99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30
Computer simulation has been used to determine the 99Mo and 67Cu isotope yields, as well as the radiation power absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power absorbed in a tantalum converter versus the converter thickness and spatial-e...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2010
|
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/15707 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 / N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, D.Ehst, Yu.V. Lyashko, V.I. Nikiforov, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko // Вопросы атомной науки и техники. — 2010. — № 2. — С. 140-144. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-15707 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-157072011-02-01T12:03:37Z 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 Aizatsky, N.I. Diky, N.P. Dovbnya, A.N. Ehst, D. Lyashko, Yu.V. Nikiforov, V.I. Tenishev, A.Eh. Torgovkin, A.V. Uvarov, V.L. Shevchenko, V.A. Shramenko, B.I. Применение ускорителей Computer simulation has been used to determine the 99Mo and 67Cu isotope yields, as well as the radiation power absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power absorbed in a tantalum converter versus the converter thickness and spatial-energy characteristics of the electron beam from the accelerator KUT-30 (energy up to 45 MeV, average beam current up to 300 μA). The results of experimental studies are in good agreement with the simulation data. Методом компьютерного моделирования определены выход изотопов 99Мо, 67Сu и поглощенная мощность излучения в технологических мишенях различной массы и геометрии на основе природных Мо и Zn, а также поглощенная мощность в конвертере из тантала в зависимости от толщины конвертера и пространственно-энергетических характеристик пучка электронов ускорителя КУТ-30 (энергия – до 45 МэВ, средний ток – до 300 мкА). Результаты экспериментального исследования находятся в удовлетворительном соответствии с данными моделирования. Методом комп'ютерного моделювання визначено вихід ізотопів 99Мо, 67Сu і поглинута потужність випромінення в технологічних мішенях різної маси і геометрії на основі природних Мо і Zn, а також поглинута потужність у конвертері з танталу в залежності від товщини конвертера і просторово-енергетичних характеристик пучка електронів прискорювача КУТ-30 (енергія – до 45 МеВ, середній струм – до 300 мкА). Результати експериментального дослідження знаходяться в задовільній відповідності з даними моделювання. 2010 Article 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 / N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, D.Ehst, Yu.V. Lyashko, V.I. Nikiforov, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko // Вопросы атомной науки и техники. — 2010. — № 2. — С. 140-144. — Бібліогр.: 9 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/15707 en Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ускорителей Применение ускорителей |
spellingShingle |
Применение ускорителей Применение ускорителей Aizatsky, N.I. Diky, N.P. Dovbnya, A.N. Ehst, D. Lyashko, Yu.V. Nikiforov, V.I. Tenishev, A.Eh. Torgovkin, A.V. Uvarov, V.L. Shevchenko, V.A. Shramenko, B.I. 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 |
description |
Computer simulation has been used to determine the 99Mo and 67Cu isotope yields, as well as the radiation power absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power absorbed in a tantalum converter versus the converter thickness and spatial-energy characteristics of the electron beam from the accelerator KUT-30 (energy up to 45 MeV, average beam current up to 300 μA). The results of experimental studies are in good agreement with the simulation data. |
format |
Article |
author |
Aizatsky, N.I. Diky, N.P. Dovbnya, A.N. Ehst, D. Lyashko, Yu.V. Nikiforov, V.I. Tenishev, A.Eh. Torgovkin, A.V. Uvarov, V.L. Shevchenko, V.A. Shramenko, B.I. |
author_facet |
Aizatsky, N.I. Diky, N.P. Dovbnya, A.N. Ehst, D. Lyashko, Yu.V. Nikiforov, V.I. Tenishev, A.Eh. Torgovkin, A.V. Uvarov, V.L. Shevchenko, V.A. Shramenko, B.I. |
author_sort |
Aizatsky, N.I. |
title |
99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 |
title_short |
99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 |
title_full |
99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 |
title_fullStr |
99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 |
title_full_unstemmed |
99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 |
title_sort |
99mo and 67cu isotope yields under production conditions of nsc kipt electron accelerator kut-30 |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2010 |
topic_facet |
Применение ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/15707 |
citation_txt |
99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 / N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, D.Ehst, Yu.V. Lyashko, V.I. Nikiforov, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko // Вопросы атомной науки и техники. — 2010. — № 2. — С. 140-144. — Бібліогр.: 9 назв. — англ. |
work_keys_str_mv |
AT aizatskyni 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT dikynp 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT dovbnyaan 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT ehstd 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT lyashkoyuv 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT nikiforovvi 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT tenishevaeh 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT torgovkinav 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT uvarovvl 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT shevchenkova 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 AT shramenkobi 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30 |
first_indexed |
2025-07-02T17:04:47Z |
last_indexed |
2025-07-02T17:04:47Z |
_version_ |
1836555580644261888 |
fulltext |
99Mo AND 67Cu ISOTOPE YIELDS UNDER PRODUCTION CONDITIONS
OF NSC KIPT ELECTRON ACCELERATOR KUT-30
N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, D.Ehst1, Yu.V. Lyashko, V.I. Nikiforov,
A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
1Argonne National Laboratory, USA
E-mail: uvarov@kipt.kharkov.ua
Computer simulation has been used to determine the 99Mo and 67Cu isotope yields, as well as the radiation power
absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power
absorbed in a tantalum converter versus the converter thickness and spatial-energy characteristics of the electron
beam from the accelerator KUT-30 (energy up to 45 MeV, average beam current up to 300 μA). The results of ex-
perimental studies are in good agreement with the simulation data.
PACS: 07.85.-m, 81.40wx, 87.53-j, 87.53.Wz
1. INTRODUCTION
The photonuclear method of isotope production has
become the object of practical engineering [1-3]. Its
advantages include reliability, a moderate cost of elec-
tron accelerators and their operation, and also, the eco-
logical safety. Of particular interest is the production of
99Mo isotope (generator of the basic diagnostic radionu-
clide 99mTc) and 67Cu isotope, which is considered as
one of the most promising radionuclides for radioim-
munotherapy [4].
One of the main problems of photonuclear technol-
ogy is the conversion of a high-intensity electron beam
(≥ 10 kW/cm2) into a flux of mixed e,X-radiation, which
irradiates the target [5]. Therefore, the necessary initial
stage of the process development should involve the
optimization of the composition and service conditions
of the accelerator output devices for providing the
maximum yield of the desired isotope with retention of
heat resistance of the mentioned devices [3].
The NSC KIPT specialists have created the accelera-
tor KUT-30 as a basic setup for developing the photonu-
clear technology [6]. The paper presents the results of
studies on the 99Mo and 67Cu isotope yields that can be
realized with technological targets at KUT-30.
2. SIMULATION OF TARGET ACTIVATION
To calculate the isotope yield and the absorbed ra-
diation power in output device components of the elec-
tron accelerator operated in the mode of isotope produc-
tion, we have used the computer simulation technique
based on the package PENELOPE/2006 supplemented
with the database of excitation functions for photonu-
clear reactions [7]. Earlier, this approach has been dem-
onstrated to provide good agreement with the experi-
mental results [4].
2.1. DESCRIPTION OF OUTPUT DEVICES
In simulation, consideration has been given to a
variant of output devices (see Fig.1) composed of the
bremsstrahlung converter and the target. The converter
unit includes the input (1) and output (6) titanium foils,
50 μm in thickness, and a set of tantalum plates (2-5),
each being 1 mm thick, placed between the foils. Sets of
3, 4, 5 and 6 plates have been considered.
ConverterUnit
electrons
TargetUnit
1 2 3 4 5 6 7 8 9
Fig.1. Configuration of accelerator output devices
The arrangement of plates in the space between the
foils is uniform in all cases. The spacings between the
foils and the plates are filled with cooling water.
-1,0
-0,5
0,0
0,5
1,0
1,5
0,0
0,2
0,4
0,6
0,8
1,0
-1,0
-0,5
0,0
0,5
1,0
dP
/d
P
m
ax
Y (c
m)
X (cm)
Fig.2. Electron beam density distribution
Two variants of the target device have been investi-
gated: in the 1st variant (see Fig.1) the working sub-
stance 8 is located within the titanium capsule 7 in the
cylindrical cavity of diameter D=20 mm and height
H=19.3 mm. The cavity is sealed with a cap bolt 9. In
the 2nd variant, the target is a homogeneous cylinder,
which is placed behind the converter and is axially
symmetric about the electron beam. In both cases, the
devices are surrounded with water.
The electron beam propagates along the horizontal
axis Z. The X-axis is directed vertically upwards, and
the Y-axis lies horizontally. The XOY plane is coinci-
dent with the front wall of the exit-window foil of the
accelerator. In the transverse plane electrons have a
nonuniform distribution of exit points as indicated by
their profiles measured along the X- and Y-axis (see
Fig.2). The electron energy distribution also corre-
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 2.
Series: Nuclear Physics Investigations (53), p.140-144.
140
mailto:uvarov@kipt.kharkov.ua
sponds to the measured spectrum of the accelerator
KUT-30 (Fig.3).
2.2. SIMULATION RESULTS
2.2.1. Calculations for the capsule-containing target
device (Fig.1) have been performed with the working
substance of two types: i) natural molybdenum of den-
sity 10.2 g/cm3 (mass 62 g) with the 100Mo isotope
abundance of 9.63%, and ii) molybdenum trioxide in
powder form having a bulk density of 2.13 g/cm3, mass
of 12.9 g and the 100Mo isotope abundance of 6.42%
(see Table 1).
24 26 28 30 32 34 36
0,0
0,2
0,4
0,6
0,8
1,0
dN
/d
N
m
ax
Energy (MeV)
Fig.3. Experimental (solid curve) and simulated
(dotted line) beam spectra
Table 1
Simulation results for 99Mo yield from Mo and MoO3 targets (Ta, 4 mm)
Absorbed power, kW/mA 99Мо activity Energy
E0, MeV
Working
substance Target Working sub-
stance
Total mCi/(100μA⋅1h) Specific,
mCi/(100μA⋅g⋅1h)
Мо 5.449 ± 0.019 3.75 ± 0.01 15.90 ± 0.21 0.2565 ± 0.0034 35
МоО3 3.550 ± 0.012 1.237 ± 0.002 1.897 ± 0.023 0.1469 ± 0.0018
Мо 7.497 ± 0.027 5.24 ± 0.02 20.34 ± 0.23 0.3283 ± 0.0038 40
МоО3 4.858 ± 0.017 1.667 ± 0.001 2.407 ± 0.026 0.1863 ± 0.0020
Fig.4 shows the 99Mo yield versus target mass at dif-
ferent target diameter-height ratios. For each target mass
value the diameter D0 is determined from the condition
D0=H.
55 60 65 70 75 80 85 90 95 100 105
10
11
12
13
14
15
16
17
18
19
20
21
1 - D0+3 mm
2 - D0
3 - D0-3 mm
4 - D0-5 mm
5 - D0-7 mm
E0=35 MeV
G
ro
ss
a
ct
iv
ity
, m
C
i/(
10
0*
m
kA
*h
ou
r)
Mass, g
1
3
2
4
5
141
Fig.4. Activity of cylindrical Mo targets of different
masses and dimensions
The 99Mo yield and the absorbed radiation power in
the cylindrical natural molybdenum target (15 mm in
diameter, 16.6 mm in height and 30 g in mass) were
also investigated as functions of the number of Ta-
converter plates (Fig.5, Table 2).
3 4 5 6
6
7
8
9
10
11
12
13
14
40 MeV
35 MeV
30 MeVG
ro
ss
a
ct
iv
ity
,m
C
i/(
10
0
⋅m
kA
⋅h
ou
r)
Converter thickness, mm
Fig.5. Mo-99 yield versus converter thickness
Table 2
Absorbed power in the Mo target (30 g) and its activity
at different Ta-converter thickness and electron energy
values
Energy E0, MeV 30 35 40
P, W/μA 2.368 3.407 4.577 3 mm
converter A, μCi/μA⋅h 79.72 111.6 141.3
P, W/μA 1.607 2.455 3.395 4 mm
converter A, μCi/μA⋅h 72.89 102.0 129.2
P, W/μA 1.205 1.842 2.634 5 mm
converter A, μCi/μA⋅h 67.78 92.60 120.1
P, W/μA 0.989 1.488 2.085 6 mm
converter A, μCi/μA⋅h 61.56 83.79 110.6
2.2.2. Preliminary studies have shown that for
photonuclear production of Cu-67 isotope by the reac-
tion 68Zn(γ,p)67Cu the 2×2 cm cylinder is the optimum
target as regards the total-to-specific activity ratio [3].
Figs.6,7 and Table 3 show the Cu-67 yield from this
target versus converter thickness for different E0 values,
and also the data on absorbed power in both the target
and the converter.
3,0 3,5 4,0 4,5 5,0 5,5 6,0
0,0
0,5
1,0
1,5
2,0
2,5
3,0 45 MeV
40 MeV
35 MeV
30 MeV
G
ro
ss
a
ct
iv
ity
, m
C
i/(
10
0*
m
kA
*h
ou
r)
Converter thickness, mm
Fig.6. Cu-67 yield versus converter thickness
3 4 5 6
0
2
4
6
8
10
12
14
16
18
20
45 MeV
40 MeV
35 MeV
30 MeV
45 MeV
40 MeV
35 MeV
30 MeV
converter
cylinder
Converter thickness, mm
A
bs
or
be
d
po
w
er
, W
/m
kA
142
Fig.7. Absorbed radiation power in the converter and in
the Zn target versus converter thickness
Table 3
Absorbed power in the Zn target and its activity at dif-
ferent converter thickness and electron energy values
EnergyE0, MeV 30 35 40 45
P, W/μA 3.135 4.508 6.022 7.466 3 mm
conv. A, μCi/μA⋅h 7.400 14.94 23.00 31.37
P, W/μA 2.015 3.153 4.351 5.639 4 mm
conv. A, μCi/μA⋅h 6.987 13.65 21.20 29.25
P, W/μA 1.448 2.265 3.234 4.288 5 mm
conv. A, μCi/μA⋅h 6.405 12.51 19.32 26.54
P, W/μA 1.172 1.737 2.522 3.391 6 mm
conv. A, μCi/μA⋅h 5.741 11.32 17.52 23.98
3. EXPERIMENTAL STUDIES ON ISOTOPE
YIELDS
3.1. TARGET DEVICES
To test the photonuclear activation conditions, a few
variants of target devices have been designed (Fig.8):
• device No 1 for short-term activation of targets with
moderate induced activity for diagnostics of irradia-
tion conditions (Fig.8,a);
• base target No 2 for specifying the process conditions
of activation (Fig.8,b);
• capsule No 3 for exposure of powder targets (Fig.8,c).
Fig.8. Target device variants
Target No1 accommodated a set of ten Mo discs,
each of diameter 19 mm and thickness 2 mm. Between
the discs there were placed 10 Mo foils (Ø19 mm,
thickness – 90 μm, m≈240 mg – Mo-19 (1)…Mo-19
(10)). The foils were used to analyze the induced activ-
ity distribution along the target axis. The whole molyb-
denum assembly, 59.2 g in mass, was placed into an
aluminum cassette ribbed to hold the target behind the
converter and to provide additional cooling of the cas-
sette. The cassette body had openings for admitting wa-
ter. The front part of the cassette also comprised Mo and
Sn foils-monitors, 34 mm in diameter (Fig.9). From the
Mo-monitor activity ratio 19(1) 34Mo MoA A− − the coeffi-
cient of “bremsstrahlung utilization” by the target has
been estimated. The Sn monitor was used to measure
the bremsstrahlung flux profile on the target by the
photonuclear converter technique [9]. Target No 2, in-
cluding the ribs, was fully made from Mo.
Fig.9. Foils-monitors of bremsstrahlung profile
To measure the photonuclear yield of Cu-67 and its
distribution along the target axis, 20 natural-zinc discs,
each being 1 mm thick, were placed into device No 1.
3.2. RESULTS
3.2.1. The target devices were tested in the mode of
99Mo and 67Cu generation at the following beam pa-
rameters:
electron energy, MeV 36;
pulse length, μs 3.2;
pulse-repetition frequency, Hz 150;
average beam current, μA 260.
Figure 10 shows the profile of high-energy
bremsstrahlung flux behind the converter, which was
obtained by measuring the Sn-monitor surface activity
distribution using of a gamma-scanner [9].
(m
m)
(mm)
a b
c
Fig.10. Pprofile of high-energy bremsstrahlung flux
3.2.2. For the analysis of radionuclide composition
and target activity, the spectrometric system
“CANBERRA” was used. Its energy resolution in the
1332 keV γ-line was 2 keV. To determine the contribu-
tion of short-lived isotopes to the total activity, the Mo-
19(2) sample was measured 2 hours after exposure
(EOB). The obtained results are presented in Table 4.
Table 4
Mo-19(2) sample activity characteristics (after EOB)
Isotope Т (1/2)
Specific activ-
ity (t=0),
mCi/g⋅100μА
⋅1h
Ratio to
desired
isotope, %
Mo-99 66 hour 2.71E-01 100
Nb-95 35 days 0.63E-03 0.2
Nb-95m 86.6 hour 1.095E-02 4.0
Nb-96 23.3 hour 3.55E-02 13.1
Mo-90 5.67 hour 3.44E-02 12.7
Nb-90 14.6 hour 2.12E-02 7.8
Nb-97 74 min 1.175E+00 432.6
Nb-98m 51.3min 0.92E-02 3.4
143
A comparison between the measured specific activ-
ity of 99Mo and its calculated values (see Table 1) shows
their rather good agreement.
Table 5 lists the measured activity values of the zinc
disc being the first in the irradiated assembly as viewed
from the converter, and Fig.11 shows the 67Cu activity
distribution in the depth of the target. As in the 99Mo
case, fair agreement has been obtained between the ex-
perimental data on the 67Cu yield (Table 5) and the
simulation results (Table 3).
Table 5
Zn sample activity characteristics
Радионуклид T1/2 (сут.) A (мКи/г⋅100
мкА⋅1ч)
65Zn 243.2 1,42E-02
67Cu 2.58 6,8E-02
69mZn 0.573 2,82E-02
0 2 4 6 8 10 12 14 16 18 20
H (mm)
3
4
5
6
7
8
9
1.0
A
(re
l.
un
.)
ju
vl
Zn
Fig.11. Zn disc activity versus depth in the target device
It should be also noted that with the accelerator
KUT-30 operation at an average current of 260 μA
(beam power is 9.2 kW) the Ta converter and the water-
cooled target device casings have demonstrated (in ap-
pearance) good heat resistance at both short- (10 min-
utes) and long-term (135 minutes) exposure, i.e., at
steady temperature conditions as well. Under the same
conditions, the MoO3 powder in the capsule was sin-
tered into a grey-greenish bulk showing color and hard-
ness variations on a radius round the capsule cavity.
CONCLUSION
1. The undertaken studies have demonstrated a fair
agreement between the experimental data on the photo-
nuclear isotope yield in technological targets and the
results of simulation based on a modified program sys-
tem PENELOPE/2006.
2. The NSC KIPT electron linear accelerator KUT-
30, operated in the (36 MeV, 260 μA) mode, can pro-
vide the production of 99Mo and 67Cu isotopes in
amounts up to 1 Ci and 150 mCi for a day, respectively,
with the use of molybdenum (30 g) and zinc (42 g) tar-
gets of natural isotopic composition. In the targets of
similar masses, but enriched in 100Mo and 68Zn, the daily
yield can attain 10 Ci for 99Mo and 800 mCi for 67Cu. In
all the cases, provision should be made for an efficient
cooling of targets. The present data (Tables 2, 3) enable
one to specify the optimum conditions of target activa-
tion, which would provide the maximum yield of the
desired isotope with retention of heat resistance of the
target.
3. On retention of accelerator beam parameters, an
additional yield of desired isotopes can be attained by
increasing the target mass, however in this case the tar-
get specific activity would decrease. The maximum
99Mo yield in the cylindrical Mo target of given mass is
attained at close values of its diameter and height. As
calculations indicate, in the 67Cu case this ratio switches
to a greater target height.
4. For photonuclear production of the 99Mo/99mTc
isotope the MoO3-base target is of little use with regard
to both the desired isotope yield and its heat resistance.
The work has been done partially due to STCU
Grant #Р228.
ЛИТЕРАТУРА
1. N.P. Dikiy, A.N. Dovbnya, V.L.Uvarov. The Fun-
damentals of 99mTc Production Cycle at Electron
Accelerator // Problems of Atomic Science and
Technology. Series: Nuclear Physics Investigations.
2004, №1(42), p.168-171.
2. S. Koscnielniak, P. Bricault, B. Davids, et al. Pro-
posal for a ½ MW Electron Linac for Rare Isotope
and Material Science // Proc. of the 11-th Europ.
Part. Accel. Conf. (EPAC’08). Genova, Italy, 2008,
p.985-987.
3. A.N. Dovbnya, V.I. Nikiforov, V.L.Uvarov,
V.F.Zhyglo. Optimization of electron linac operating
conditions for photonuclear isotope production //
Proc. of the 11th Europian Part. Accel. Conf.
(EPAC 08). Genova, Italy, 2008, p.1308-1310.
4. N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, et al. Pecu-
liarities of photonuclear Cu-67 production. (In Rus-
sian) // Problems of Atomic Science and Technology.
Series: Nuclear Physics Investigations. 2008,
№3(49), p.174-178.
5. V.I. Nikiforov, V.L. Uvarov. Analysis of Mixed
e,X-Radiation Along the Extraction Facilities of
Electron Accelerators // Atomic Energy. 2009, v.106,
№4, p.281-286.
6. M.I. Ayzatskiy, E.Z. Biller, V.N. Boriskin, et al.
High-Power Electron S-band Linac for Industrial
144
Purposes // Proc. of the 2003 PAC, Portland, Ore-
gon, USA. 2003, p.2878-2880.
7. F. Salvat, J.M. Fernandez-Varea and J. Sempau.
“PENELOPE-2006 A Code System for Monte Carlo
Simulation of Electron and Photon Transport”
(OECD Nuclear Energy Agency, Issyles-
Moulineaux, France, 2006)
8. M.P. Zykov, G.E. Kodina. Methods of 99Mo produc-
tion (survey) (In Russian) // Radiokhimiya. 1999,
v.41, №3, p.193-204.
9. V.I. Nikiforov, R.I. Pomatsalyuk, A.Eh. Tenishev, et
al. A system for measuring high-energy
bremsstrahlung flux profile. (In Russian) // Problems
of Atomic Science and Technology. Series: Nuclear
Physics Investigations. 2008, №3(49), p.196-200.
Статья поступила в редакцию 05.02.2010 г.
ВЫХОД ИЗОТОПОВ 99Мо И 67Сu В УСЛОВИЯХ ПРОИЗВОДСТВА
НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ КУТ-30 ННЦ ХФТИ
Н.И. Айзацкий, Н.П. Дикий, А.Н. Довбня, Ю.В. Ляшко, В.И. Никифоров, А.Э. Тенишев, А.В. Торговкин,
В.Л. Уваров, В.А. Шевченко, Б.И. Шраменко, D. Ehst
Методом компьютерного моделирования определены выход изотопов 99Мо, 67Сu и поглощенная мощ-
ность излучения в технологических мишенях различной массы и геометрии на основе природных Мо и Zn, а
также поглощенная мощность в конвертере из тантала в зависимости от толщины конвертера и пространст-
венно-энергетических характеристик пучка электронов ускорителя КУТ-30 (энергия – до 45 МэВ, средний
ток – до 300 мкА). Результаты экспериментального исследования находятся в удовлетворительном соответ-
ствии с данными моделирования.
ВИХІД ІЗОТОПІВ 99Мо ТА 67Сu В УМОВАХ ВИРОБНИЦТВА НА ПРИСКОРЮВАЧІ ЕЛЕКТРОНІВ
КУТ-30 ННЦ ХФТІ
М.І. Айзацький, М.П. Дикий, А.М. Довбня, Ю.В. Ляшко, В.І. Нікіфоров, А.Е. Тєнішев, О.В. Торговкін,
В.Л. Уваров, В.А. Шевченко, Б.І. Шраменко, D. Ehst
Методом комп'ютерного моделювання визначено вихід ізотопів 99Мо, 67Сu і поглинута потужність ви-
промінення в технологічних мішенях різної маси і геометрії на основі природних Мо і Zn, а також поглинута
потужність у конвертері з танталу в залежності від товщини конвертера і просторово-енергетичних характе-
ристик пучка електронів прискорювача КУТ-30 (енергія – до 45 МеВ, середній струм – до 300 мкА). Резуль-
тати експериментального дослідження знаходяться в задовільній відповідності з даними моделювання.
Table 4
Mo-19(2) sample activity characteristics (after EOB)
Table 5
Zn sample activity characteristics
Fig.11. Zn disc activity versus depth in the target device
|