Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique
«Surface photografting» of polypropylene (PPy) microporous membranes by molecularly imprinted polymers selective to triazine herbicides has been carried out by the UV irradiation-initiated co-polymerization of the functional monomer (2-acrylamido-2-methyl-1-propane sulphonic acid) and a cross-linker...
Gespeichert in:
Datum: | 2004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут молекулярної біології і генетики НАН України
2004
|
Schriftenreihe: | Біополімери і клітина |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/157985 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique / T.A. Sergeyeva, H. Matuschewski, S.A. Piletsky, U. Schedler, M. Ulbricht // Біополімери і клітина. — 2004. — Т. 20, № 4. — С. 307-315. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157985 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1579852019-06-23T01:25:09Z Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique Sergeyeva, T.A. Matuschewski, H. Piletsky, S.A. Schedler, U. Ulbricht, M. Структура та функції біополімерів «Surface photografting» of polypropylene (PPy) microporous membranes by molecularly imprinted polymers selective to triazine herbicides has been carried out by the UV irradiation-initiated co-polymerization of the functional monomer (2-acrylamido-2-methyl-1-propane sulphonic acid) and a cross-linker (N,N?-methylene-bis-acrylamide) in the presence of the template (terbumeton) onto photoinitiator (benzophenone)-coated samples. The grafting reaction occurs in a thin liquid layer on the membrane substrate, which is pre-soaked in a dimethyl formamide solution containing template, functional monomer and cross-linker. After irradiation with a 500 W mercury lamp for 10 min at room temperature, the membranes covered with the layer of imprinted polymer were obtained. The recognition sites complementary to terbumeton were formed in the membranes after extraction of the template molecules with methanol. Alternatively, reference polymeric membranes were prepared with the same monomer composition, but without the template. The membranes' recognition properties were estimated by their capability to herbicide adsorption from its aqueous solution. The membranes modified by the mixture of monomers containing terbumeton showed significantly higher adsorption capability to this herbicide than to analogous compounds (terbuthylazine, atrazine, desmetryn, metribuzine). The effect of the polymer composition on the binding properties of the membranes has been investigated. High affinity of these membranes to triazine herbicides together with their inexpensive preparation, provide a good basis for applications of molecularly imprinted polymer membranes in separation and solid-phase extraction. Синтезовано новий тип матричних полімерних мембран шляхом поверхневої модифікації мікрофільтраційних поліпропі ленових мембран, яка полягала в нанесенні на поверхню тонкого шару матричного полімеру, селективного до триазинового гербіциду тербуметону. Матричну полімеризацію здійснювали в диметилформаміді, використовуючи гербіцид тербуметон як матрицю, 2-акриламідо-2-метил-1-пропан-сульфонову І метакрилову І акрилову кислоту як функціональний мономер і N ,N' -метилен-бісакриламід як зшивальний агент на поверхні мікрофільтраційної мембрани, покритої тонким шаром фотоініціитора бензофенону. Екстракція матричних молекул спричинювала формування в структурі мембрани сайтів, які за формою та проепюровим розташуванням функціональних груп були комплементарними тербуметону. Контрольні мембрани модифікували з використанням подібної суміші мономерів, що не містила тербуметону. Здатність мембран до селективної адсорбції тербуметону досліджено в залежності від типу та концентрації функціонального мономера, а також від концентрації зшивального агента в мономерній суміші. Показано, що тербуметон-імпринтовані матричні полімерні мембрани характеризуються високою селективністю стосовно тербуметону та здатністю до незначної адсорбції його структурних аналогів — тертбутилазину, атразину, десметрину і метрибузину. Такі властивості синтезованих мембран забезпечують їхнє ефективне використання у твердофазовій екстракції. Синтезирован новый тип матричных полимерных мембран методом поверхностной модификации микрофильтрационных полипропиленовых мембран, заключающемся в нанесении на поверхность тонкого слоя матричного полимера, селективного к триазиновому гербициду тербуметону. Матричную полимеризацию проводили в диметилформамиде с использованием триазинового гербицида тербуметона в качестве матрицы, 2-акриламидо-2-метил-1-пропан-сульфоновойї метакриловой акриловой кислоты как функционального мономера и N,N'-метилен-би сак рилам ида как сшивающего агенпш на поверхности микрофильтрационной мембраны, покрытой тонким слоем фотоинииштюра бензофенона. Экстракция матричных молекул приводила к формированию в структуре мембраны сайтов, комплементарных тербуметону по форме и пространственному расположению функциональных групп. Контроль ные мембраны синтезоровали с использованием той же мономерной смеси в отсутствие тербуметона. Способность мем бран к селективной адсорбции тербуметона исследовали в зависимости от типа и концентрации функционального мономера, а также концентрации сшивающего агента, в мономерной смеси. Показано, что тербуметон-импринтированные матричные полимерные мембраны характеризуются высокой селективностью к тербуметону и демонстрируют незначительную адсорбцию его структурних аналогов — тертбутилазина, атразина, десметрина и метрибузина. Такие свойства синтезованных мембран обеспечивают возможность их эффективного использования в твердофазной экстракции. 2004 Article Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique / T.A. Sergeyeva, H. Matuschewski, S.A. Piletsky, U. Schedler, M. Ulbricht // Біополімери і клітина. — 2004. — Т. 20, № 4. — С. 307-315. — Бібліогр.: 26 назв. — англ. 0233-7657 DOI:http://dx.doi.org/10.7124/bc.0006B4 http://dspace.nbuv.gov.ua/handle/123456789/157985 544.725 + 544.722.21 + 577.21 en Біополімери і клітина Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Структура та функції біополімерів Структура та функції біополімерів |
spellingShingle |
Структура та функції біополімерів Структура та функції біополімерів Sergeyeva, T.A. Matuschewski, H. Piletsky, S.A. Schedler, U. Ulbricht, M. Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique Біополімери і клітина |
description |
«Surface photografting» of polypropylene (PPy) microporous membranes by molecularly imprinted polymers selective to triazine herbicides has been carried out by the UV irradiation-initiated co-polymerization of the functional monomer (2-acrylamido-2-methyl-1-propane sulphonic acid) and a cross-linker (N,N?-methylene-bis-acrylamide) in the presence of the template (terbumeton) onto photoinitiator (benzophenone)-coated samples. The grafting reaction occurs in a thin liquid layer on the membrane substrate, which is pre-soaked in a dimethyl formamide solution containing template, functional monomer and cross-linker. After irradiation with a 500 W mercury lamp for 10 min at room temperature, the membranes covered with the layer of imprinted polymer were obtained. The recognition sites complementary to terbumeton were formed in the membranes after extraction of the template molecules with methanol. Alternatively, reference polymeric membranes were prepared with the same monomer composition, but without the template. The membranes' recognition properties were estimated by their capability to herbicide adsorption from its aqueous solution. The membranes modified by the mixture of monomers containing terbumeton showed significantly higher adsorption capability to this herbicide than to analogous compounds (terbuthylazine, atrazine, desmetryn, metribuzine). The effect of the polymer composition on the binding properties of the membranes has been investigated. High affinity of these membranes to triazine herbicides together with their inexpensive preparation, provide a good basis for applications of molecularly imprinted polymer membranes in separation and solid-phase extraction. |
format |
Article |
author |
Sergeyeva, T.A. Matuschewski, H. Piletsky, S.A. Schedler, U. Ulbricht, M. |
author_facet |
Sergeyeva, T.A. Matuschewski, H. Piletsky, S.A. Schedler, U. Ulbricht, M. |
author_sort |
Sergeyeva, T.A. |
title |
Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique |
title_short |
Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique |
title_full |
Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique |
title_fullStr |
Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique |
title_full_unstemmed |
Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique |
title_sort |
development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2004 |
topic_facet |
Структура та функції біополімерів |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157985 |
citation_txt |
Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique / T.A. Sergeyeva, H. Matuschewski, S.A. Piletsky, U. Schedler, M. Ulbricht // Біополімери і клітина. — 2004. — Т. 20, № 4. — С. 307-315. — Бібліогр.: 26 назв. — англ. |
series |
Біополімери і клітина |
work_keys_str_mv |
AT sergeyevata developmentofmolecularlyimprintedpolymermembraneswithspecificitytotriazineherbicidespreparedbythesurfacephotograftingtechnique AT matuschewskih developmentofmolecularlyimprintedpolymermembraneswithspecificitytotriazineherbicidespreparedbythesurfacephotograftingtechnique AT piletskysa developmentofmolecularlyimprintedpolymermembraneswithspecificitytotriazineherbicidespreparedbythesurfacephotograftingtechnique AT schedleru developmentofmolecularlyimprintedpolymermembraneswithspecificitytotriazineherbicidespreparedbythesurfacephotograftingtechnique AT ulbrichtm developmentofmolecularlyimprintedpolymermembraneswithspecificitytotriazineherbicidespreparedbythesurfacephotograftingtechnique |
first_indexed |
2025-07-14T10:25:26Z |
last_indexed |
2025-07-14T10:25:26Z |
_version_ |
1837617618834423808 |
fulltext |
ISSN 0233-7657. Біополімери і клітина. 2004. Т. 20. № 4
Development of molecularly imprinted polymer
membranes with specificity to triazine herbicides,
prepared by the «surface photografting» technique
T. A. Sergeyeva1, H. Matuschewski2, S. A. Piletsky1 3 , U. Schedler2, M. Ulbricht4
Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine
150 vul. Acad. Zabolotnoho, Kyiv, 03143 , Ukraine
2
Poly-An GmbH
Rudolf-Baschant-Str. 2, 13086 Berlin, Germany
3
Institute of Bioscience and Technology, Cranfield University at Silsoe
Bedfordshire, MK45 4 DT, UK
4
Universitat Duisburg-Essen
Universitat-Str. 5, 45117 Essen, Germany
E-mail: t_sergeyeva@yahoo.co.uk
«Surface photografting» of polypropylene (PPy) microporous membranes by molecularly imprinted
polymers selective to triazine herbicides has been carried out by the UV irradiation-initiated co-
polymerization of the functional monomer (2-acrylamido-2-methyl-l-propane sulphonic acid) and a
cross-linker (N,N'-methylene-bis-acrylamide) in the presence of the template (terbumeton) onto pho-
toinitiator (benzophenone)-coated samples. The grafting reaction occurs in a thin liquid layer on the
membrane substrate, which is pre-soaked in a dimethyl formamide solution containing template, functional
monomer and cross-linker. After irradiation with a 500 W mercury lamp for 10 min at room temperature,
the membranes covered with the layer of imprinted polymer were obtained. The recognition sites
complementary to terbumeton were formed in the membranes after extraction of the template molecules
with methanol. Alternatively, reference polymeric membranes were prepared with the same monomer
composition, but without the template. The membranes' recognition properties were estimated by their
capability to herbicide adsorption from its aqueous solution. The membranes modified by the mixture of
monomers containing terbumeton showed significantly higher adsorption capability to this herbicide than
to analogous compounds (terbuthylazine, atrazine, desmetryn, metribuzine). The effect of the polymer
composition on the binding properties of the membranes has been investigated. High affinity of these
membranes to triazine herbicides together with their inexpensive preparation, provide a good basis for
applications of molecularly imprinted polymer membranes in separation and solid-phase extraction
Introduction. In many applications of bioorganic and
environmental chemistry it is desirable to utilize a
membrane filter, which is mechanically strong, ther
mally stable, insoluble in most organic solvents,
relatively inert chemically and has affinity to certain
analyte [1—3]. The binding properties of affinity
membranes are determined by specific receptor-ligand
interactions. However, synthesis of the membranes
selective for a broad range of neutral molecules is
challenged by the difficulty of incorporating specific
© T A SERGEYEVA, H. MATUSCHEWSKI, S A PILETSKY,
U. SCHEDLER, M. ULBRICHT, 2 0 0 4
receptors for such molecules. Therefore, the develop
ment of synthetic membranes , which possess the
selectivity of natural receptors and stability of syn
thetic polymers in harsh environments , is of great
importance. Recently, a considerable attention has
been paid to the development of molecular imprinting
technique, which allows one to obtain synthetic po
lymers mimicking biological receptors [4—6 ]. Ac
cording to this approach, highly cross-linked polymers
are formed around a template molecule. The template
is then removed leaving cavities capable of binding
template molecules back. As widely recognized, mo-
307
mailto:t_sergeyeva@yahoo.co.uk
SERGEYEVA Т. A. ET AJL
lecularly imprinted polymers (MIPs) can provide high
selectivity to low-molecular weight compounds [7—8 ],
very good thermal and mechanical stability [9 ], their
production is inexpensive.
Polymers of this type have been used as sta
t ionary-phase materials to make highly selective liq
uid chromatography columns [10] , as substitutes for
antibodies in competitive binding assays [11—13],
and as selective elements of chemical sensors [14] .
Chromatographic and SPE applications traditionally
utilize МІР particles prepared by grinding and sieving
of synthesized polymer blocks or the particles pre
pared by suspension polymerization. T h e first ap
proach is time consuming, may lead to the destruction
of some binding sites in the polymer and produces a
relatively low yield of the fraction with a narrow size
distribution. In the second approach, the choice of
monomers is limited to those, which are not soluble
in the dispersion phase. Additionally the synthesized
beads are not always uniform in their shape and size.
Thus , again a sieving procedure is required which
makes column packing t ime-consuming, expensive
and ineffective. Use of polymer particles of a small
size in chromatography is also associated with too
high backpressure. Therefore, the method of mo
lecular imprinting was also combined with the mem
brane technology in order to develop new generation
of stable affinity membranes for the separation of the
target molecules from a mixture of structurally similar
compounds [15—17] . However, the high selectivity
and stability of these membranes were shaded by
their ineffective performance, particularly due to
small fluxes. Typically, the fluxes observed were not
larger than 10~4 mo l -m" 2 -h _ 1 [18] . This effect can be
related to the high degrees of cross-linking of MIPs,
which is a prerequisite for the imprinted membranes
selectivity.
Other approaches to the synthesis of affinity
membranes are chemical or the photografting of a thin
layer of the imprinted polymer to the surface of a
porous membrane . The re have been two recent re
ports on the polymers [19] and membranes [20]
grafted with MIPs. In the last case the laboratory-
made membranes from photo-reactive polymer (poly-
acrylonitrile-co-diethylaminodithiocarbamoyl methyl-
sty rene) were grafted with acrylic acid and N , N ' -
methylene-bis-acrylamide in the presence of theo
phylline yielding theophylline-specific membranes .
Unfortunately, the use of a special polymer for the
membranes formation together with long reaction
times for МІР functionalization (24 h) substantially
reduce the areas of the membranes ' applications.
Much more efficient method for the membrane surface
functionalization is currently being explored [21 ].
The aim of the present research is the develop
ment of a general method for molecular imprinting the
surface of a stable synthetic polymer membrane.
Surface photograft co-polymerization in the presence
of a template should introduce specific binding sites
into the porous membrane without damaging its pore
structure and, thus , preserving its t ransport pro
perties.
T h e present paper describes the procedure of
modification of commercially available microporous
membranes with a herbicide-imprinted polymer using
technique of «surface photografting» from organic
solvents. This substantially broadens the number of
potential templates allowing one to use a wide range
of substances poorly soluble in aqueous environment.
The membranes modified with the imprinted poly
mers possess high selectivity to the analyte without
significant change in their original permeability.
Materials and Methods. Polypropylene (PPy)
and polyamide (PA) membranes (Accurel PP 2E HF,
nominal pore size dp = 0.2 jum; membrane thickness
dm = 1 5 0 jum) were purchased from Akzo Nobel.
Acrylic acid (AA), methacrylic acid (MA) and 2-
a c r y l a m i d o - 2 - m e t h y l - l - p r o p a n e s u l p h o n i c acid
(AMPS) were obtained from «Aldrich» (USA), benzo-
phenone (BP) and N,N'-methylene-bis-acrylamide
were purchased from «Мегск» (Germany) . Terbu
meton, desmetryn, terbutylazin (NMR, HPLC grade)
were obtained from «Sigma» (USA). All other che
micals and solvents (HPLC grade) were obtained
from the commercial sources and used as received
without further purification.
Preparation of membranes modified by mole-
cularly imprinted polymers. Circular PPy or PA mem
brane samples (A = 5 cm 2 ) were extracted with chlo
roform in Soxhlet apparatus during 4 h, dried and
weighted. The membranes were then pre-soaked in
0.15 M solution of BP in acetone for 5 min and dried
under vacuum. The pre-coated with photoinitiator
membranes were transferred to a dimethyl formamide
(DMF) solution, containing 10 mM of terbumeton,
50 mM of functional monomer (acrylic, methacrylic or
2 -acry lamido-2-methy 1-1 -propane sulphonic acid) ,
150—500 mM of N,N' -methylene-bis-acrylamide. To
prevent desorption of the photoinitiator from pre
viously coated membranes 5 mM of BP was added to
the monomer mixture. The pre-soaked for 5 min in
the monomer mixture membranes were then UV
irradiated on a pilot-scale UV curing system (500 W
mercury lamp; Beltron G m b H , Germany) for 10
cycles (1 cycle = 1 min) . To remove the homopolymer,
residual chemicals and template, the resulting mem
branes were extracted by hot methanol in Soxhlet
apparatus for 2 hours. After drying the membranes
308
D E V E L O P M E N T OF MOLECULARLY IMPRINTED POLYMER MEMBRANES
were weighted again and the degree of modification
(DM) was calculated from weight differences.
Membranes' characterization. The binding pro
perties of the membranes were estimated by their
capability to herbicide adsorption from its aqeous
solution. Adsorption of the herbicide from water by
the membrane was estimated in filtration experiments
using syringe connected to a filtration cell holder (d =
= 25 mm, «Schleicher & Schulb , Germany) . In the
adsorption experiments 10 ml of 5 10" 7—10~ 4 M
herbicide solution were filtered through the mem
branes, typically at a ra te of 10 ml /min . The filtrate
was extracted with 10 ml of chloroform. The herbicide
concentrations in both feed and permeate solutions
were determined by gas chromatography after the
extraction procedure using Hewlet Packard GC sys
tem HP 6890 with the mass selective detector HP
5973 (column HP5MS).
Results and Discussion. During the last decades,
within the field of surface modification of various
substrates, photografting from organic solvents has
received wide attention [22—25]. In general, such
technique has involved immersion of the substrate to
be grafted in a solution of monomer in an organic
solvent, and subsequent exposure to irradiation. Such
photo-induced grafting is accompanied by extensive
homopolymerization and often causes uneven modi
fication of the substrate surface. Recently Ranby et
al. have proposed a new method of «surface photo-
1. The scheme of the «sur-
photografting» modificati-
of the porous membrane
molecularly imprinting po-
grafting» for polymer modification, where the sub
strate is pre-soaked in a solution of monomer and
then UV-irradiated in an inert a tmosphere [26].
According to this technique, the grafting reaction
occurs in a thin layer of the solution on the substrate
surface. Little homopolymerization occurs under these
grafting conditions and small amounts of the formed
homopolymer can be removed by the washing proper
procedure.
To modify PPy and PA membranes by a thin
layer of the imprinted polymer, the method of «sur-
face photografting» has been applied. The main
reason for this is very high reactivity of the cross-
linker (N,N'-methylene-bis-acrylamide) and a prob
lem of its homopolymerization in heterogeneous reac
tion systems. This generally leads to low degrees of
the membranes ' modification, poor reproducibility
and difficulty in recovering copolymer in the non-
contaminated form, especially at high grafting yields.
The scheme of the «surface photografting» modifi
cation of the porous membrane with МІР is presented
in the Fig. 1. In this polymerization scheme, the
stabilizing effect of highly cross-linked molecularly
imprinted polymer in a combination with a flexible,
chemically inert and wide pore PPy or PA membrane
is utilized.
It is reasonable to assume, that the composition
of the monomer mixture determines the ability of the
resulting membranes to bind the template selectively
309
S ERG EYE V А Т. A. ET AL.
14
12-
^ 10
6-
AA MA AMPS
Fig. 2. Influence of the type of the
functional monomer on the specific
adsorption of terbumeton on the imp
rinted membranes, 10 ml of 10~ 5 M
aqueous solution of terbumeton was
used in filtration experiments (see
note to the Table)
and , thus — the membranes adsorption capacity.
Therefore, the influence of the type and concentration
of the functional monomer and cross-linker, as well as
the template concentration in the monomer mixture,
on the ability of the modified membranes to effective
adsorption of the template has been investigated.
Influence of a type of the functional monomer on
the membranes adsorption capability. Modification of
the PPy membranes with imprinted polymers was
performed using acrylic, methacrylic or 2-acrylamido-
2-methyl- l -propane sulphonic acids as functional mo
nomers and N,N ' -methy lene-b i s -acry lamide as a
cross-linker. Triazine herbicide terbumeton was used
as a model template in the present research. A set of
the imprinted and reference membranes with AA, MA
or AMPS as functional monomers has been obtained
and tested in filtration experiments. AA and MA were
demonstrated to be ineffective as functional mono
mers. The imprinted membranes prepared in the
presence of AA and MA as functional monomers
demonstrated either the same or lower adsorption
capability as reference ones. T h e membranes imp
rinted with terbumeton and prepared in the presence
of AMPS as a functional monomer demonstrated
significantly higher adsorption capability than the
reference membranes of the same composition (Fig.
2) . It is assumed that AMPS as a strong acid (pKa<
< 1) can protonate terbumeton (pKa = 4.2) and an
ion-pair complex is formed between the template and
AMPS in the initial monomer mixture. For weaker
acidic monomers MAA (pKa = 4.65) and AA (pKa =
= 4.2) this mechanism is less effective. This has been
also confirmed by the investigations of the template-
functional monomer complex formation by UV-dif-
ference spectroscopy. These data verify that the
complex AMPSA-terbumeton is significantly stronger
(K d i s = 3.0 10~5 ± 0.3 10" 5 M) as compared to AA
(K d i s = 2 . 0 1 0 " 4 ± 0.3-10" 4 M) a n d MAA (K d i s =
= 8 . 0 1 0 " 5 ± 1 . 0 1 0 " 5 M).
Influence of the cross-linker concentration on
photografting and the membranes' adsorption capa
bility. As widely recognized, the effective performance
of the imprinted polymer is provided by high degrees
of the polymer cross-linking. In this case, the selective
cavities can retain their shapes even after extraction
of the template. At the same time, a certain degree of
the polymer chains ' flexibility is important to provide
rapid equilibration with the template to be bind.
Hence, the influence of a type and amount of the
monomer and cross-linker in the monomer mixture
used for the membranes modification on both the
degree of modification and adsorption capability of
the resulting membranes was investigated. The former
was explored as a function of the cross-linker con
centration (N,N'-methylene-bis-acrylamide) in the
monomer mixture.
The degree of the modification was shown to
increase with the increase in the cross-linker con
centration in the monomer mixture and to comprise
150—500/^g/cm 2 of membrane surface (Fig. 3, a). At
the same time, the increase in MBAA concentration
up to 225 mM caused also the increase in the
membranes ' adsorption capability (Fig. 3 , b). How
ever, further increase in the MBAA caused a decrease
in the membranes ' adsorption capability. To increase
the specific adsorption of the herbicide by МІР
310
D E V E L O P M E N T OF MOLECULARLY IMPRINTED POLYMER MEMBRANES
§ 500
14
12
10-
Щ
Fig. 3. Dependence of the degrees of
modification of the imprinted (gray bars)
and reference (white bars) membranes on
the concentration of the cross-iinker in the
monomer mixture (a). Dependence of the
specific adsorption of terbumeton on the
imprinted membranes on the concentration
of the cross-linker in the monomer mix
ture (b) (see note to the Table). Templa
te — terbumeton, 10 mM, functional mo
nomer — 2-acrylamido-2-methyl-l-pro
pane sulphonic acid, 50 mM, cross-lin
ker — N,N'-methylene-bis-acrylamide,
150—400 mM
60
Fig. 4. Dependence of the specific ad
sorption of terbumeton on МІР membranes
on the concentration of the functional
monomer in the monomer mixture (see
note to the Table). Template — terbu
meton, 10 mM, functional monomer —
2 -acry lamido-2 -methy l - l -propane sul
phonic acid, 0—80 mM, cross-linker —
N,NT'-methylene-bis-acrylamide, 225 mM
311
SERGEYEVA Т. A ET AL.
5 10
Terbumeton, mM
Fig. 5. Dependence of the specific ad
sorption of terbumeton on МІР mem
branes on the concentration of the tem
plate in the monomer mixture (see note to
the T a b l e ) . Template — terbumeton,
0 .5—20 mM, functional monomer — 2-
acrylamido-2-methyl-l -propane sulphonic
acid, cross-linker — N,N'-methylene-bis-
acrylamide, 2 2 5 mM. Ratio templa-
te:functional monomer = 1:5
Influence of the support on a degree of modification (DM) and adsorption capability of terbumeton-imprinted (МІР) and reference
(Blank) membranes (the monomer mixture, containing 10 mM terbumeton, 10 mM 2-acrylamido-2-methyl-l-propane sulphonic acid
and 225 mM-N,N'-methylene-bis-acrylamide was used for modification of МІР membranes; Blank membranes were prepared with the
same monomer composition, but without the template)
Support
PA, P P y , ,um
Support
МІР Blank МІР Blank
DM, rag/cm2 443.4 510 277 261
Specific adsorption,
nmol/cm 2
0 0 12.5 12.5
N o t e . The value of specific adsorption corresponds to the difference t
one, prepared with the same monomer composition but in the absence с
either to the cases of the same adsorption of terbumeton on МІР and
terbumeton on reference membranes.
membranes , i. e. to decrease the level of nonspecific
binding, the other cross-linker (trimethylolpropan
trimethacrylate) was used. Although the degrees of
modification were higher, than in the case of N , N ' -
methyiene-bis-acrylamide, the values of specific ad
sorption were twice lower. This indicates, that high
degrees of modification together with excessive deg
rees of cross-linking are not necessary for the ef
fective performance of МІР membranes . Evidently, at
these conditions most of the template molecules are
trapped in the excessively cross-linked domains of
imprinted polymer and not accessible for the reac
tions, which results in a decreased amount of the
binding sites.
Structure of the binding sites. T h e AMPS con
centration in the monomer mixture was varied to
optimize the ratio between the template and a func
tional monomer used for the membranes ' modifi
cation. No difference between adsorption capability of
imprinted and reference membranes was obtained in
the absence of AMPS in the monomer mixture or
when its concentration was too low (10 mM). Ob-
>etween terbumeton adsorption on а МІР membrane and a reference
)f the template. The «zero» values of specific adsorption correspond
reference membranes or to the cases of preferential adsorption of
viously, these ratios yield the imprinted polymers
with insufficient extents of the template complexation
and, thus , low number of binding sites. Use of AMPS
in concentrations of 10—50 mM produced МІР mem
branes with the improved adsorption capability as
compared to reference ones. However, the further
increase in AMPS concentration (60—80 mM) leads
to formation of the membranes with too high degrees
of non-specific binding (Fig. 4) . Apparently, this can
be explained by an abundance of the polar functional
groups distributed randomly throughout the polymer
matrix, that results in the reduced selectivity.
Influence of the template concentration. To define
the optimal number of binding sites in the resulting
membranes , influence of the template concentration
on the membrane adsorption capability has been
studied. The highest value of specific adsorption was
observed at the template concentration of 10 mM.
Both decrease and increase in the template concen
tration resulted in either lower or no imprinting
effects (Fig. 5) . Evidently, a decrease in the template
concentration results in the insufficient number of the
312
D E V E L O P M E N T OF MOLECULARLY IMPRINTED POLYMER MEMBRANES
Fig. 6. Selectivity of the terbumeton-im-
printed membrane. Template-terbumeton,
10 mM, functional monomer — 2-acrylami-
do-2-methyl-l -propane sulphonic acid, 50
mM, cross-linker — N,N'-methylene-bis-
Terbumeton Desmetryn Metribuzine Atrazine Tertbuthylazine acrylamide, 225 mM
imprinted sites in the polymer. No imprinting effect
at 20 mM of terbumeton in the monomer mixture can
be explained by its ability to form aggregates in the
solution of high concentrations, that results in for
mation of the increased number of non- and weakly-
selective binding sites.
Influence of the support. Importantly, PA mem
branes modified by the molecularly imprinted poly
mer layer under optimized conditions, demonstrated
higher degree of modification as compared to PPy
membranes. However, no improvement in the her
bicide binding was achieved. Practically no difference
or even preferential herbicide adsorption was ob
served for reference membrane as compared to the
imprinted one (Table) . This effect can be related to
the increased ability of PA membranes to swell in
organic solvents in contrast to PPy membranes . Since
there is no swelling of PPy membranes in organic
solvents, we can assume that the functionalization
takes place in a thin layer on the entire surface of the
membrane. In contrast to this, in the case of PA
membranes the polymerization reaction takes place in
the entire membrane volume, i. e. mainly in the
swollen PA matrix. Therefore, the degrees of mo
dification achieved under same conditions are sig
nificantly higher for PA than for PPy (Table) .
However, one can assume that most of the polymer
entrapped in PA is not accessible for binding with the
template molecules during the fast filtration step.
From the other side, swelling of the support changes
the three-dimensional configuration of the functional
groups participating in the recognition process and
may lead to the loss of selectivity. The other exp
lanation can be interaction between amide func
tionalities in the PA support and the functional
monomer, that hinders binding the herbicide by the
functional monomer.
Specificity of molecularly imprinted polymer mem
branes and their herbicide-binding efficiency. A series
of terbumeton analogs were used to examine the
selectivity of the obtained membranes . The capability
of the terbumeton-imprinted membranes to bind her
bicides of the related chemical s t ructure was tested in
filtration exper iments . T h e te rbumeton- impr in ted
membranes were shown to be capable of binding
terbumeton analogs much less effectively than ter
bumeton (Fig. 6) . It was demonstra ted that the
terbumeton-imprinted membranes modified under the
optimized conditions were able to recover 95—99 %
of terbumeton from its 5-Ю" 7 —10~ 4 M aqueous so
lutions (Fig. 7) . The adsorption capability of the
terbumeton-imprinted membranes was determined in
filtration experiments using saturat ion with 10~5 M
solution of terbumeton. T h e value determined was
5 jug/cm2 ( - 2 2 n M / c m 2 ) , which corresponds to ap
proximately 40 % of the theoretical value calculated
from the degree of modification and the stochiometry
of the template-functional monomer complex. The
refore, they can be successfully used for both water
purification and herbicide pre-concentration in en
vironmental analysis.
Conclusions. The new type of composite membra
nes, having artificial recognition sites for terbumeton,
was prepared by «surface photografting» of 2-ac-
ry lamido-2-methyl - l -propane sulphonic acid, N , N ' -
methylene-bis-acrylamide in the presence of ter
bumeton as a template on a benzophenon-coated
polypropylene 0.2 jum membranes . The membranes
imprinted with terbumeton demonst ra ted significantly
higher adsorption capability to this herbicide than to
analogous compounds ( terbuthylazine, atrazine, des
metryn, and metribuzine). No affinity for terbumeton
was observed for МІР-photografted polyamide mem
branes , which indicates significant influence of the
support on both the imprinting procedure and the
process of template recognition. T h e type and con-
313
4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00
Tame, min
Fig. 7. Chromatograms of the 10" 5 M terbumeton solution before (a)
and after (b) filtration through the terbumeton-imprinted (МІР)
membrane
centration of the functional monomer as well as the
concentration of cross-linker have a crucial influence
on the resulting membranes ' adsorption capability.
High affinity of these membranes to triazine her
bicides together with their simple and inexpensive
preparation, provides a good basis for the applications
of imprinted polymers in separation, solid-phase ex
traction, and in a pre-concentration step for the
determination of photosynthesis-inhibit ing herbicides
in water.
Acknowledgements. Financial support from AIF,
INTAS (grant YSF-00-25), and National Academy of
Sciences of Ukraine is gratefully acknowledged.
Т. А. Сергеева, X. Матушевскі, С. А. Пілецький, У. Шидлер,
М. Ульбріхт
Синтез матричних полімерних мембран, селективних до
триазинових гербіцидів, методом «поверхневого фотографтингу»
Резюме
Синтезовано новий тип матричних полімерних мембран шля
хом поверхневої модифікації мікрофільтраційних поліпропі
ленових мембран, яка полягала в нанесенні на поверхню
тонкого шару матричного полімеру, селективного до три-
азинового гербіциду тербуметону. Матричну полімеризацію
здійснювали в диметилформаміді, використовуючи гербіцид
тербуметон як матрицю, 2-акриламідо-2-метил-1-пропан-
сульфонову І метакрилову І акрилову кислоту як функціональний
мономер і N ,N' -метилен-бісакриламід як зшивальний агент на
поверхні мікрофільтраційної мембрани, покритої тонким ша
ром фотоініціитора бензофенону. Екстракція матричних мо
лекул спричинювала формування в структурі мембрани сай
тів, які за (/юрмою та проепюровим розташуванням функ
ціональних груп були комплементарними тербуметону. Конт
рольні мембрани модифікували з використанням подібної су
міші мономерів, що не містила тербуметону. Здатність
мембран до селективної адсорбції тербуметону досліджено в
залежності від типу та концентрації функціонального моно
мера, а також від концентрації зшивального агента в моно-
мерній суміші. Показано, що тербуметон-імпринтовані мат
ричні полімерні мембрани характеризуються високою селек
тивністю стосовно тербуметону та здатністю до незначної
адсорбції його структурних аналогів — тертбутилазину, ат-
разину, десметрину і метрибузину. Такі властивості синтезо
ваних мембран забезпечують їхнє ефективне використання у
твердофазовій екстракції.
Т. А. Сергеева, X. Матушевски, С. А. Пилецкий, У. Шидлер,
М. Ульбрихт
Синтез матричных полимерных мембран, селективных к
триазиновым гербицидам, методом «поверхностного
фотографтинга»
Резюме
Синтезирован новый тип матричных полимерных мембран
методом поверхностной модификации микрофильтрационных
полипропиленовых мембран, заключающемся в нанесении на
поверхность тонкого слоя матричного полимера, селективно
го к триазиновому гербициду тербуметону. Матричную поли
меризацию проводили в диметилформамиде с использованием
триазинового гербицида тербуметона в качестве матрицы,
2-акриламидо-2-метил-1-пропан-сульфоновойї метакриловойї
акриловой кислоты как функционального мономера и N,N'-ме
тилен-би сак рилам ида как сшивающего агенпш на поверхности
микрофильтрационной мембраны, покрытой тонким слоем
фотоинииштюра бензофенона. Экстракция матричных моле
кул приводила к формированию в структуре мембраны сай
тов, комплементарных тербуметону по форме и простран
ственному расположению функциональных групп. Контроль
ные мембраны синтезоровали с использованием той же моно
мерной смеси в отсутствие тербуметона. Способность мем
бран к селективной адсорбции тербуметона исследовали в
зависимости от типа и концентрации функционального моно
мера, а также концентрации сшивающего агента, в мономер
ной смеси. Показано, что тербуметон-импринтированные
матричные полимерные мембраны характеризуются высокой
селективностью к тербуметону и демонстрируют незначи
тельную адсорбцию его структурних аналогов — тертбутила-
зина, атразина, десметрина и метрибузина. Такие свойства
синтезованных мембран обеспечивают возможность их эф
фективного использования в твердофазной экстракции.
REFERENCES
1. Kesting R. Е. Synthetic polymeric membranes. A structural
perspective.—New York: John Willey and Sons, 1985.—573 p.
2. Schultz S. С Basic principles of membrane transport.—
Cambridge: Univ. press, 1970.—391 p.
3. Minoura N., I del K, Rachkov A., Matsuda K. Molecularly
imprinted polymer membranes with photo-regulated template
binding / / Chem. Mater.—2003. — 1 5 . — P . 255—266.
4. Wulff C, Vietmeyer J., Poll H.-G. Influence of the nature of
the cross-linking agent on the performance of imprinted
polymers in racemic resolution / / Macromol. Chem.—1987.—
188.—P. 731—740.
5. Damen J.. Neckers I) C. On the memory of synthesized vinyl
polymers for their origins / / Tetrahedron Lett. — 1 9 8 0 . — 2 1 . —
P. '1913—1916.
314
D E V E L O P M E N T OF MOLECULARLY IMPRINTED POLYMER MEMBRANES
6. Ramstrom O., Andersson L. I., Mosbach K. Recognition sites
incorporating both pyridinyl and carboxy functionalities pre
pared by molecular imprinting / / J. Org. Chem.—1993.—
58 .—P. 7562—7564.
7. Ramstrom O., Nicholls I. A., Mosbach K. Synthetic peptide
receptor mimics: highly stereoselective recognition in non-
covalent molecularly imprinted polymers / / Tetrahedron
Asym.—1994.—5.—P. 649—656 .
8. Siemann M., Andersson JL / . Mosbach K. Selective recognition
of the herbicide atrazine by non-covalent molecularly imprinted
polymers / / J. Agr. Food Chem.—1996.—44.—P. 141 — 145.
9. Svenson Nicholls I. A. On the thermal and chemical
stability of molecularly imprinted polymers / / Anal. Chim.
Acta.—2001.—435, N 1.—P. 19—24.
10. Wulff G.y Minarmk M. Template-imprinted polymers for
HPLC separation of racemates / / J. Liq. Chromatogr.—
1991.—13. N 5 .—P. 2987—3000 .
11. Valtakis G., Andersson L. I., Mailer R.f Mosbach K. Drug
assay using antibody mimics made by molecular imprinting / /
Nature.—1993.—361.—P. 645—647.
12. Piletsky S. A., Piletskaya E. K, El'skaya A. V., Levi R., Yano
K., Karube J. Optical detection system for triazines based on
molecularly imprinted polymers / / Anal. Lett .—1997.—30.—
p. 4 4 5 _ 4 5 5 .
13. Ramstrom O., Ye L., Mosbach K. Artificial antibodies to
corticosteroids prepared by molecular imprinting / / Chem.
Biol .—1996.—3.—P. 471—477.
14. Sergeyeva T. A., Piletsky S. A., Brovko A. A., Slinchenko E.
A., Sergeeva L. M., Panasyuk T. L., El'skaya A. V. Conduc-
tometric sensor for atrazine detection based on molecularly
imprinted polymer membranes / / Analyst .—1999.—124.—
P. 331—334.
15. Yoshikawa M., Izumi J., Kitao T.} Koya S., Sakamoto S.
Molecularly imprinted polymeric membranes for optical resolu
tion / / J. Membr. Sc i .—1995 .—108 .—P. 171 — 175.
16. Mathew-Krotz J., Shea K. J. Imprinted polymer membranes for
the selective transport of targeted neutral molecules / / J. Amer.
Chem. S o c — 1 9 9 6 . — 1 1 8 . — P . 8154—8155 .
17. Sergeyeva T. A., Piletsky S. A., Piletska E. V., Brovko O. 0.y
Karabanova L. V., Sergeeva L. M.t El'skaya A. V., Turner A.
P. F. In situ formation of porous molecularly imprinted
polymer membranes / / Macromolecules.—2003.—36, N 19.—
P. 7352—7357.
18. Hong J.-M., Anderson P. E., Qian J., Martin C. R. Selective
ly-permeable ultrathin composite membranes based on mole
cularly imprinted polymers / / Chem. Mater.—1998.—10.—
P. 1029—1033.
19. Dhal P. K.t Vidyasankar S., Arnold F. H. Surface grafting of
functional polymers to macroporous poly(trimethylopropane
trimethacrylate) / / Chem. Mater .—1995.—7.—P. 154—162.
20. Wang H. Y., Kobayashi Т., Fuji N. Surface molecular imprint
ing on photosensitive dithiocarbamoylpolyacrylonitrile mem
branes using photograft polymerization III. Chem. Technol.
and Biotechnol.—1997.—70, N 4 .—P. 355—362 .
21. Ulbricht M. Photo-graft polymer modified microporous mem
branes with environment-sensitive permeabilities / / React.
Funct. Po lym.—1996 .—31.—P. 165—177.
22. Tazuke S. Surface photografting. I. Graft polymerization of
hydrophilic monomers onto various polymer films III. Polym.
Sci.: Polym. Lett. E d . — 1 9 7 8 . — 1 6 . — P . 497—500 .
23. Bellobono I. R., Tolusso F.y Selli E. Photochemical grafting of
acrylated azo dyes onto polymeric surfaces. I. Grafting of
4-(ethyl, N-2-acryloxyethyl)amino, 4'-nitro, azobenzen onto
polyamide and polypropylene fibers III. Appl. Polym. Sci.—
1981 .—26.—P. 619—628 .
24. Ang С. H., Garnett J. L.y Levot R., Long M. A. Radiation and
UV grafting of monomers to polyolefins and cellulose acetate.
Significance of these studies in reagent insolubilization reac
tions / / J. Macromol. Sci. Chem.—1982 .—A17 .—P. 87—98.
25. Pashova V. S., Georgiev G. S., Dakov V. A. Photoinitiated
graft copolymerization of glicydyl methacrylate and 2-hydro-
xyethyl methacrylate onto polyacrylonitrile and application of
the synthesized graft copolymers in penicillin-amidase immobi
lization / / J. Appl. Polym. Sc i .—1994 .—51 .—P. 807—813 .
26. Ranby В., Guo F. Z. ^Surface photografting*. New applications
to synthetic fibers / / Polym. Avd. Technol .—1994.—5.—
P. 829—836.
УДК 544 .725 + 544.722.21 + 577.21
Надійшла до редакції 22.12.03
315
|