Self-similar groups and finite Gelfand pairs

We study the Basilica group B, the iterated monodromy group I of the complex polynomial z 2 + i and the Hanoi Towers group H(3). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of B, I and H(3) on each level is 2-points homog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: D’Angeli, D., Donno, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2007
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/157371
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157371
record_format dspace
fulltext
spelling irk-123456789-1573712019-06-21T01:30:19Z Self-similar groups and finite Gelfand pairs D’Angeli, D. Donno, A. We study the Basilica group B, the iterated monodromy group I of the complex polynomial z 2 + i and the Hanoi Towers group H(3). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of B, I and H(3) on each level is 2-points homogeneous with respect to the ultrametric distance. This gives rise to symmetric Gelfand pairs: we then compute the corresponding spherical functions. In the case of B and H(3) this result can also be obtained by using the strong property that the rigid stabilizers of the vertices of the first level of the tree act spherically transitively on the respective subtrees. On the other hand, this property does not hold in the case of I. 2007 Article Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ. 2000 Mathematics Subject Classification: 20E08, 20F65, 20F10, 05C25, 43A85, 43A90. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/157371 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the Basilica group B, the iterated monodromy group I of the complex polynomial z 2 + i and the Hanoi Towers group H(3). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of B, I and H(3) on each level is 2-points homogeneous with respect to the ultrametric distance. This gives rise to symmetric Gelfand pairs: we then compute the corresponding spherical functions. In the case of B and H(3) this result can also be obtained by using the strong property that the rigid stabilizers of the vertices of the first level of the tree act spherically transitively on the respective subtrees. On the other hand, this property does not hold in the case of I.
format Article
author D’Angeli, D.
Donno, A.
spellingShingle D’Angeli, D.
Donno, A.
Self-similar groups and finite Gelfand pairs
Algebra and Discrete Mathematics
author_facet D’Angeli, D.
Donno, A.
author_sort D’Angeli, D.
title Self-similar groups and finite Gelfand pairs
title_short Self-similar groups and finite Gelfand pairs
title_full Self-similar groups and finite Gelfand pairs
title_fullStr Self-similar groups and finite Gelfand pairs
title_full_unstemmed Self-similar groups and finite Gelfand pairs
title_sort self-similar groups and finite gelfand pairs
publisher Інститут прикладної математики і механіки НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/157371
citation_txt Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT dangelid selfsimilargroupsandfinitegelfandpairs
AT donnoa selfsimilargroupsandfinitegelfandpairs
first_indexed 2025-07-14T09:48:42Z
last_indexed 2025-07-14T09:48:42Z
_version_ 1837615308479660032