On sums of overlapping products of independent Bernoulli random variables
We find the exact distribution of an arbitrary remainder of an infinite sum of overlapping products of a sequence of independent Bernoulli random variables.
Saved in:
Date: | 2000 |
---|---|
Main Authors: | Csörgö, S., Wu, W.B. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2000
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/158030 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On sums of overlapping products of independent Bernoulli random variables / S. Csörgö, W.B. Wu // Український математичний журнал. — 2000. — Т. 52, № 9. — С. 1304—1309. — Бібліогр.: 2 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the Gauss sums and generalized Bernoulli numbers
by: Gao, J., et al.
Published: (2012) -
Remarks on summability of series formed of deviation probabilities of sums of independent identically distributed random variables
by: Pruss. A.R.
Published: (1996) -
Limit theorems for the maximum of sums of independent random processes
by: I. K. Matsak, et al.
Published: (2018) -
Singularity and fine fractal properties of one class of generalized infinite Bernoulli convolutions with essential overlaps. II
by: M. V. Lebid, et al.
Published: (2015) -
On the application of strong approximation to weak convergence of products of sums for dependent random variables
by: Matuła, P., et al.
Published: (2008)