99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30

Computer simulation has been used to determine the 99Mo and 67Cu isotope yields, as well as the radiation power absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power absorbed in a tantalum converter versus the converter thickness and spatial-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Aizatsky, N.I., Diky, N.P., Dovbnya, A.N., Ehst, D., Lyashko, Yu.V., Nikiforov, V.I., Tenishev, A.Eh., Torgovkin, A.V., Uvarov, V.L., Shevchenko, V.A., Shramenko, B.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2010
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/15707
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 / N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, D.Ehst, Yu.V. Lyashko, V.I. Nikiforov, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko // Вопросы атомной науки и техники. — 2010. — № 2. — С. 140-144. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-15707
record_format dspace
spelling irk-123456789-157072011-02-01T12:03:37Z 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 Aizatsky, N.I. Diky, N.P. Dovbnya, A.N. Ehst, D. Lyashko, Yu.V. Nikiforov, V.I. Tenishev, A.Eh. Torgovkin, A.V. Uvarov, V.L. Shevchenko, V.A. Shramenko, B.I. Применение ускорителей Computer simulation has been used to determine the 99Mo and 67Cu isotope yields, as well as the radiation power absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power absorbed in a tantalum converter versus the converter thickness and spatial-energy characteristics of the electron beam from the accelerator KUT-30 (energy up to 45 MeV, average beam current up to 300 μA). The results of experimental studies are in good agreement with the simulation data. Методом компьютерного моделирования определены выход изотопов 99Мо, 67Сu и поглощенная мощность излучения в технологических мишенях различной массы и геометрии на основе природных Мо и Zn, а также поглощенная мощность в конвертере из тантала в зависимости от толщины конвертера и пространственно-энергетических характеристик пучка электронов ускорителя КУТ-30 (энергия – до 45 МэВ, средний ток – до 300 мкА). Результаты экспериментального исследования находятся в удовлетворительном соответствии с данными моделирования. Методом комп'ютерного моделювання визначено вихід ізотопів 99Мо, 67Сu і поглинута потужність випромінення в технологічних мішенях різної маси і геометрії на основі природних Мо і Zn, а також поглинута потужність у конвертері з танталу в залежності від товщини конвертера і просторово-енергетичних характеристик пучка електронів прискорювача КУТ-30 (енергія – до 45 МеВ, середній струм – до 300 мкА). Результати експериментального дослідження знаходяться в задовільній відповідності з даними моделювання. 2010 Article 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 / N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, D.Ehst, Yu.V. Lyashko, V.I. Nikiforov, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko // Вопросы атомной науки и техники. — 2010. — № 2. — С. 140-144. — Бібліогр.: 9 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/15707 en Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей
Применение ускорителей
spellingShingle Применение ускорителей
Применение ускорителей
Aizatsky, N.I.
Diky, N.P.
Dovbnya, A.N.
Ehst, D.
Lyashko, Yu.V.
Nikiforov, V.I.
Tenishev, A.Eh.
Torgovkin, A.V.
Uvarov, V.L.
Shevchenko, V.A.
Shramenko, B.I.
99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30
description Computer simulation has been used to determine the 99Mo and 67Cu isotope yields, as well as the radiation power absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power absorbed in a tantalum converter versus the converter thickness and spatial-energy characteristics of the electron beam from the accelerator KUT-30 (energy up to 45 MeV, average beam current up to 300 μA). The results of experimental studies are in good agreement with the simulation data.
format Article
author Aizatsky, N.I.
Diky, N.P.
Dovbnya, A.N.
Ehst, D.
Lyashko, Yu.V.
Nikiforov, V.I.
Tenishev, A.Eh.
Torgovkin, A.V.
Uvarov, V.L.
Shevchenko, V.A.
Shramenko, B.I.
author_facet Aizatsky, N.I.
Diky, N.P.
Dovbnya, A.N.
Ehst, D.
Lyashko, Yu.V.
Nikiforov, V.I.
Tenishev, A.Eh.
Torgovkin, A.V.
Uvarov, V.L.
Shevchenko, V.A.
Shramenko, B.I.
author_sort Aizatsky, N.I.
title 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30
title_short 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30
title_full 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30
title_fullStr 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30
title_full_unstemmed 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30
title_sort 99mo and 67cu isotope yields under production conditions of nsc kipt electron accelerator kut-30
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2010
topic_facet Применение ускорителей
url http://dspace.nbuv.gov.ua/handle/123456789/15707
citation_txt 99Mo and 67Cu isotope yields under production conditions of NSC KIPT electron accelerator KUT-30 / N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, D.Ehst, Yu.V. Lyashko, V.I. Nikiforov, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko // Вопросы атомной науки и техники. — 2010. — № 2. — С. 140-144. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT aizatskyni 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT dikynp 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT dovbnyaan 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT ehstd 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT lyashkoyuv 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT nikiforovvi 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT tenishevaeh 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT torgovkinav 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT uvarovvl 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT shevchenkova 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
AT shramenkobi 99moand67cuisotopeyieldsunderproductionconditionsofnsckiptelectronacceleratorkut30
first_indexed 2025-07-02T17:04:47Z
last_indexed 2025-07-02T17:04:47Z
_version_ 1836555580644261888
fulltext 99Mo AND 67Cu ISOTOPE YIELDS UNDER PRODUCTION CONDITIONS OF NSC KIPT ELECTRON ACCELERATOR KUT-30 N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, D.Ehst1, Yu.V. Lyashko, V.I. Nikiforov, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 1Argonne National Laboratory, USA E-mail: uvarov@kipt.kharkov.ua Computer simulation has been used to determine the 99Mo and 67Cu isotope yields, as well as the radiation power absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power absorbed in a tantalum converter versus the converter thickness and spatial-energy characteristics of the electron beam from the accelerator KUT-30 (energy up to 45 MeV, average beam current up to 300 μA). The results of ex- perimental studies are in good agreement with the simulation data. PACS: 07.85.-m, 81.40wx, 87.53-j, 87.53.Wz 1. INTRODUCTION The photonuclear method of isotope production has become the object of practical engineering [1-3]. Its advantages include reliability, a moderate cost of elec- tron accelerators and their operation, and also, the eco- logical safety. Of particular interest is the production of 99Mo isotope (generator of the basic diagnostic radionu- clide 99mTc) and 67Cu isotope, which is considered as one of the most promising radionuclides for radioim- munotherapy [4]. One of the main problems of photonuclear technol- ogy is the conversion of a high-intensity electron beam (≥ 10 kW/cm2) into a flux of mixed e,X-radiation, which irradiates the target [5]. Therefore, the necessary initial stage of the process development should involve the optimization of the composition and service conditions of the accelerator output devices for providing the maximum yield of the desired isotope with retention of heat resistance of the mentioned devices [3]. The NSC KIPT specialists have created the accelera- tor KUT-30 as a basic setup for developing the photonu- clear technology [6]. The paper presents the results of studies on the 99Mo and 67Cu isotope yields that can be realized with technological targets at KUT-30. 2. SIMULATION OF TARGET ACTIVATION To calculate the isotope yield and the absorbed ra- diation power in output device components of the elec- tron accelerator operated in the mode of isotope produc- tion, we have used the computer simulation technique based on the package PENELOPE/2006 supplemented with the database of excitation functions for photonu- clear reactions [7]. Earlier, this approach has been dem- onstrated to provide good agreement with the experi- mental results [4]. 2.1. DESCRIPTION OF OUTPUT DEVICES In simulation, consideration has been given to a variant of output devices (see Fig.1) composed of the bremsstrahlung converter and the target. The converter unit includes the input (1) and output (6) titanium foils, 50 μm in thickness, and a set of tantalum plates (2-5), each being 1 mm thick, placed between the foils. Sets of 3, 4, 5 and 6 plates have been considered. ConverterUnit electrons TargetUnit 1 2 3 4 5 6 7 8 9 Fig.1. Configuration of accelerator output devices The arrangement of plates in the space between the foils is uniform in all cases. The spacings between the foils and the plates are filled with cooling water. -1,0 -0,5 0,0 0,5 1,0 1,5 0,0 0,2 0,4 0,6 0,8 1,0 -1,0 -0,5 0,0 0,5 1,0 dP /d P m ax Y (c m) X (cm) Fig.2. Electron beam density distribution Two variants of the target device have been investi- gated: in the 1st variant (see Fig.1) the working sub- stance 8 is located within the titanium capsule 7 in the cylindrical cavity of diameter D=20 mm and height H=19.3 mm. The cavity is sealed with a cap bolt 9. In the 2nd variant, the target is a homogeneous cylinder, which is placed behind the converter and is axially symmetric about the electron beam. In both cases, the devices are surrounded with water. The electron beam propagates along the horizontal axis Z. The X-axis is directed vertically upwards, and the Y-axis lies horizontally. The XOY plane is coinci- dent with the front wall of the exit-window foil of the accelerator. In the transverse plane electrons have a nonuniform distribution of exit points as indicated by their profiles measured along the X- and Y-axis (see Fig.2). The electron energy distribution also corre- ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 2. Series: Nuclear Physics Investigations (53), p.140-144. 140 mailto:uvarov@kipt.kharkov.ua sponds to the measured spectrum of the accelerator KUT-30 (Fig.3). 2.2. SIMULATION RESULTS 2.2.1. Calculations for the capsule-containing target device (Fig.1) have been performed with the working substance of two types: i) natural molybdenum of den- sity 10.2 g/cm3 (mass 62 g) with the 100Mo isotope abundance of 9.63%, and ii) molybdenum trioxide in powder form having a bulk density of 2.13 g/cm3, mass of 12.9 g and the 100Mo isotope abundance of 6.42% (see Table 1). 24 26 28 30 32 34 36 0,0 0,2 0,4 0,6 0,8 1,0 dN /d N m ax Energy (MeV) Fig.3. Experimental (solid curve) and simulated (dotted line) beam spectra Table 1 Simulation results for 99Mo yield from Mo and MoO3 targets (Ta, 4 mm) Absorbed power, kW/mA 99Мо activity Energy E0, MeV Working substance Target Working sub- stance Total mCi/(100μA⋅1h) Specific, mCi/(100μA⋅g⋅1h) Мо 5.449 ± 0.019 3.75 ± 0.01 15.90 ± 0.21 0.2565 ± 0.0034 35 МоО3 3.550 ± 0.012 1.237 ± 0.002 1.897 ± 0.023 0.1469 ± 0.0018 Мо 7.497 ± 0.027 5.24 ± 0.02 20.34 ± 0.23 0.3283 ± 0.0038 40 МоО3 4.858 ± 0.017 1.667 ± 0.001 2.407 ± 0.026 0.1863 ± 0.0020 Fig.4 shows the 99Mo yield versus target mass at dif- ferent target diameter-height ratios. For each target mass value the diameter D0 is determined from the condition D0=H. 55 60 65 70 75 80 85 90 95 100 105 10 11 12 13 14 15 16 17 18 19 20 21 1 - D0+3 mm 2 - D0 3 - D0-3 mm 4 - D0-5 mm 5 - D0-7 mm E0=35 MeV G ro ss a ct iv ity , m C i/( 10 0* m kA *h ou r) Mass, g 1 3 2 4 5 141 Fig.4. Activity of cylindrical Mo targets of different masses and dimensions The 99Mo yield and the absorbed radiation power in the cylindrical natural molybdenum target (15 mm in diameter, 16.6 mm in height and 30 g in mass) were also investigated as functions of the number of Ta- converter plates (Fig.5, Table 2). 3 4 5 6 6 7 8 9 10 11 12 13 14 40 MeV 35 MeV 30 MeVG ro ss a ct iv ity ,m C i/( 10 0 ⋅m kA ⋅h ou r) Converter thickness, mm Fig.5. Mo-99 yield versus converter thickness Table 2 Absorbed power in the Mo target (30 g) and its activity at different Ta-converter thickness and electron energy values Energy E0, MeV 30 35 40 P, W/μA 2.368 3.407 4.577 3 mm converter A, μCi/μA⋅h 79.72 111.6 141.3 P, W/μA 1.607 2.455 3.395 4 mm converter A, μCi/μA⋅h 72.89 102.0 129.2 P, W/μA 1.205 1.842 2.634 5 mm converter A, μCi/μA⋅h 67.78 92.60 120.1 P, W/μA 0.989 1.488 2.085 6 mm converter A, μCi/μA⋅h 61.56 83.79 110.6 2.2.2. Preliminary studies have shown that for photonuclear production of Cu-67 isotope by the reac- tion 68Zn(γ,p)67Cu the 2×2 cm cylinder is the optimum target as regards the total-to-specific activity ratio [3]. Figs.6,7 and Table 3 show the Cu-67 yield from this target versus converter thickness for different E0 values, and also the data on absorbed power in both the target and the converter. 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 45 MeV 40 MeV 35 MeV 30 MeV G ro ss a ct iv ity , m C i/( 10 0* m kA *h ou r) Converter thickness, mm Fig.6. Cu-67 yield versus converter thickness 3 4 5 6 0 2 4 6 8 10 12 14 16 18 20 45 MeV 40 MeV 35 MeV 30 MeV 45 MeV 40 MeV 35 MeV 30 MeV converter cylinder Converter thickness, mm A bs or be d po w er , W /m kA 142 Fig.7. Absorbed radiation power in the converter and in the Zn target versus converter thickness Table 3 Absorbed power in the Zn target and its activity at dif- ferent converter thickness and electron energy values EnergyE0, MeV 30 35 40 45 P, W/μA 3.135 4.508 6.022 7.466 3 mm conv. A, μCi/μA⋅h 7.400 14.94 23.00 31.37 P, W/μA 2.015 3.153 4.351 5.639 4 mm conv. A, μCi/μA⋅h 6.987 13.65 21.20 29.25 P, W/μA 1.448 2.265 3.234 4.288 5 mm conv. A, μCi/μA⋅h 6.405 12.51 19.32 26.54 P, W/μA 1.172 1.737 2.522 3.391 6 mm conv. A, μCi/μA⋅h 5.741 11.32 17.52 23.98 3. EXPERIMENTAL STUDIES ON ISOTOPE YIELDS 3.1. TARGET DEVICES To test the photonuclear activation conditions, a few variants of target devices have been designed (Fig.8): • device No 1 for short-term activation of targets with moderate induced activity for diagnostics of irradia- tion conditions (Fig.8,a); • base target No 2 for specifying the process conditions of activation (Fig.8,b); • capsule No 3 for exposure of powder targets (Fig.8,c). Fig.8. Target device variants Target No1 accommodated a set of ten Mo discs, each of diameter 19 mm and thickness 2 mm. Between the discs there were placed 10 Mo foils (Ø19 mm, thickness – 90 μm, m≈240 mg – Mo-19 (1)…Mo-19 (10)). The foils were used to analyze the induced activ- ity distribution along the target axis. The whole molyb- denum assembly, 59.2 g in mass, was placed into an aluminum cassette ribbed to hold the target behind the converter and to provide additional cooling of the cas- sette. The cassette body had openings for admitting wa- ter. The front part of the cassette also comprised Mo and Sn foils-monitors, 34 mm in diameter (Fig.9). From the Mo-monitor activity ratio 19(1) 34Mo MoA A− − the coeffi- cient of “bremsstrahlung utilization” by the target has been estimated. The Sn monitor was used to measure the bremsstrahlung flux profile on the target by the photonuclear converter technique [9]. Target No 2, in- cluding the ribs, was fully made from Mo. Fig.9. Foils-monitors of bremsstrahlung profile To measure the photonuclear yield of Cu-67 and its distribution along the target axis, 20 natural-zinc discs, each being 1 mm thick, were placed into device No 1. 3.2. RESULTS 3.2.1. The target devices were tested in the mode of 99Mo and 67Cu generation at the following beam pa- rameters: electron energy, MeV 36; pulse length, μs 3.2; pulse-repetition frequency, Hz 150; average beam current, μA 260. Figure 10 shows the profile of high-energy bremsstrahlung flux behind the converter, which was obtained by measuring the Sn-monitor surface activity distribution using of a gamma-scanner [9]. (m m) (mm) a b c Fig.10. Pprofile of high-energy bremsstrahlung flux 3.2.2. For the analysis of radionuclide composition and target activity, the spectrometric system “CANBERRA” was used. Its energy resolution in the 1332 keV γ-line was 2 keV. To determine the contribu- tion of short-lived isotopes to the total activity, the Mo- 19(2) sample was measured 2 hours after exposure (EOB). The obtained results are presented in Table 4. Table 4 Mo-19(2) sample activity characteristics (after EOB) Isotope Т (1/2) Specific activ- ity (t=0), mCi/g⋅100μА ⋅1h Ratio to desired isotope, % Mo-99 66 hour 2.71E-01 100 Nb-95 35 days 0.63E-03 0.2 Nb-95m 86.6 hour 1.095E-02 4.0 Nb-96 23.3 hour 3.55E-02 13.1 Mo-90 5.67 hour 3.44E-02 12.7 Nb-90 14.6 hour 2.12E-02 7.8 Nb-97 74 min 1.175E+00 432.6 Nb-98m 51.3min 0.92E-02 3.4 143 A comparison between the measured specific activ- ity of 99Mo and its calculated values (see Table 1) shows their rather good agreement. Table 5 lists the measured activity values of the zinc disc being the first in the irradiated assembly as viewed from the converter, and Fig.11 shows the 67Cu activity distribution in the depth of the target. As in the 99Mo case, fair agreement has been obtained between the ex- perimental data on the 67Cu yield (Table 5) and the simulation results (Table 3). Table 5 Zn sample activity characteristics Радионуклид T1/2 (сут.) A (мКи/г⋅100 мкА⋅1ч) 65Zn 243.2 1,42E-02 67Cu 2.58 6,8E-02 69mZn 0.573 2,82E-02 0 2 4 6 8 10 12 14 16 18 20 H (mm) 3 4 5 6 7 8 9 1.0 A (re l. un .) ju vl Zn Fig.11. Zn disc activity versus depth in the target device It should be also noted that with the accelerator KUT-30 operation at an average current of 260 μA (beam power is 9.2 kW) the Ta converter and the water- cooled target device casings have demonstrated (in ap- pearance) good heat resistance at both short- (10 min- utes) and long-term (135 minutes) exposure, i.e., at steady temperature conditions as well. Under the same conditions, the MoO3 powder in the capsule was sin- tered into a grey-greenish bulk showing color and hard- ness variations on a radius round the capsule cavity. CONCLUSION 1. The undertaken studies have demonstrated a fair agreement between the experimental data on the photo- nuclear isotope yield in technological targets and the results of simulation based on a modified program sys- tem PENELOPE/2006. 2. The NSC KIPT electron linear accelerator KUT- 30, operated in the (36 MeV, 260 μA) mode, can pro- vide the production of 99Mo and 67Cu isotopes in amounts up to 1 Ci and 150 mCi for a day, respectively, with the use of molybdenum (30 g) and zinc (42 g) tar- gets of natural isotopic composition. In the targets of similar masses, but enriched in 100Mo and 68Zn, the daily yield can attain 10 Ci for 99Mo and 800 mCi for 67Cu. In all the cases, provision should be made for an efficient cooling of targets. The present data (Tables 2, 3) enable one to specify the optimum conditions of target activa- tion, which would provide the maximum yield of the desired isotope with retention of heat resistance of the target. 3. On retention of accelerator beam parameters, an additional yield of desired isotopes can be attained by increasing the target mass, however in this case the tar- get specific activity would decrease. The maximum 99Mo yield in the cylindrical Mo target of given mass is attained at close values of its diameter and height. As calculations indicate, in the 67Cu case this ratio switches to a greater target height. 4. For photonuclear production of the 99Mo/99mTc isotope the MoO3-base target is of little use with regard to both the desired isotope yield and its heat resistance. The work has been done partially due to STCU Grant #Р228. ЛИТЕРАТУРА 1. N.P. Dikiy, A.N. Dovbnya, V.L.Uvarov. The Fun- damentals of 99mTc Production Cycle at Electron Accelerator // Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations. 2004, №1(42), p.168-171. 2. S. Koscnielniak, P. Bricault, B. Davids, et al. Pro- posal for a ½ MW Electron Linac for Rare Isotope and Material Science // Proc. of the 11-th Europ. Part. Accel. Conf. (EPAC’08). Genova, Italy, 2008, p.985-987. 3. A.N. Dovbnya, V.I. Nikiforov, V.L.Uvarov, V.F.Zhyglo. Optimization of electron linac operating conditions for photonuclear isotope production // Proc. of the 11th Europian Part. Accel. Conf. (EPAC 08). Genova, Italy, 2008, p.1308-1310. 4. N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, et al. Pecu- liarities of photonuclear Cu-67 production. (In Rus- sian) // Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations. 2008, №3(49), p.174-178. 5. V.I. Nikiforov, V.L. Uvarov. Analysis of Mixed e,X-Radiation Along the Extraction Facilities of Electron Accelerators // Atomic Energy. 2009, v.106, №4, p.281-286. 6. M.I. Ayzatskiy, E.Z. Biller, V.N. Boriskin, et al. High-Power Electron S-band Linac for Industrial 144 Purposes // Proc. of the 2003 PAC, Portland, Ore- gon, USA. 2003, p.2878-2880. 7. F. Salvat, J.M. Fernandez-Varea and J. Sempau. “PENELOPE-2006 A Code System for Monte Carlo Simulation of Electron and Photon Transport” (OECD Nuclear Energy Agency, Issyles- Moulineaux, France, 2006) 8. M.P. Zykov, G.E. Kodina. Methods of 99Mo produc- tion (survey) (In Russian) // Radiokhimiya. 1999, v.41, №3, p.193-204. 9. V.I. Nikiforov, R.I. Pomatsalyuk, A.Eh. Tenishev, et al. A system for measuring high-energy bremsstrahlung flux profile. (In Russian) // Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations. 2008, №3(49), p.196-200. Статья поступила в редакцию 05.02.2010 г. ВЫХОД ИЗОТОПОВ 99Мо И 67Сu В УСЛОВИЯХ ПРОИЗВОДСТВА НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ КУТ-30 ННЦ ХФТИ Н.И. Айзацкий, Н.П. Дикий, А.Н. Довбня, Ю.В. Ляшко, В.И. Никифоров, А.Э. Тенишев, А.В. Торговкин, В.Л. Уваров, В.А. Шевченко, Б.И. Шраменко, D. Ehst Методом компьютерного моделирования определены выход изотопов 99Мо, 67Сu и поглощенная мощ- ность излучения в технологических мишенях различной массы и геометрии на основе природных Мо и Zn, а также поглощенная мощность в конвертере из тантала в зависимости от толщины конвертера и пространст- венно-энергетических характеристик пучка электронов ускорителя КУТ-30 (энергия – до 45 МэВ, средний ток – до 300 мкА). Результаты экспериментального исследования находятся в удовлетворительном соответ- ствии с данными моделирования. ВИХІД ІЗОТОПІВ 99Мо ТА 67Сu В УМОВАХ ВИРОБНИЦТВА НА ПРИСКОРЮВАЧІ ЕЛЕКТРОНІВ КУТ-30 ННЦ ХФТІ М.І. Айзацький, М.П. Дикий, А.М. Довбня, Ю.В. Ляшко, В.І. Нікіфоров, А.Е. Тєнішев, О.В. Торговкін, В.Л. Уваров, В.А. Шевченко, Б.І. Шраменко, D. Ehst Методом комп'ютерного моделювання визначено вихід ізотопів 99Мо, 67Сu і поглинута потужність ви- промінення в технологічних мішенях різної маси і геометрії на основі природних Мо і Zn, а також поглинута потужність у конвертері з танталу в залежності від товщини конвертера і просторово-енергетичних характе- ристик пучка електронів прискорювача КУТ-30 (енергія – до 45 МеВ, середній струм – до 300 мкА). Резуль- тати експериментального дослідження знаходяться в задовільній відповідності з даними моделювання. Table 4 Mo-19(2) sample activity characteristics (after EOB) Table 5 Zn sample activity characteristics Fig.11. Zn disc activity versus depth in the target device