Metrizable ball structures
A ball structure is a triple (X, P, B), where X, P are nonempty sets and, for any x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x. We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups....
Saved in:
Date: | 2002 |
---|---|
Main Author: | Protasov, I.V. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2002
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/157658 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Metrizable ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 129–141. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Metrizable ball structures
by: Protasov, I. V.
Published: (2018) -
Uniform ball structures
by: Protasov, I.V.
Published: (2003) -
Uniform ball structures
by: Protasov, I.V.
Published: (2003) -
Projective Metrizability and Formal Integrability
by: Bucataru, I., et al.
Published: (2011) -
Morphisms of Ball's Structures of Groups and Graphs
by: Protasov, I.V.
Published: (2002)