A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models

The Berezinskii-Kosterlitz-Thouless transition is a very specific phase transition where all thermodynamic quantities are smooth. Therefore, it is difficult to determine the critical temperature in a precise way. In this paper we demonstrate how neural networks can be used to perform this task. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Richter-Laskowska, M., Khan, H., Trivedi, N., Maśka, M.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2018
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/157119
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models / M. Richter-Laskowska, H. Khan, N. Trivedi, M.M. Maśka // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33602: 1–11. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The Berezinskii-Kosterlitz-Thouless transition is a very specific phase transition where all thermodynamic quantities are smooth. Therefore, it is difficult to determine the critical temperature in a precise way. In this paper we demonstrate how neural networks can be used to perform this task. In particular, we study how the accuracy of the transition identification depends on the way the neural networks are trained. We apply our approach to three different systems: (i) the classical XY model, (ii) the phase-fermion model, where classical and quantum degrees of freedom are coupled and (iii) the quantum XY model.