Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds
The structural, electronic and magnetic properties of half-Heusler compounds XVSb (X = Fe, Co and Ni) are investigated by using the density functional theory with generalized gradient approximation (GGA), and Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential approximation. It is found t...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2018
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157469 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds / M. Mokhtari, F. Dahmane, G. Benabdellah, L. Zekri, S. Benalia, N. Zekri // Condensed Matter Physics. — 2018. — Т. 21, № 4. — С. 43705: 1–9. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157469 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1574692019-06-21T01:28:59Z Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds Mokhtari, M. Dahmane, F. Benabdellah, G. Zekri, L. Benalia, S Zekri, N. The structural, electronic and magnetic properties of half-Heusler compounds XVSb (X = Fe, Co and Ni) are investigated by using the density functional theory with generalized gradient approximation (GGA), and Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential approximation. It is found that the half-metallic gaps are generally reasonably widened by mBJ as compared to the GGA approximation. The magnetic proprieties of XVSb (X = Fe, Co and Ni) are well defined within mBJ with an exact integer value of magnetic moment. The band gaps given by TB-mBJ are in good agreement with the available theoretical data. The FeVSb exhibits a semiconductor nature. The CoVSb and NiVSb present half-metallic behaviour with total magnetic moment of 1µB and 2µB in good agreement with Slater-Pauling rule. These alloys seem to be a potential candidate of spintronic devices. Структурнi, електроннi та магнiтнi властивостi напiв-Гойслерiвських сполук XVSb (X = Fe, Co i Ni) дослiджено з використанням теорiї функцiоналу густини разом з узагальненим градiєнтним наближенням (GGA) та Тран-Блаха модифiкованим Беке-Джонсон (TB-mBJ) наближенням обмiнного потенцiалу. Встановлено, що напiвметалiчнi щiлини загалом достатньо розширенi за рахунок mBJ у порiвняннi з наближенням GGA. Магнiтнi властивостi XVSb (X = Fe, Co i Ni) добре визначенi в межах mBJ при точному цiлому значеннi магнiтного моменту. Ширина заборонених зон, отримана з TB-mBJ, добре узгоджується з наявними теоретичними даними. FeVSb проявляє напiвпровiдниковий характер. CoVSb i NiVSb показують напiвметалiчну поведiнку при сумарному магнiтному моментi 1µB i 2µB, що добре узгоджується з правилом Слейтера-Паулiнга. Видається, що цi сплави є потенцiйними кандидатами для використання у спiнтронних пристроях. 2018 Article Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds / M. Mokhtari, F. Dahmane, G. Benabdellah, L. Zekri, S. Benalia, N. Zekri // Condensed Matter Physics. — 2018. — Т. 21, № 4. — С. 43705: 1–9. — Бібліогр.: 27 назв. — англ. 1607-324X PACS: 71.22.+i, 72.25.-b, 75.75.-c DOI:10.5488/CMP.21.43705 arXiv:1812.08559 http://dspace.nbuv.gov.ua/handle/123456789/157469 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The structural, electronic and magnetic properties of half-Heusler compounds XVSb (X = Fe, Co and Ni) are investigated by using the density functional theory with generalized gradient approximation (GGA), and Tran-Blaha
modified Becke-Johnson (TB-mBJ) exchange potential approximation. It is found that the half-metallic gaps are
generally reasonably widened by mBJ as compared to the GGA approximation. The magnetic proprieties of XVSb
(X = Fe, Co and Ni) are well defined within mBJ with an exact integer value of magnetic moment. The band gaps
given by TB-mBJ are in good agreement with the available theoretical data. The FeVSb exhibits a semiconductor
nature. The CoVSb and NiVSb present half-metallic behaviour with total magnetic moment of 1µB and 2µB in
good agreement with Slater-Pauling rule. These alloys seem to be a potential candidate of spintronic devices. |
format |
Article |
author |
Mokhtari, M. Dahmane, F. Benabdellah, G. Zekri, L. Benalia, S Zekri, N. |
spellingShingle |
Mokhtari, M. Dahmane, F. Benabdellah, G. Zekri, L. Benalia, S Zekri, N. Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds Condensed Matter Physics |
author_facet |
Mokhtari, M. Dahmane, F. Benabdellah, G. Zekri, L. Benalia, S Zekri, N. |
author_sort |
Mokhtari, M. |
title |
Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds |
title_short |
Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds |
title_full |
Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds |
title_fullStr |
Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds |
title_full_unstemmed |
Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds |
title_sort |
theoretical study of the structural stability, electronic and magnetic properties of xvsb (x = fe, ni, and co) half-heusler compounds |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2018 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157469 |
citation_txt |
Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds / M. Mokhtari, F. Dahmane, G. Benabdellah, L. Zekri, S. Benalia, N. Zekri // Condensed Matter Physics. — 2018. — Т. 21, № 4. — С. 43705: 1–9. — Бібліогр.: 27 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT mokhtarim theoreticalstudyofthestructuralstabilityelectronicandmagneticpropertiesofxvsbxfeniandcohalfheuslercompounds AT dahmanef theoreticalstudyofthestructuralstabilityelectronicandmagneticpropertiesofxvsbxfeniandcohalfheuslercompounds AT benabdellahg theoreticalstudyofthestructuralstabilityelectronicandmagneticpropertiesofxvsbxfeniandcohalfheuslercompounds AT zekril theoreticalstudyofthestructuralstabilityelectronicandmagneticpropertiesofxvsbxfeniandcohalfheuslercompounds AT benalias theoreticalstudyofthestructuralstabilityelectronicandmagneticpropertiesofxvsbxfeniandcohalfheuslercompounds AT zekrin theoreticalstudyofthestructuralstabilityelectronicandmagneticpropertiesofxvsbxfeniandcohalfheuslercompounds |
first_indexed |
2025-07-14T09:53:47Z |
last_indexed |
2025-07-14T09:53:47Z |
_version_ |
1837615628393906176 |
fulltext |
Condensed Matter Physics, 2018, Vol. 21, No 4, 43705: 1–9
DOI: 10.5488/CMP.21.43705
http://www.icmp.lviv.ua/journal
Theoretical study of the structural stability,
electronic and magnetic properties of XVSb (X = Fe,
Ni, and Co) half-Heusler compounds
M. Mokhtari1,2, F. Dahmane2, G. Benabdellah3, L. Zekri1, S. Benalia2, N. Zekri1
1 Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, LEPM,
BP 1505, El M’ Naouar, 31000 Oran, Algeria
2 Département de SM, Institut des Sciences et des Technologies, Centre Universitaire de Tissemsilt,
38000 Tissemsilt, Algérie
3 Laboratoire de physique Computationnelle des Materiaux, Université de Sidi Belabes 22000, Algérie
Received July 17, 2018, in final form September 30, 2018
The structural, electronic and magnetic properties of half-Heusler compounds XVSb (X = Fe, Co and Ni) are in-
vestigated by using the density functional theory with generalized gradient approximation (GGA), and Tran-Blaha
modified Becke-Johnson (TB-mBJ) exchange potential approximation. It is found that the half-metallic gaps are
generally reasonably widened by mBJ as compared to the GGA approximation. The magnetic proprieties of XVSb
(X = Fe, Co and Ni) are well defined within mBJ with an exact integer value of magnetic moment. The band gaps
given by TB-mBJ are in good agreement with the available theoretical data. The FeVSb exhibits a semiconductor
nature. The CoVSb and NiVSb present half-metallic behaviour with total magnetic moment of 1µB and 2µB ingood agreement with Slater-Pauling rule. These alloys seem to be a potential candidate of spintronic devices.
Key words: first-principles calculations, half-Heusler alloys, structural properties, magnetic properties
PACS: 71.22.+i, 72.25.-b, 75.75.-c
1. Introduction
A motivating group of ternary alloys having chemical formula XYZ named as half-Heusler (HH)
compounds, crystallize in the face centered cubic structure (space group F43m; No. 216) [1, 2], where X
is rare-earth or transition metal, Y is transition metal and Z is the main group element [3]. These materials
have been of large interest to both experimental and theoretical researchers since they were first studied
by Andreas Heusler [4]. Spintronics is a promising field in nanoscale electronics which uses the spin
of electrons, rather than an electric charge, to encode and process data [5]. Half-metallic ferromagnets
(HMFs) are characterized by a semiconductor band structure for one-spin direction with a clear energy
gap, while the band structure of the other spin direction is metallic [6, 7]. The electronic density of states
(DOS) at EF of an ideal half-metal is composed of only one spin direction resulting in a very high spin
polarization ratio at Fermi level. Principally, these compounds (half-metals) are efficient to employ in
the conduction of spin polarized current due to its great sensitivity to the applied magnetic field. These
types of materials have many technological applications, such as spintronics [8, 9] and spin injection to
semiconductors [10, 11].
Many research papers focus on the studies and the analysis of physical properties of half-Heusler
compounds at an ambient pressure; e.g., structural as well as optoelectronic properties of CoVSb half-
Heusler are studied in [12]. Electronic and magnetic characteristics of different half-Heusler alloys are
calculated in [2] while thermodynamics and elastic properties of NiVSb are investigated by Gu et al. [13].
In this paper we report on the basic electronic and magnetic properties of XVSb (X = Fe, Ni, and
This work is licensed under a Creative Commons Attribution 4.0 International License . Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
43705-1
https://doi.org/10.5488/CMP.21.43705
http://www.icmp.lviv.ua/journal
http://creativecommons.org/licenses/by/4.0/
M. Mokhtari et al.
Co) half-Heusler compounds. Therefore, our main objective is to perform an investigation of structural
stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) within both generalized
gradient approximation (GGA) in the scheme of Perdew-Burke-Ernzerhof (PBE) and Tran-Blaha (TB)
modified Becke and Johnson (mBJ) potential [14] exchange correlation potential of the density functional
theory (DFT). The mBJ exchange potential, has been demonstrated to give a sufficiently exact gaps for
wide-band-gap insulators and to ameliorate half-metallic gaps for half-metallic materials [15, 16].
2. Method description
In this work, the first principles calculations are realized using the full potential linearized augmented
plane wave (FP-LAPW) method within the framework of the density functional theory (DFT) [17] as
implemented in the WIEN2k code [18]. The convergence of the basis set was controlled by a cut-off
parameter Kmax = 7/RMT, where Kmax is the largest reciprocal lattice vector used in the plane wave and
RMT is the smallest of all atomic sphere radii. For the Brillouin zone (BZ) integration, the tetrahedron
method with a 47 special k points in the irreducible wedge (1000 k-points in the full BZ) was used
to construct the charge density in each self-consistency step. The magnitude of the largest vector in the
charge density Fourier expansion (Gmax) was 12 (a.u.)−1, and we select the charge convergence as 0.0001e
during self-consistency cycles. The cut-off energy was taken −6.0 Ry. This energy defines the separation
of the valence and core states. These parameters confirm good convergences for the total energy.
The muffin-tin radii (MT) are 2.18 a.u. for V and 2.24 a.u for Sb, Fe, Co and Ni. To determine the
fundamental-state properties, the total energy as a function to the cell volume is fitted to the Murnaghan
equation of state [19], as shown in:
E(V) = E0(V) +
BV
B′(B′ − 1)
[
B
(
1 −
V0
V
)
+
(
V0
V
)B′
− 1
]
, (2.1)
where E0 is the minimum energy at T = 0 K, B is the bulk modulus, B′ is the bulk modulus derivative,
and V0 is the equilibrium volume. The half-Heusler compounds XYZ crystallizes in the face centered
cubic (fcc) (figure 1) structure with the space group F43m (No. 216). Y and Z atoms are located at
4a(0, 0, 0) and 4b(1/2, 1/2, 1/2) position forming the rock salt structure arrangement. The X atoms
occupy 4c(1/4, 1/4, 1/4) and 4d(3/4, 3/4, 3/4). When the Z atomic positions are empty, the structure is
analogous to the zinc blend structure which is common for a large number of semiconductors.
Figure 1. (Colour online) Crystal structure of half-Heusler XVSb (X = Fe, Co and Ni) with phases α.
43705-2
Theoretical study of the structural stability
3. Results and discussions
The half-Heusler compounds have a general formula XYZ, the X and Y atoms represent d-electron
transition metals, and Z denotes a sp-electron element. These compounds crystallize in a noncentrosym-
metric cubic structure (space group No. 216, C1b) which is ternary ordered. Moreover, in the XYZ
structure, the X atom has four Y atoms and four Z atoms as the nearest neighbors, whereas the Y and Z
atoms have only four X atoms in their nearest neighbor coordination. In the half-Heusler C1b structure,
the XVSb adopts three possible arrangements named phase α, phase β and phase γ in theory, and these
atomic arrangements are possible, which should be distinguished, particularly if electronic structure cal-
culations are executed, since the correct site assignment is important for the obtained electronic structure
[20]. In order to define the correct arrangement of the atomic positions in the crystal and the ground state
properties, such as the equilibrium lattice constant (a), bulk modulus (B) and its pressure derivative (B′),
the structural optimization of three XVSb (X = Fe, Co and Ni) compounds was performed by minimizing
the total energy with respect to the lattice parameter variation. The total energy curves as a function to the
volume for the phases α, β and γ is presented in figure 2 for FeVSb, NiVSb and CoVSb [(a), (b) and (c),
respectively)]. From this figure, and for the three compounds, the calculated results show that the phase
α disposition is energetically better with a magnetic ground state for all alloys XVSb (X = Fe, Co and Ni)
than β and γ phases because it has the lowest energy. The lattice constant of equilibrium is 5.7976 Å for
FeVSb, 5.8292 Å for CoVSb and 5.9032 Å for NiVSb. This is a good agreement with theoretical studies
[13, 21, 22]. The obtained results are given in table 1 and show that the lattice parameter increases with
an increasing atomic number of X atom (X = Fe, Co, Ni). As a consequence, the bulk modulus decreases,
in accord with the known link between B and the lattice constants: B ∝ V−1
0 , where V0 is the unit cell
volume.
For comparison, Ahmad et al. [23] found that the lattice constant of SbSrX half-Heusler alloys
augments in the following sequence: a0(SbSrC) < a0(SbSrSi) < a0(SbSrGe). As Sb and Sr atoms are the
same in the three compounds, this result can be easily explained by taking into consideration the atomic
radii of C, Si, Ge: the lattice constant increases with an increasing atomic size of the X element in SbSrX
compounds.
Figure 2. (Colour online) The total energies per unit cell as a function of the volume for α, β and γ phase
for (a) FeVSb, (b) CoVSb and (c) NiVSb in the magnetic phase.
43705-3
M. Mokhtari et al.
Table 1.Equilibrium lattice constant a (Å), the bulkmodulus B (GPa) and theminimum energy Emin (Ry),
the gap energy (eV) and the magnetic moment for XVSb (X = Fe, Ni, Co).
a (Å) B (GPa) B′ Emin (Ry) Eg (eV) m (µB)
FeVSb GGA
5.7976 156.1322 4.9062 −17411.534 0.41 −0.00029
5.78 [21] 0.38 [21]
mBJ 0.74 0
CoVSb GGA
5.8292 137.9190 5.6156 −17652.871 0.80 0.99994
5.80 [22] 0.38
mBJ 0.92 1.00018
NiVSb GGA
5.9032 121.4953 5.5563 −17907.570 0.36 2.00289
5.786 [13] 5.085 [13]
mBJ 0.62 2.00032
The energy of formation of the solid is the difference between the energy of a crystal and its constituent
as solid phases at zero temperature, which is given by:
∆H = E(XVSb)bulktot − E(V)bulktot − E(Sb)bulktot − E(X)bulktot , (3.1)
where E(XVSb)bulktot is the total energy of the alloy. E(V)bulktot , E(Sb)bulktot and E(X)bulktot are the energies of
the fundamental state per atom of each elemental bulk for V, Sb, Fe, Co and Ni. We find that the formation
energies of the stoichiometric XVSb (X = Fe, Co and Ni) in half-Heusler structure are −1.23, −4.29 and
−1.17 Ry, respectively, which confirms the stability of the alloy in its half-Heusler structure [24, 25].
The band structure and the density of states (DOS) of XVSb (X= Fe, Co, Ni) half-Heusler compounds
along the high symmetry directions in the first Brillouin zone are plotted in (figures 3–5), for GGA and
TB-mBJ approximations at the equilibrium lattice parameter. The band gap values with other theoretical
data are presented in table 1.
The density of states of a system represents the number of states at every energy level. We have
presented the total density of states (TDOS) and partial density of states (PDOS) of FeVSb in figures 3 (a)
and (b). These figures show that there is symmetry between spin-up and spin-down of the spin polarized
DOS of FeVSb for both GGA and TB-mBJ approximations. The compound presents an energy gap
of 0.42 eV at the Fermi level in both spin-up and spin-down band structure for GGA approximation
and an energy gap of 0.74 eV for TB-mBJ approximation which clearly explains that FeTiSb exhibits
a semiconductor nature. The magnetic moments of Fe, V and Sb are 0.02047µB, −0.01486µB and
0.00010µB, respectively, for GGA calculations with an effective magnetic moment of −0.00029µB.
Meanwhile, the TB-mBJ approximation gives an effective magnetic moment of 0µB.
The calculated band structure for half-Heusler CoVSb compound is shown in figures 4 (a) and
(b). It can be seen for both GGA and TB-mBJ approximations that the majority-spin states show a
semiconductor character, while the minority spin states indicate a metallic nature. The lowest conduction
band at point X and the highest valence band at the point Γ form the band gap and are equal to 0.80 eV for
GGA approximation and 0.92 eV for mBJ. Ab initio results propose that both the electronic and magnetic
properties in these compounds are related to the apparition of the majority-spin gap. CoVSb alloy has
19 valence electrons and the total spin magnetic moment Mtot is given by the relation Mtot = (Ztot−18)µB
for the half-Heusler alloys. Where Mtot and Ztot are the total magnetic moment per formula unit and the
number of total valence electrons, respectively. The spin magnetic moment is an integer and is equal to
1µB which confirms the HM behaviour for CoVSb with both GGA and mBJ approximations in good
agreement with Slater-Pauling rule [26, 27]. The individual magnetic moment of Co, Sb and V atoms are
0.72410µB, −0.04469µB and −1.54423µB for mBJ approximation at normal pressure. The contribution
of the atom V to the magnetic moment of the compound is greater compared to the other atom.
The band structures with the GGA and mBJ approximations of NiVSb compound along the high
symmetry directions in the Brillouin zone are presented in figures 5 (a) and (b). It is clear that the
43705-4
Theoretical study of the structural stability
-4
-2
0
2
4
-5
0
5
-12 -8 -4 0 4 8 12
-4
-2
0
2
4
KWXLW
E
ne
rg
y
(e
v)
UP
GGA
FeVSb
DownUP
Dos(States/ev)
En
er
gy
(e
v)
FeVSb Tot
Fe Tot
V Tot
Sb Tot
(a)
KWXLW
En
er
gy
(e
v)
GGA
Down
FeVSb
-4
-2
0
2
4
-5
0
5
-12 -8 -4 0 4 8 12
-4
-2
0
2
4
w
En
er
gy
(e
v)
mbj
Up
FeVSb
DownUP
KwXLwKXLw
Dos(States/ev)
En
er
gy
(e
v)
FeVSb Tot
Fe Tot
V Tot
Sb Tot
(b)
En
er
gy
(e
v)
mbj
Down
FeVSb
Figure 3. (Colour online) The spin-projected total density of states of FeVSb with the corresponding band
structures for (a) GGA and (b) TB-mBJ approximations.
maximum of the valence band is positioned at the point Γ while the minimum of the conduction band is
found at point X for both approximations. For this alloy, the (GGA) approximation predicts an indirect
band gap of 0.36 eV. However, for the mBJ potential approximation, NiVSb compound has an indirect
band gap of 0.62 eV at the (Γ−X) points. To explain the band structure of our compounds, the density of
states (DOS) of NiVSb compounds is calculated and plotted in figure 5 within the energy interval from
−5 to 5 eV. The obtained (DOS) shows a sharp peak at the valence band and is located at −2.38 eV and
−2.91 eV for GGa and mBJ approximations, respectively. These peaks originate from Ni atoms. NiVSb
alloy presents a spin magnetic moment of 2µB per formula unit (see table 1) for both GGA and mBJ
approximations in good agreement with Slater-Pauling rule (20 − 18 = 2). For mBJ, Sb atom shows a
43705-5
M. Mokhtari et al.
-4
-2
0
2
4
-5
0
5
-10 -5 0 5 10
-4
-2
0
2
4
KWXLW
En
er
gy
(e
v)
GGA
UP
CoVSb
Dos(states/ev)
En
er
gy
(e
v)
CoVSb Tot
Co Tot
V Tot
Sb Tot
(a)
KWXLW
En
er
gy
(e
v)
GGA
Down
CoVSb
-4
-2
0
2
4
-4
-2
0
2
4
-12 -8 -4 0 4 8 12
-4
-2
0
2
4
KWKWXLW
En
er
gy
(e
v)
mbj
up
CoVSb
DownUP
Dos (States/ev)
En
er
gy
(e
v)
CoVSb Tot
Co Tot
V Tot
Sb Tot
(b)
XL W
En
er
gy
(e
v)
mbj
Down
CoVSb
Figure 4. (Colour online) The spin-projected total density of states of CoVSb with the corresponding
band structures for (a) GGA and (b) TB-mBJ approximations.
negative magnetic moment of −0.06005µB (−0.05196 for GGA) per formula unit whereas Ni, Sb atoms
give a positive magnetic moment of 0.11984µB (0.07698 for GGA) and 1.73252µB (1.71898 for GGA)
per formula unit, respectively.
4. Conclusion
The structural stability, electronic structures, magnetic properties, and half-metallicity of half-Heusler
XVSb (X = Fe, Co and Ni) alloys have been investigated by using a full-potential linearized augmented
plane wave (FP-LAPW) method of density functional theory (DFT) within the modified Becke and
43705-6
Theoretical study of the structural stability
-4
-2
0
2
4
-12 -8 -4 0 4 8 12
-4
-2
0
2
4
KWXLW
E
ne
rg
y(
ev
)
GGA
UP
NiVSb
DownUP
Dos(States/ev)
E
ne
rg
y(
ev
)
NiVSb Tot
Ni Tot
V Tot
Sb Tot
(a)
KWXLW
En
er
gy
(e
v)
GGA
Down
NiVSb
-4
-2
0
2
4
-4
-2
0
2
4
-12 -8 -4 0 4 8 12
-4
-2
0
2
4
KWXLW
En
er
gy
(e
v)
mbj
UP
NiVSb
DownUP
Dos(States/ev)
En
er
gy
(E
v)
NiVSb Tot
Ni Tot
V Tot
Sb Tot
(b)
KWXLW
En
er
gy
(e
v)
mbj
Down
NiVSb
Figure 5. (Colour online) The spin-projected total density of states of NiVSb with the corresponding band
structures for (a) GGA and (b) TB-mBJ approximations.
Johnson potential (mBJ) exchange correlation potential and the generalized gradient approximation
(GGA). For different structures, the total energy calculations show that the most stable arrangement,
where Fe, Co and Ni occupy the (0, 0, 0) and V, Sb occupies the (1/4, 1/4, 1/4) and (3/4, 3/4, 3/4)
positions, respectively. The electronic band structure calculations show that the compounds CoVSb and
NiVSb exhibit a half-metallic ferromagnetic (HMF) property with a magnetic moment of 1µB and 2µB
per formula unit at their equilibrium volume for both GGA and mBJ approximations. It is also found
that FeVSb presents a semiconductor nature with an energy gap of 0.41 eV and 0.74 eV for GGA and
mBJ approximations, respectively. Moreover, negative value of the formation energy of these compounds
confirms that these compounds are stable and these compoundsmay be useful for spintronics applications.
43705-7
M. Mokhtari et al.
References
1. Shrivastava D., Sanyal S.P., J. Alloys Compd., 2018, 745, 240–246, doi:10.1016/j.jallcom.2018.02.208.
2. Nanda B.R.K., Dasgupta I., J. Phys.: Condens. Matter, 2003, 15, 7307–7323, doi:10.1088/0953-8984/15/43/014.
3. Graf T., Felser C., Parkin S.S.P., Prog. Solid State Chem., 2011, 39, 1–50,
doi:10.1016/j.progsolidstchem.2011.02.001.
4. De Groot R.A., Mueller F.M., van Engen P.G., Buschow K.H.J., Phys. Rev. Lett., 1983, 50, 2024,
doi:10.1103/PhysRevLett.50.2024.
5. Kervan S., Solid State Commun., 2013, 155, 69–72, doi:10.1016/j.ssc.2012.11.009.
6. Katsnelson M.I., Irkhin V.Yu., Chioncel L., Lichtenstein A.I., de Groot R.A., Rev. Mod. Phys., 2008, 80, 315,
doi:10.1103/RevModPhys.80.315.
7. Mokhtari M., Dahmane F., Zekri L., Benalia S., Zekri N., J. Supercond. Novel Magn., 2018, 31, No. 9, 2991–
2998, doi:10.1007/s10948-018-4568-0.
8. Irkhin V.Yu., Katsnel’son M.I., Usp. Fiz. Nauk, 1994, 164, 705 (in Russian),
doi:10.3367/UFNr.0164.199407b.0705, [Irkhin V.Yu., Katsnel’son M.I., Phys. Usp., 1994, 37, 659,
doi:10.1070/PU1994v037n07ABEH000033].
9. Žutić I., Fabian J., Das Sarma S., Rev. Mod. Phys., 2004, 76, 323, doi:10.1103/RevModPhys.76.323.
10. Schmidt G., Ferrand D., Molenkamp L.W., Filip A.T., van Wees B.J., Phys. Rev. B, 2000, 62, R4790(R),
doi:10.1103/PhysRevB.62.R4790.
11. Ohno Y., Young D.K., Beschoten B., Matsukura F., Ohno H., Awschalom D.D., Nature, 1999, 402, 790,
doi:10.1038/45509.
12. Ameri M., Touia A., Khenata R., Al-Douri Y., Baltache H., Optik, 2013, 124, 570–574,
doi:10.1016/j.ijleo.2011.12.052.
13. Gu J.-B., Wang C.-J., Cheng Y., Zhang L., Cai L.-C., Ji G.-F., Comput. Mater. Sci., 2015, 96, 72–80,
doi:10.1016/j.commatsci.2014.08.049.
14. Tran F., Blaha P., Phys. Rev. Lett., 2009, 102, 226401, doi:10.1103/PhysRevLett.102.226401.
15. Fan S.W., Ding L.J., Wang Z.L., Yao K.L., Appl. Phys. Lett., 2013, 102, 022404, doi:10.1063/1.4775680.
16. Fan S.W., Dong J.H., Ding L.J., Wang Z.L., Yao K.L., Comput. Mater. Sci., 2013, 67, 83,
doi:10.1016/j.commatsci.2012.08.026.
17. Kohn W., Sham L.J., Phys. Rev., 1965, 140, A1133, doi:10.1103/PhysRev.140.A1133.
18. Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D., Luitz J., WIEN2k, An Augmented Plane Wave Plus Local
Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, 2001.
19. Murnaghan F.D., Proc. Natl. Acad. Sci. U.S.A., 1994, 30, 244, doi:10.1073/pnas.30.9.244.
20. Graf T., Winterlik J., Müchler L., Fecher G.H., Felser C., Parkin S.S.P., In: Handbook of Magnetic Materials,
Vol. 21, Buschow K. (Ed.), Elsevier, 2013, 1–75, doi:10.1016/B978-0-444-59593-5.00001-5.
21. Ma J., Hegde V.I., Munira K., Xie Y., Keshavarz S., Mildebrath D.T., Wolverton C., Ghosh A.W., Butler W.H.,
Phys. Rev. B, 2017, 95, 024411, doi:10.1103/PhysRevB.95.024411.
22. Toboła J., Pierre J., J. Alloys Compd., 2000, 296, 243, doi:10.1016/S0925-8388(99)00549-6.
23. Ahmad M., Naeemullah, Murtaza G., Khenata R., Bin Omran S., Bouhemadou A., J. Magn. Magn. Mater.,
2015, 377, 204–210, doi:10.1016/j.jmmm.2014.10.108.
24. Spina L., Jia Y.-Z., Ducourant B., Tillard M., Belin C., Z. Kristallogr., 2003, 218, 740,
doi:10.1524/zkri.218.11.740.20305.
25. Nowotny H., Holub F., Monatsh. Chem., 1960, 91, 877, doi:10.1007/BF00929560.
26. Slater J.C., Phys. Rev., 1936, 49, 931–937, doi:10.1103/PhysRev.49.931.
27. Pauling L., Phys. Rev., 1938, 54, 899–904, doi:10.1103/PhysRev.54.899.
43705-8
https://doi.org/10.1016/j.jallcom.2018.02.208
https://doi.org/10.1088/0953-8984/15/43/014
https://doi.org/10.1016/j.progsolidstchem.2011.02.001
https://doi.org/10.1103/PhysRevLett.50.2024
https://doi.org/10.1016/j.ssc.2012.11.009
https://doi.org/10.1103/RevModPhys.80.315
https://doi.org/10.1007/s10948-018-4568-0
https://doi.org/10.3367/UFNr.0164.199407b.0705
https://doi.org/10.1070/PU1994v037n07ABEH000033
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1038/45509
https://doi.org/10.1016/j.ijleo.2011.12.052
https://doi.org/10.1016/j.commatsci.2014.08.049
https://doi.org/10.1103/PhysRevLett.102.226401
https://doi.org/10.1063/1.4775680
https://doi.org/10.1016/j.commatsci.2012.08.026
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1073/pnas.30.9.244
https://doi.org/10.1016/B978-0-444-59593-5.00001-5
https://doi.org/10.1103/PhysRevB.95.024411
https://doi.org/10.1016/S0925-8388(99)00549-6
https://doi.org/10.1016/j.jmmm.2014.10.108
https://doi.org/10.1524/zkri.218.11.740.20305
https://doi.org/10.1007/BF00929560
https://doi.org/10.1103/PhysRev.49.931
https://doi.org/10.1103/PhysRev.54.899
Theoretical study of the structural stability
Теоретичне дослiдження структурної стiйкостi, електронних
i магнiтних властивостей XVSb (X = Fe, Ni i Co)
напiв-Гойслерiвських сполук
M.Мохтарi1,2, Ф. Даман2, Г. Бенабделла3, Л. Зекрi1, С. Беналья2, Н. Зекрi1
1 Унiверситет природничих наук i технологiй iм.Мохамеда Будiафа м. Оран, USTO-MB, LEPM,
BP 1505, 31000 Оран, Алжир
2 Iнститут природничих наук i технологiй, Унiверситетський центр м. Тiссемсiлт, 38000 Тiссемсiлт, Алжир
3 Лабораторiя обчислювальної фiзики матерiї, унiверситет м. Сiдi-Бель-Аббес 22000, Алжир
Структурнi, електроннi та магнiтнi властивостi напiв-Гойслерiвських сполук XVSb (X = Fe, Co i Ni) дослiдже-
но з використанням теорiї функцiоналу густини разом з узагальненим градiєнтним наближенням (GGA)
та Тран-Блаха модифiкованим Беке-Джонсон (TB-mBJ) наближенням обмiнного потенцiалу. Встановлено,
що напiвметалiчнi щiлини загалом достатньо розширенi за рахунок mBJ у порiвняннi з наближенням
GGA. Магнiтнi властивостi XVSb (X = Fe, Co i Ni) добре визначенi в межах mBJ при точному цiлому зна-
ченнi магнiтного моменту.Ширина заборонених зон, отримана з TB-mBJ, добре узгоджується з наявними
теоретичними даними. FeVSb проявляє напiвпровiдниковий характер. CoVSb i NiVSb показують напiв-
металiчну поведiнку при сумарному магнiтному моментi 1µB i 2µB, що добре узгоджується з правиломСлейтера-Паулiнга. Видається, що цi сплави є потенцiйними кандидатами для використання у спiнтрон-
них пристроях.
Ключовi слова: першопринципнi розрахунки, напiв-Гойслерiвськi сплави, структурнi властивостi,
магнiтнi властивостi
43705-9
Introduction
Method description
Results and discussions
Conclusion
|