Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1

Доведено теорему збіжності та одержано асимптотичні оцінки (коли ε→0) для розв'язку початково-крайової задачі параболічного типу в з'єднанні Ωε, яке складається з області Ω₀ та великої кількості N², ε-періодично розміщених тонких циліндрів товщиною порядку ε=O(N⁻¹)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2000
1. Verfasser: Мельник, Т.А.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2000
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/158051
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1 / Т.А. Мельник // Український математичний журнал. — 2000. — Т. 52, № 11. — С. 1524–1533. — Бібліогр.: 16 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-158051
record_format dspace
fulltext 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093
spelling irk-123456789-1580512019-06-24T01:24:43Z Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1 Мельник, Т.А. Статті Доведено теорему збіжності та одержано асимптотичні оцінки (коли ε→0) для розв'язку початково-крайової задачі параболічного типу в з'єднанні Ωε, яке складається з області Ω₀ та великої кількості N², ε-періодично розміщених тонких циліндрів товщиною порядку ε=O(N⁻¹). We prove a convergence theorem and obtain asymptotic (as ε → 0) estimates for a solution of a parabolic initial boundary-value problem in a junction Ωε that consists of a domain Ω₀ and a large number N² of ε-periodically located thin cylinders whose thickness is of order ε = O(N⁻¹). 2000 Article Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1 / Т.А. Мельник // Український математичний журнал. — 2000. — Т. 52, № 11. — С. 1524–1533. — Бібліогр.: 16 назв. — укр. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/158051 517.959 uk Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Статті
Статті
spellingShingle Статті
Статті
Мельник, Т.А.
Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1
Український математичний журнал
description Доведено теорему збіжності та одержано асимптотичні оцінки (коли ε→0) для розв'язку початково-крайової задачі параболічного типу в з'єднанні Ωε, яке складається з області Ω₀ та великої кількості N², ε-періодично розміщених тонких циліндрів товщиною порядку ε=O(N⁻¹).
format Article
author Мельник, Т.А.
author_facet Мельник, Т.А.
author_sort Мельник, Т.А.
title Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1
title_short Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1
title_full Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1
title_fullStr Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1
title_full_unstemmed Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1
title_sort усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1
publisher Інститут математики НАН України
publishDate 2000
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/158051
citation_txt Усереднення сингулярно збуреної параболічної задачі в густому періодичному з'єднанні типу 3:2:1 / Т.А. Мельник // Український математичний журнал. — 2000. — Т. 52, № 11. — С. 1524–1533. — Бібліогр.: 16 назв. — укр.
series Український математичний журнал
work_keys_str_mv AT melʹnikta userednennâsingulârnozburenoíparabolíčnoízadačívgustomuperíodičnomuzêdnannítipu321
first_indexed 2025-07-14T10:29:40Z
last_indexed 2025-07-14T10:29:40Z
_version_ 1837617888825966592