρout] =
1
2
∆ρT
in(X−1)in∆ρin +
1
2
∆ρT
out(X−1)out∆ρ
T
out + ∆ρ
T
in(X−1)inter∆ρout + βvToutρout. (A.2)
Here, ∆ρ = ρ − ρ0, X is a susceptibility matrix
X =
(
Xin Xinter
XT
inter Xout
)
, X−1 =
(
(X−1)in (X−1)inter
(X−1)Tinter (X−1)out
)
, (A.3)
where Xin is m × m, Xinter is m × n, Xout is n × n. It is important to note that, for example,
(Xin)
−1 , (X−1)in. (A.4)
The above functional should be minimised with the constraint ρin = 0, ∆ρin = −ρ0. There are two
approaches to do this: Lagrange multiplier minimisation or restrained minimisation in the outer volume.
We show herein below that the two approaches are equivalent to each other and give the same results as
Chandler’s Gaussian field theory in [65].
A.2. Lagrange multipliers minimization
To perform the minimisation using Lagrange multipliers we add −λρin to the functional:
F [ρin, ρout] =
1
2
∆ρT
in(X−1)in∆ρin+
1
2
∆ρT
out(X−1)out∆ρ
T
out+∆ρ
T
in(X−1)inter∆ρout+βvToutρout−λT
inρin. (A.5)
From the necessary minimization conditions
∂F
∂λin
= ρin = 0 (A.6)
33005-9
V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis
and
∂F
∂ρin
= (X−1)in∆ρin + (X−1)inter∆ρout = λin ,
∂F
∂ρout
= (X−1)Tinter∆ρin + (X−1)out∆ρout = −βvout , (A.7)
the last two equations can be rewritten as
X−1
∆ρ =
[
λin
−βvout
]
. (A.8)
From this, we find ∆ρ
∆ρ =
(
Xin Xinter
XT
inter Xout
)
·
[
λin
−βvout
]
(A.9)
and the relations:
∆ρin = Xinλin − Xinterβvout = −ρ0
in , (A.10)
∆ρout = Xinterλin − Xoutβvout. (A.11)
Using the first equation we find
λin = (Xin)
−1
(
−ρ0
in + Xinterβvout
)
. (A.12)
Inserting this into the second equation:
∆ρout = −XT
interX−1
in ρ
0
in + XT
interX−1
in Xinterβvout − Xoutβvout
= −XT
inter (Xin)
−1
(
−ρ0
in + Xinterβvout
)
− Xoutβvout. (A.13)
This is exactly Chandler’s Gaussian field expression, equation (3.4), in discretised form [with the under-
standing that χ−1
in = (χin)
−1]. Injecting this formula into equation (A.5) also gives the same expression
as Chandler for the equilibrium solvation free-energy, equation (3.3), except the last logarithm-of-
determinant term.
A.3. Direct minimization in outer volume (reduced number of variables)
Instead of performing the minimisation with the Lagrange multipliers, we can minimise the reduced
functional which depends only on ρout:
F [ρout] =
1
2
∆ρT
out(X−1)out∆ρ
T
out − (ρ
0
in)
T(X−1)inter∆ρout + βvToutρout + C, (A.14)
where
C ≡
1
2
(ρ0
in)
T(X−1)inρ
0
in.
Taking the derivative
(X−1)out∆ρout − (X−1)Tinterρ
0
in + βvout = 0 (A.15)
and
∆ρout = [(X−1)out]
−1 [
(X−1)Tinterρ
0
in − βvout
]
. (A.16)
To see that this is the same as (A.13) we need to invert the matrix X. To do it, let us define
Xin ≡ A, (X−1)in ≡W,
Xinter ≡ B, (X−1)inter ≡ Y,
Xout ≡ C, (X−1)out ≡ Z.
33005-10
Gaussian field and density functional theory
By the definition of the inverse matrix we have(
A B
BT C
)
·
(
W Y
YT Z
)
=
(
I 0
0 I
)
, (A.17)
where I is an identity matrix of appropriate size. We have the following equations:
AW + BYT = I,
AY + BZ = 0,
BTW + CYT = 0,
BTY + CZ = I. (A.18)
Multiplying the first by A−1:
W = A−1 − A−1BYT (A.19)
and inserting this into the third equation:
BTA−1 − BTA−1BYT + CYT = 0, (A.20)
(C − BTA−1B)YT = −BTA−1. (A.21)
From this we find YT
YT = −(C − BTA−1B)−1BTA−1 (A.22)
and Y
Y = −(BTA−1)T[(C − BTA−1B)T]−1 = −A−1B(C − BTA−1B)−1. (A.23)
(Here, we use A = AT, C = CT, which is true since X is symmetric). Now, from the last equation in
(A.18)
C−1BTY + Z = C−1, (A.24)
Z = C−1 (
I − BTY
)
. (A.25)
Inserting here the expression of Y:
Z = C−1 [
I + BTA−1B(C − BTA−1B)−1] . (A.26)
We can further simplify this expression. We first express the identity matrix I as
I = (C − BTA−1B) · (C − BTA−1B)−1. (A.27)
Inserting this into the expression of Z we have
Z = C−1(C − BTA−1B + BTA−1B)(C − BTA−1B)−1. (A.28)
Cancelling BTA−1B and C−1C we get
Z = (C − BTA−1B)−1. (A.29)
Returning to the expression (A.16)
∆ρout = Z−1(YTρ0
in − βvout) = (C − BTA−1B)
[
−(C − BTA−1B)−1BTA−1ρ0
in − βvout
]
. (A.30)
Opening the brackets
∆ρout = −BTA−1ρ0
in − Cβvout + BTA−1Bβvout = BTA−1(−ρ0
in + Bβvout) − Cβvout (A.31)
or, returning to the original definitions:
∆ρout = XT
inter (Xin)
−1 (−ρ0
in + Xinterβvout) − Xoutβvout (A.32)
which is the same as (A.13). This terminates the proof for the equilibrium density. The same equivalence
can be proved for the equilibrium solvation free-energy.
33005-11
V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis
References
1. Hansen J.P., McDonald I.R., Theory of Simple Liquids, Academic Press, London, 1989.
2. Gray C.G., Gubbins K.E., Theory of Molecular Fluids. Volume I: Fundamentals, Oxford University Press,
Oxford, 1984.
3. Gray C.G., Gubbins K.E., Joslin C.G., Theory of Molecular Fluids. Volume II: Applications, Oxford University
Press, Oxford, 2011.
4. Di Caprio D., Stafiej J., Badiali J.P., J. Chem. Phys., 1998, 108, No. 20, 8572–8583, doi:10.1063/1.476286.
5. Di Caprio D., Stafiej J., Badiali J.P., Mol. Phys., 2003, 101, No. 16, 2545–2558,
doi:10.1080/0026897031000154293.
6. Di Caprio D., Stafiej J., Badiali J.P., Mol. Phys., 2003, 101, No. 21, 3197–3202,
doi:10.1080/00268970310001632318.
7. Di Caprio D., Badiali J.P., J. Phys. A: Math. Theor., 2008, 41, No. 12, 125401,
doi:10.1088/1751-8113/41/12/125401.
8. Di Caprio D., Badiali J.P., Entropy, 2009, 11, No. 2, 238–248, doi:10.3390/e11020238.
9. Holovko M., di Caprio D., Kravtsiv I., Condens. Matter Phys., 2011, 14, No. 3, 33605,
doi:10.5488/CMP.14.33605.
10. Di Caprio D., Stafiej J., Holovko M., Kravtsiv I., Mol. Phys., 2011, 109, No. 5, 695–708,
doi:10.1080/00268976.2010.547524.
11. Kravtsiv I., Holovko M., di Caprio D., Mol. Phys., 2013, 111, No. 8, 1023–1041,
doi:10.1080/00268976.2012.762615.
12. Kravtsiv I., Patsahan T., Holovko M., di Caprio D., J. Chem. Phys., 2015, 142, No. 19, 194708,
doi:10.1063/1.4921242.
13. Chandler D., Andersen H., J. Chem. Phys., 1972, 57, 1930, doi:10.1063/1.1678513.
14. Hirata F., Rossky P.J., Chem. Phys. Lett., 1981, 83, 329, doi:10.1016/0009-2614(81)85474-7.
15. Hirata F., Pettitt B.M., Rossky P.J., J. Chem. Phys., 1982, 77, 509, doi:10.1063/1.443606.
16. Reddy G., Lawrence C.P., Skinner J.L., Yethiraj A., J. Chem. Phys., 2003, 119, 13012, doi:10.1063/1.1627326.
17. Blum L., Torruella A.J., J. Chem. Phys., 1972, 56, 303, doi:10.1063/1.1676864.
18. Blum L., J. Chem. Phys., 1972, 57, 1862, doi:10.1063/1.1678503.
19. Patey G.N., Mol. Phys., 1977, 34, 427, doi:10.1080/00268977700101821.
20. Carnie S.L., Patey G.N., Mol. Phys., 1982, 47, 1129, doi:10.1080/00268978200100822.
21. Fries P.H., Patey G.N., J. Chem. Phys., 1985, 82, 429, doi:10.1063/1.448764.
22. Richardi J., Fries P.H., Krienke H., J. Chem. Phys., 1998, 108, 4079, doi:10.1063/1.475805.
23. Richardi J., Millot C., Fries P.H., J. Chem. Phys., 1999, 110, 1138, doi:10.1063/1.478171.
24. Belloni L., Chikina I., Mol. Phys., 2014, 112, No. 9–10, 1246–1256, doi:10.1080/00268976.2014.885612.
25. Dyer K.M., Perkyns J.S., Pettitt B.M., J. Chem. Phys., 2007, 127, 194506, doi:10.1063/1.2785188.
26. Dyer K.M., Perkyns J.S., Stell G., Pettitt B.M., J. Chem. Phys., 2008, 129, 104512, doi:10.1063/1.2976580.
27. Evans R., Adv. Phys., 1979, 28, No. 2, 143, doi:10.1080/00018737900101365.
28. Evans R., In: Fundamentals of Inhomogeneous Fluids, Henderson D. (Ed.), Marcel Dekker, New York, 1992,
85–176.
29. Evans R., In: Lecture Notes, 3rd Warsaw School of Statistical Physics, Cichocki B., Napiórkowski M., Pi-
asecki J. (Eds.), Warsaw University Press, Warsaw, 2010, 43–85.
30. Chandler D., McCoy J.D., Singer S.J., J. Chem. Phys., 1986, 85, No. 10, 5971, doi:10.1063/1.451510.
31. Chandler D., McCoy J.D., Singer S.J., J. Chem. Phys., 1986, 85, No. 10, 5977, doi:10.1063/1.451511.
32. Biben T., Hansen J.P., Rosenfeld Y., Phys. Rev. E, 1998, 57, R3727–R3730, doi:10.1103/PhysRevE.57.R3727.
33. Oleksy A., Hansen J.P., Mol. Phys., 2009, 107, No. 23–24, 2609–2624, doi:10.1080/00268970903469022.
34. Oleksy A., Hansen J.P., J. Chem. Phys., 2010, 132, No. 20, 204702, doi:10.1063/1.3428704.
35. Oleksy A., Hansen J.P., Mol. Phys., 2011, 109, No. 7–10, 1275–1288, doi:10.1080/00268976.2011.554903.
36. Ramirez R., Gebauer R., Mareschal M., Borgis D., Phys. Rev. E, 2002, 66, 031206,
doi:10.1103/PhysRevE.66.031206.
37. Ramirez R., Borgis D., J. Phys. Chem. B, 2005, 109, 6754, doi:10.1021/jp045453v.
38. Ramirez R., Mareschal M., Borgis D., Chem. Phys., 2005, 319, 261, doi:10.1016/j.chemphys.2005.07.038.
39. Löwen H., J. Phys.: Condens. Matter, 2002, 14, No. 46, 11897–11905, doi:10.1088/0953-8984/14/46/301.
40. Rosenfeld Y., Phys. Rev. Lett., 1989, 63, No. 9, 980–983, doi:10.1103/PhysRevLett.63.980.
41. Kierlik E., Rosinberg M.L., Phys. Rev. A, 1990, 42, No. 6, 3382–3387, doi:10.1103/PhysRevA.42.3382.
42. Kierlik E., Rosinberg M.L., Phys. Rev. A, 1991, 44, No. 8, 5025–5037, doi:10.1103/PhysRevA.44.5025.
43. Roth R., Evans R., Lang A., Kahl G., J. Phys.: Condens. Matter, 2002, 14, No. 46, 12063,
doi:10.1088/0953-8984/14/46/313.
33005-12
https://doi.org/10.1063/1.476286
https://doi.org/10.1080/0026897031000154293
https://doi.org/10.1080/00268970310001632318
https://doi.org/10.1088/1751-8113/41/12/125401
https://doi.org/10.3390/e11020238
https://doi.org/10.5488/CMP.14.33605
https://doi.org/10.1080/00268976.2010.547524
https://doi.org/10.1080/00268976.2012.762615
https://doi.org/10.1063/1.4921242
https://doi.org/10.1063/1.1678513
https://doi.org/10.1016/0009-2614(81)85474-7
https://doi.org/10.1063/1.443606
https://doi.org/10.1063/1.1627326
https://doi.org/10.1063/1.1676864
https://doi.org/10.1063/1.1678503
https://doi.org/10.1080/00268977700101821
https://doi.org/10.1080/00268978200100822
https://doi.org/10.1063/1.448764
https://doi.org/10.1063/1.475805
https://doi.org/10.1063/1.478171
https://doi.org/10.1080/00268976.2014.885612
https://doi.org/10.1063/1.2785188
https://doi.org/10.1063/1.2976580
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1063/1.451510
https://doi.org/10.1063/1.451511
https://doi.org/10.1103/PhysRevE.57.R3727
https://doi.org/10.1080/00268970903469022
https://doi.org/10.1063/1.3428704
https://doi.org/10.1080/00268976.2011.554903
https://doi.org/10.1103/PhysRevE.66.031206
https://doi.org/10.1021/jp045453v
https://doi.org/10.1016/j.chemphys.2005.07.038
https://doi.org/10.1088/0953-8984/14/46/301
https://doi.org/10.1103/PhysRevLett.63.980
https://doi.org/10.1103/PhysRevA.42.3382
https://doi.org/10.1103/PhysRevA.44.5025
https://doi.org/10.1088/0953-8984/14/46/313
Gaussian field and density functional theory
44. Yu Y.X., Wu J., J. Chem. Phys., 2002, 117, No. 22, 10156, doi:10.1063/1.1520530.
45. Roth R., J. Phys.: Condens. Matter, 2010, 22, 063102, doi:10.1088/0953-8984/22/6/063102.
46. Wu J., AIChE J., 2006, 52, No. 3, 1169–1193, doi:10.1002/aic.10713.
47. Wu J., Li Z., Ann. Rev. Phys. Chem., 2007, 58, 85–112, doi:10.1146/annurev.physchem.58.032806.104650.
48. Gendre L., Ramirez R., Borgis D., Chem. Phys. Lett., 2009, 474, 366, doi:10.1016/j.cplett.2009.04.077.
49. Zhao S., Ramirez R., Vuilleumier R., Borgis D., J. Chem. Phys., 2011, 134, 194102, doi:10.1063/1.3589142.
50. Borgis D., Gendre L., Ramirez R., J. Phys. Chem. B, 2012, 116, 2504, doi:10.1021/jp210817s.
51. Levesque M., Vuilleumier R., Borgis D., J. Chem. Phys., 2012, 137, No. 3, 034115, doi:10.1063/1.4734009.
52. Levesque M., Marry V., Rotenberg B., Jeanmairet G., Vuilleumier R., Borgis D., J. Chem. Phys., 2012, 137,
No. 22, 224107, doi:10.1063/1.4769729.
53. Jeanmairet G., Levesque M., Borgis D., J. Chem. Phys., 2013, 139, No. 15, 154101, doi:10.1063/1.4824737.
54. Jeanmairet G., Levesque M., Vuilleumier R., Borgis D., J. Phys. Chem. Lett., 2013, 4, 619–624,
doi:10.1021/jz301956b.
55. Jeanmairet G., Marry V., Levesque M., Rotenberg B., Borgis D., Mol. Phys., 2014, 112, No. 9–10, 1320–1329,
doi:10.1080/00268976.2014.899647.
56. Sergiievskyi V.P., Jeanmairet G., Levesque M., Borgis D., J. Chem. Phys. Lett., 2014, 5, No. 11, 1935–1942,
doi:10.1021/jz500428s.
57. Beglov D., Roux B., J. Phys. Chem. B, 1997, 101, 7821, doi:10.1021/jp971083h.
58. Kovalenko A., Hirata F., Chem. Phys. Lett., 1998, 290, 237, doi:10.1016/S0009-2614(98)00471-0.
59. Hirata F. (Ed.), Molecular Theory of Solvation, Kluwer Academic Publishers, Dordrecht, 2003.
60. Yoshida N., Imai T., Phongphanphanee S., Kovalenko A., Hirata F., J. Phys. Chem. B, 2009, 113, 873–886,
doi:10.1021/jp807068k.
61. Sergiievskyi V.P., FedorovM.V., J. Chem. Theory Comput., 2012, 8, No. 6, 2062–2070, doi:10.1021/ct200815v.
62. Palmer D.S., Sergiievskyi V.P., Jensen F., Fedorov M.V., J. Chem. Phys., 2010, 133, No. 4, 044104,
doi:10.1063/1.3458798.
63. Liu Y., Zhao S., Wu J.Z., J. Chem. Theory Comput., 2013, 9, No. 4, 1896–1908, doi:10.1021/ct3010936.
64. Fu J., Wu J.Z., Fluid Phase Equilib., 2016, 407, 304–313, doi:10.1016/j.fluid.2015.05.042.
65. Chandler D., Phys. Rev. E, 1993, 48, 2898, doi:10.1103/PhysRevE.48.2898.
66. Lum K., Chandler D., Weeks J.D., J. Phys. Chem. B, 1999, 103, 4570, doi:10.1021/jp984327m.
67. Rein ten Wolde P., Sun S.X., Chandler D., Phys. Rev. E, 2001, 65, 011201, doi:10.1103/PhysRevE.65.011201.
68. Varilly P., Patel A.J., Chandler D., J. Chem. Phys., 2011, 134, No. 7, 074109, doi:10.1063/1.3532939.
69. Zhu C., Byrd R.H., Lu P., Nocedal J., ACM Trans. Math. Software, 1997, 23, No. 4, 550–560,
doi:10.1145/279232.279236.
70. Lazaridis T., J. Phys. Chem. B, 1998, 102, 3542–3550, doi:10.1021/jp972358w.
71. Sergiievskyi V., Jeanmairet G., Levesque M., Borgis D., J. Chem. Phys., 2015, 143, No. 18, 184116,
doi:10.1063/1.4935065.
72. Jeanmairet G., Levesque M., Sergiievskyi V., Borgis D., J. Chem. Phys., 2015, 142, No. 15, 154112,
doi:10.1063/1.4917485.
73. Rosenfeld Y., J. Chem. Phys., 1993, 98, No. 10, 8126–8148, doi:10.1063/1.464569.
74. Oettel M., J. Phys.: Condens. Matter, 2005, 17, No. 3, 429, doi:10.1088/0953-8984/17/3/003.
75. Tang Y., J. Chem. Phys., 2004, 121, 10605–10610, doi:10.1063/1.1810473.
33005-13
https://doi.org/10.1063/1.1520530
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1002/aic.10713
https://doi.org/10.1146/annurev.physchem.58.032806.104650
https://doi.org/10.1016/j.cplett.2009.04.077
https://doi.org/10.1063/1.3589142
https://doi.org/10.1021/jp210817s
https://doi.org/10.1063/1.4734009
https://doi.org/10.1063/1.4769729
https://doi.org/10.1063/1.4824737
https://doi.org/10.1021/jz301956b
https://doi.org/10.1080/00268976.2014.899647
https://doi.org/10.1021/jz500428s
https://doi.org/10.1021/jp971083h
https://doi.org/10.1016/S0009-2614(98)00471-0
https://doi.org/10.1021/jp807068k
https://doi.org/10.1021/ct200815v
https://doi.org/10.1063/1.3458798
https://doi.org/10.1021/ct3010936
https://doi.org/10.1016/j.fluid.2015.05.042
https://doi.org/10.1103/PhysRevE.48.2898
https://doi.org/10.1021/jp984327m
https://doi.org/10.1103/PhysRevE.65.011201
https://doi.org/10.1063/1.3532939
https://doi.org/10.1145/279232.279236
https://doi.org/10.1021/jp972358w
https://doi.org/10.1063/1.4935065
https://doi.org/10.1063/1.4917485
https://doi.org/10.1063/1.464569
https://doi.org/10.1088/0953-8984/17/3/003
https://doi.org/10.1063/1.1810473
V. Sergiievskyi, M. Levesque, B. Rotenberg, D. Borgis
Сольватацiя в атомних рiдинах: зв’язок мiж теорiєю
гауссового поля i функцiоналом густини
В. Сергiєвський1, M. Левек1, Б. Ротенберг2, Д. Боржiс1,3
1 Унiверситет Сорбонна, Унiверситет П’єра iМарiї Кюрi, Вища нормальна школа, Париж, Францiя
2 Унiверситет Сорбонна, Унiверситет П’єра iМарiї Кюрi, Париж, Францiя
3 Будинок моделювання, Унiверситет Парi-Сюд, Унiверситет Парi-Саклє, Жiф-сюр-Iветт, Францiя
Для проблеми молекулярної сольватацiї, що формулюється як рiдина в зовнiшньому потенцiальному
полi, створеному молекулами довiльної форми, якi розчиненi в розчиннику, ми приводимо зв’язок мiж
теорiєю гауссового поля, виведеною Давидом Чандлером [Phys. Rev. E, 1993, 48, 2898] i класичною тео-
рiєю функцiоналу густини (DFT). Ми показуємо, що результати Чандлера щодо сольватацiї твердого ко-
ру довiльної форми можуть бути зрегенерованi або шляхом мiнiмiзацiї лiнеаризованого HNC функцiо-
налу, використовуючи допомiжне поле множникiв Лагранжа для накладання умови зникаючої густини
всерединi кору, або мiнiмiзацiєю цього функцiоналу напряму в областi зовнi кору, що є насправдi про-
стiшою процедурою. Цi еквiвалентнi пiдходи порiвнюються з двома варiантами DFT, або в наближеннi
HNC, або в наближеннi частково лiнеаризованого HNC, для сольватацiї розчиненої речовини iз взаємодi-
єю Леннарда-Джонса зi зростаючим розмiром в розчиннику iз леннард-джонсiвською взаємодiєю.Щодо
порiвняння з моделюванням методом Монте Карло, всi цi теорiї дають прийнятнi результати для нео-
днорiдної структури розчинника, але є повнiстю поза дiапазоном для сольватацiйних вiльних енергiй. Це
може бути поправлено в DFT за допомогою додавання твердосферної мiсткової поправки до функцiоналу
HNC.
Ключовi слова: статистична механiка, класичнi плини, 3-вимiрнi системи, теорiя функцiоналу густини,
теорiя гауссового поля
33005-14
Introduction
Density functional theory and HNC approximation
Chandler's Gaussian field theory
Linearised and partially-linearised HNC approximations and connection to Gaussian field theory
Hard-sphere bridge correction
Conclusion
Connection between ``inner'' and ``outer'' DFT formulations, and Chandler's GFT
Notation
Lagrange multipliers minimization
Direct minimization in outer volume (reduced number of variables)
|