On the density of states of graphene in the nearest-neighbor approximation

We propose an alternative analytical expression for the density of states of a clean graphene in the nearestneighbor approximation. In contrast to the previously known expression, it can be written as a single formula valid for the whole energy range. The correspondence with the previously known ex...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Ananyev, V.O., Ovchynnikov, M.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2017
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157031
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the density of states of graphene in the nearest-neighbor approximation / V.O. Ananyev, M.I. Ovchynnikov // Condensed Matter Physics. — 2017. — Т. 20, № 4. — С. 43705: 1–4. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157031
record_format dspace
spelling irk-123456789-1570312019-06-20T01:27:38Z On the density of states of graphene in the nearest-neighbor approximation Ananyev, V.O. Ovchynnikov, M.I. We propose an alternative analytical expression for the density of states of a clean graphene in the nearestneighbor approximation. In contrast to the previously known expression, it can be written as a single formula valid for the whole energy range. The correspondence with the previously known expression is shown and the limiting cases are analyzed. Ми пропонуємо альтернативний аналiтичний вираз для густини електронних станiв у чистому графенi в наближеннi найближчих сусiдiв. На противагу вже вiдомим виразам, вiн представляє собою єдину формулу, справедливу на всьому iнтервалi енергiй. Також було перевiрено вiдповiднiсть уже вiдомим виразам i дослiджено граничнi випадки. 2017 Article On the density of states of graphene in the nearest-neighbor approximation / V.O. Ananyev, M.I. Ovchynnikov // Condensed Matter Physics. — 2017. — Т. 20, № 4. — С. 43705: 1–4. — Бібліогр.: 13 назв. — англ. 1607-324X PACS: 71.20.Tx, 73.22.Pr DOI:10.5488/CMP.20.43705 arXiv:1705.08120 http://dspace.nbuv.gov.ua/handle/123456789/157031 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We propose an alternative analytical expression for the density of states of a clean graphene in the nearestneighbor approximation. In contrast to the previously known expression, it can be written as a single formula valid for the whole energy range. The correspondence with the previously known expression is shown and the limiting cases are analyzed.
format Article
author Ananyev, V.O.
Ovchynnikov, M.I.
spellingShingle Ananyev, V.O.
Ovchynnikov, M.I.
On the density of states of graphene in the nearest-neighbor approximation
Condensed Matter Physics
author_facet Ananyev, V.O.
Ovchynnikov, M.I.
author_sort Ananyev, V.O.
title On the density of states of graphene in the nearest-neighbor approximation
title_short On the density of states of graphene in the nearest-neighbor approximation
title_full On the density of states of graphene in the nearest-neighbor approximation
title_fullStr On the density of states of graphene in the nearest-neighbor approximation
title_full_unstemmed On the density of states of graphene in the nearest-neighbor approximation
title_sort on the density of states of graphene in the nearest-neighbor approximation
publisher Інститут фізики конденсованих систем НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/157031
citation_txt On the density of states of graphene in the nearest-neighbor approximation / V.O. Ananyev, M.I. Ovchynnikov // Condensed Matter Physics. — 2017. — Т. 20, № 4. — С. 43705: 1–4. — Бібліогр.: 13 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT ananyevvo onthedensityofstatesofgrapheneinthenearestneighborapproximation
AT ovchynnikovmi onthedensityofstatesofgrapheneinthenearestneighborapproximation
first_indexed 2025-07-14T09:22:26Z
last_indexed 2025-07-14T09:22:26Z
_version_ 1837613655231823872
fulltext Condensed Matter Physics, 2017, Vol. 20, No 4, 43705: 1–4 DOI: 10.5488/CMP.20.43705 http://www.icmp.lviv.ua/journal On the density of states of graphene in the nearest-neighbor approximation V.O. Ananyev, M.I. Ovchynnikov Faculty of Physics, Taras Shevchenko National Kyiv University, 6 Academician Glushkov Ave., 03680 Kyiv, Ukraine Received June 8, 2017, in final form July 21, 2017 We propose an alternative analytical expression for the density of states of a clean graphene in the nearest- neighbor approximation. In contrast to the previously known expression, it can be written as a single formula valid for the whole energy range. The correspondence with the previously known expression is shown and the limiting cases are analyzed. Key words: graphene, density of states, Van Hove singularity PACS: 71.20.Tx, 73.22.Pr 1. Introduction A theoretical background of the electronic applications of graphene is based on the knowledge of its band structure. The vast majority of theoretical approaches exploit the fact that the low-energy quasiparticle excitations in graphene have a linear Dirac-like spectrum up to the energies of the order of 0.5 eV. Widely used simple analytical expressions for the density of states (DOS), optical conductivity, etc., ultimately originate from this spectrum [1–3]. There are very few analytical results describing electronic properties of graphene beyond the con- tinuum linear approximation. Among them there is an expression for the DOS provided by Hobson and Nierenberg in 1953 [4] without derivation. It appears in various forms in the modern literature (see e.g., review [2] and reference [5]). In particular, in [3] the DOS per unit cell and one spin component reads D(E) =  |ε | tπ2 1√ F( |ε |) K ( |ε | F( |ε |) ) , 0 6 |ε | 6 1, |ε | tπ2 1√ |ε | K ( F( |ε |) |ε | ) , 1 6 |ε | 6 3, (1.1) where the energy ε = E/t is measured in units of the nearest-neighbor hopping energy t ≈ 3 eV, the function g(x) is given by F(x) = (1 + x)2 4 − (x2 − 1)2 16 = 1 16 (x + 1)3(3 − x), (1.2) and K(m) is an elliptic integral of the first kind, K(m) = 1∫ 0 dx [ (1 − x2)(1 − mx2) ]−1/2 . (1.3) We stress that the definition (1.3) corresponds to the notations of Wolfram Mathematica [6]. The definitions of the complete elliptic integrals, for example, in [7–9] employ the parameter k2 as argument in place of the modulus m, viz. K(k) = K(k2). The purpose of the present brief report is to propose a more compact form of the DOS. This work is licensed under a Creative Commons Attribution 4.0 International License . Further distribution of this work must maintain attribution to the author(s) and the published articleŠs title, journal citation, and DOI. 43705-1 https://doi.org/10.5488/CMP.20.43705 http://www.icmp.lviv.ua/journal http://creativecommons.org/licenses/by/4.0/ V.O. Ananyev, M.I. Ovchynnikov 2. Derivation For completeness, we recapitulate the main steps of the derivation that lead both to the new and old expressions for the DOS. We begin with the tight-binding dispersion law of graphene written in the nearest-neighbor approximation [10] ε(k) = ±t √ 1 + 4 cos2 kxa 2 + 4 cos kxa 2 cos √ 3kya 2 , (2.1) where k = (kx, ky) is the wave-vector and a = √ 3aCC is the lattice constant with aCC being the distance between the neighboring carbon atoms. The DOS can be calculated as a trace of the imaginary part of the corresponding Green’s function [11] D(E) = − 2E π Im[g(E)], (2.2) with g(E) = S ∫ BZ d2k (2π)2 1 (E + i0)2 − ε2(k) . (2.3) The factor of 2 in equation (2.2) originates from the trace over the sublattice degree of freedom and S = √ 3a2/2 in equation (2.3) is the area of a unit cell. The integration is done over the Brillouin zone (our notations correspond to [1]). Introducing dimensionless variables and doubling the domain of integration to make it rectangular, −2π/a 6 kx 6 2π/a and −2π/(a √ 3) 6 ky 6 2π/(a √ 3), one obtains g(E) = 1 8π2t2 π∫ −π dx π∫ −π dy 1 τ − cos 2x − 2 cos x cos y (2.4) with τ = (ε + i0)2/2 − 3/2. Replacing s = tan y/2 we integrate over s and obtain g(E) = 1 4πt2 π∫ −π dx√( τ − cos 2x )2 − 4 cos2 x . (2.5) Equation (2.5) can be expressed in terms of an elliptic integral of the first kind (see equation (3.147.3) in [7]) g(E) = 2 πt2 √ (ε − 1)3(ε + 3) K (√ 16ε (ε − 1)3(ε + 3) ) , (2.6) where for the brevity of notations we omitted +i0 in the argument. The argument of the elliptic function in equation (2.6) is imaginary for 0 6 ε < 1, but it is real and larger than 1 for 1 < ε 6 3 . In the former case, 0 6 ε < 1, using the imaginary modulus transformation [9] K(ik) = 1 √ k2 + 1 K (√ k2 k2 + 1 ) (2.7) we arrive at the fist line of equation (1.1). In the latter case, we use the relationship (see equation (8.128) in [7] and [9]) K(k) = 1 k [ K ( 1 k ) − iK (√ 1 − 1 k2 )] , k > 1, (2.8) where the sign in front of the imaginary term is chosen in accordance to imaginary shift ε + i0. Then, the last term of equation (2.8) leads us to the second line of equation (1.1). 43705-2 On the DOS of graphene 0.2 0.4 0.6 0.8 1.0 1.2 k (| ϵ| ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 |ϵ| Figure 1. (Color online) On the plot there is shown a dependence of the argument k(|ε |) = 4 √ |ε |F( |ε |) [ √ |ε |+ √ F( |ε |)]2 of the elliptic integral in the DOS expression (2.10) on the modulus |ε | = |E | t (prepared with SciDraw [13]). Using Landen’s transformation (see equation (8.126.3) in [7, 9] and [12]) θ(q − k) q K ( k q ) + θ(k − q) k K ( q k ) = 1 q + k K ( 2 √ qk q + k ) , (2.9) the DOS (1.1) can be represented in one line expression. Returning back to the Wolfram’s definition of the elliptic integral (1.3), we arrive at the final result of this report: D(ε) = 1 tπ2 |ε |θ(3 − |ε |)√ |ε | + √ F(|ε |) K ( 4 √ |ε |F(|ε |)[√ |ε | + √ F(|ε |) ]2 ) . (2.10) Here, the argument of the elliptic integral is 6 1 (see figure 1). The unified result (2.10) can be made clearer in the following way. By using (2.6) and (2.7), the expression (2.2) for the DOS can be converted to the form D(ε) = 4|ε |/(tπ2)√ (|ε | + 1)3(3 − |ε |) Re K (√ 16|ε | (|ε | + 1)3(3 − |ε |) ) , (2.11) valid for 0 < |ε | < 3. The result (2.10) then straightforwardly follows from analytical properties of the Green function; this is due to the identity Re K(z) = 1 1 + z K ( 2 √ z z + 1 ) , 0 < z < ∞ (2.12) following from (2.9). 3. Conclusions To conclude, we reproduce limiting cases of the DOS. The low-energy expansion of the DOS (2.10) is D(ε) = 1 t [ 2|ε | √ 3π + 2|ε |3 3 √ 3π +O(|ε |5) ] , (3.1) where the first term originates from the contribution of K(0) = π/2. One can see that the second term of the expansion is 100 times smaller than the first one for |E | . 0.17t ∼ 0.5 eV. Assuming that the Fermi velocity is vF = √ 3ta/(2~), we reproduce the commonly used DOS per unit area and spin 43705-3 V.O. Ananyev, M.I. Ovchynnikov D(E) = |E |/(π~2v2 F). Finally, near ε = 1, the argument of the elliptic integral in equation (2.10) is 1 − (ε − 1)6/256. Assuming that K(z) = −1/2 ln(1 − z)/16 for z → 1 [6], we reproduce the asymptotic of the DOS near the van Hove singularity [4] D(E) = −3/(2π2t) ln(|1 − ε |/4). Acknowledgements We thank S.G. Sharapov for suggesting to reproduce the result of [4] in his lecture course on graphene and for providing a great help in writing the article. Also, we would like to thank O.O. Sobol for a helpful and productive discussion. References 1. Gusynin V.P., Sharapov S.G., Carbotte J.P., Int. J. Mod. Phys. B, 2007, 21, 4611, doi:10.1142/S0217979207038022. 2. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K., Rev. Mod. Phys., 2009, 81, 109, doi:10.1103/RevModPhys.81.109. 3. Katsnelson M.I., Graphene: Carbon in Two Dimensions, Cambridge University Press, Cambridge, 2012. 4. Hobson J.P., Nierenberg W.A., Phys. Rev., 1953, 89, 662, doi:10.1103/PhysRev.89.662. 5. Rammal R., J. Phys., 1985, 46, 1345, doi:10.1051/jphys:019850046080134500. 6. URL http://functions.wolfram.com/EllipticIntegrals/EllipticK/. 7. Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series and Products, Academic Press, New York, 1980. 8. Bateman H., Erdélyi A., Higher Transcendental Functions, McGraw-Hill, New York, 1953. 9. Byrd P., Friedman M., Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 2013. 10. Wallace P.R., Phys. Rev., 1947, 71, 622, doi:10.1103/PhysRev.71.622. 11. Horiguchi T., J. Math. Phys., 1972, 13, 1411, doi:10.1063/1.1666155. 12. Gamayun O.V., Gorbar E.V., Gusynin V.P., Phys. Rev. B, 2009, 80, 165429, doi:10.1103/PhysRevB.80.165429. 13. Caprio M.A., Comput. Phys. Commun., 2005, 171, 107, doi:10.1016/j.cpc.2005.04.010. Про вираз для густини станiв у графенi В.О. Ананьєв,М.Ю. Овчиннiков Фiзичний факультет, Київський нацiональний унiверситет iменi Тараса Шевченка, просп. Академiка Глушкова, 6, 03680 Київ, Україна Ми пропонуємо альтернативний аналiтичний вираз для густини електронних станiв у чистому графе- нi в наближеннi найближчих сусiдiв. На противагу вже вiдомим виразам, вiн представляє собою єдину формулу, справедливу на всьому iнтервалi енергiй. Також було перевiрено вiдповiднiсть уже вiдомим виразам i дослiджено граничнi випадки. Ключовi слова: графен, густина станiв, сингулярнiсть Ван Гове 43705-4 https://doi.org/10.1142/S0217979207038022 https://doi.org/10.1103/RevModPhys.81.109 https://doi.org/10.1103/PhysRev.89.662 https://doi.org/10.1051/jphys:019850046080134500 http://functions.wolfram.com/EllipticIntegrals/EllipticK/ https://doi.org/10.1103/PhysRev.71.622 https://doi.org/10.1063/1.1666155 https://doi.org/10.1103/PhysRevB.80.165429 https://doi.org/10.1016/j.cpc.2005.04.010 Introduction Derivation Conclusions