Функциональный закон повторного логарифма для полей и его применения
Для вінерівського поля з довільним скінченним числом параметрів побудовано закон повторного логарифма у функціональному вигляді. Розглянуто задачу про перебування випадкових полів одного типу в криволінійних межах. Виконання умови Каіролі-Уолша не вимагається....
Збережено в:
Дата: | 1997 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1997
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157099 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Функциональный закон повторного логарифма для полей и его применения / Б.В.Бондарев, Г.Г. Жирный // Український математичний журнал. — 1997. — Т. 49, № 7. — С. 883–894. — Бібліогр.: 10 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Для вінерівського поля з довільним скінченним числом параметрів побудовано закон повторного логарифма у функціональному вигляді. Розглянуто задачу про перебування випадкових полів одного типу в криволінійних межах. Виконання умови Каіролі-Уолша не вимагається. |
---|