Bose-Einstein condensation and/or modulation of "displacements" in the two-state Bose-Hubbard model

Instabilities resulting in Bose-Einstein condensation and/or modulation of “displacements” in a system of quantum particles described by a two-state Bose-Hubbard model (with an allowance for the interaction between particle displacements on different lattice sites) are investigated. A possibility o...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Stasyuk, I.V., Velychko, O.V.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2018
Series:Condensed Matter Physics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/157050
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Bose-Einstein condensation and/or modulation of "displacements" in the two-state Bose-Hubbard model / I.V. Stasyuk, O.V. Velychko // Condensed Matter Physics. — 2018. — Т. 21, № 2. — С. 23002: 1–17. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Instabilities resulting in Bose-Einstein condensation and/or modulation of “displacements” in a system of quantum particles described by a two-state Bose-Hubbard model (with an allowance for the interaction between particle displacements on different lattice sites) are investigated. A possibility of modulation, which doubles the lattice constant, as well as the uniform displacement of particles from equilibrium positions are studied. Conditions for realization of the mentioned instabilities and phase transitions into the SF phase and into the “ordered” phase with frozen displacements are analyzed. The behaviour of order parameters is investigated and phase diagrams of the system are calculated both analytically (ground state) and numerically (at non-zero temperatures). It is revealed that the SF phase can appear as an intermediate one between the normal and “ordered” phases, while a supersolid phase is thermodynamically unstable and does not appear. The relation of the obtained results to the lattices with the double-well local potentials is discussed.