Сингулярно збурена спектральна задача для бігармонічного оператора з умовами Неймана

Вивчено математичну модель композитної пластини, яка складається з двох компонент, що мають подібні пружні властивості, але відрізняються розподілом густини. Площа області, яку займає одна з компонент, є безмежно малою при ε→0. Досліджується асимптотична поведінка при ε→0 власних значень і власних ф...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1999
1. Verfasser: Лаврентьєв, А.С.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 1999
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/157946
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Сингулярно збурена спектральна задача для бігармонічного оператора з умовами Неймана / А.С. Лаврентьєв // Український математичний журнал. — 1999. — Т. 51, № 11. — С. 1467–1475. — Бібліогр.: 12 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Вивчено математичну модель композитної пластини, яка складається з двох компонент, що мають подібні пружні властивості, але відрізняються розподілом густини. Площа області, яку займає одна з компонент, є безмежно малою при ε→0. Досліджується асимптотична поведінка при ε→0 власних значень і власних функцій крайової задачі для бігармоиїчиого оператора з умовами Неймана. Описано чотири різні випадки граничної поведінки спектра в залежності від співвідношення густин компонент середовища. Зокрема, описано так званий ефект локальних коливань Е. Санчес-Паленсія: коливна система має зліченну серію нескінченно малих при ε→0 власних частот, яким відповідають власні форми коливань, локалізовані в області збурення густини.