On boundary value problems in domains without (A)-condition

We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)condition by Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Gutlyanskii, V.Ya., Ryazanov, V.I., Yakubov, E., Yefimushkin, A.S.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2019
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/158074
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On boundary value problems in domains without (A)-condition / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 3. — С. 17-24. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-158074
record_format dspace
spelling irk-123456789-1580742019-07-11T01:24:55Z On boundary value problems in domains without (A)-condition Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. Математика We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)condition by Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundaryvalue problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media. Вивчено крайову задачу Гільберта для рівнянь Бельтрамі в жорданових областях, які задовольняють квазігіперболічну крайову умову Герінга Мартіо, взагалі кажучи, без стандартної (А) умови Ладиженської-Уральцевої. З припущенням, що коефіцієнти задачі є функціями зліченно обмеженої варіації і граничні дані є вимірними відносно логарифмічної ємності, доведено існування розв'язків цієї задачі. Як наслідки отримано існування некласичних розв'язків крайових задач Діріхле, Неймана і Пуанкаре для узагальнень рівняння Лапласа в анізотропних і неоднорідних середовищах. Изучена краевая задача Гильберта для уравнений Бельтрами в жордановых областях, удовлетворяющих квазигиперболическому краевому условию Геринга Мартио, вообще говоря, без стандартного (А) условия Ладыженской-Уральцевой. С предположением, что коэффициенты задачи являются функциями счетно-ограниченной вариации, а граничные данные измеримы относительно логарифмической емкости, доказано существование решений этой задачи. В качестве следствий получено существование неклассических решений краевых задач Дирихле, Неймана и Пуанкаре для обобщений уравнения Лапласа в анизотропных и неоднородных средах. 2019 Article On boundary value problems in domains without (A)-condition / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 3. — С. 17-24. — Бібліогр.: 15 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2019.03.017 http://dspace.nbuv.gov.ua/handle/123456789/158074 517.5 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Математика
Математика
spellingShingle Математика
Математика
Gutlyanskii, V.Ya.
Ryazanov, V.I.
Yakubov, E.
Yefimushkin, A.S.
On boundary value problems in domains without (A)-condition
Доповіді НАН України
description We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)condition by Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundaryvalue problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.
format Article
author Gutlyanskii, V.Ya.
Ryazanov, V.I.
Yakubov, E.
Yefimushkin, A.S.
author_facet Gutlyanskii, V.Ya.
Ryazanov, V.I.
Yakubov, E.
Yefimushkin, A.S.
author_sort Gutlyanskii, V.Ya.
title On boundary value problems in domains without (A)-condition
title_short On boundary value problems in domains without (A)-condition
title_full On boundary value problems in domains without (A)-condition
title_fullStr On boundary value problems in domains without (A)-condition
title_full_unstemmed On boundary value problems in domains without (A)-condition
title_sort on boundary value problems in domains without (a)-condition
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2019
topic_facet Математика
url http://dspace.nbuv.gov.ua/handle/123456789/158074
citation_txt On boundary value problems in domains without (A)-condition / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 3. — С. 17-24. — Бібліогр.: 15 назв. — англ.
series Доповіді НАН України
work_keys_str_mv AT gutlyanskiivya onboundaryvalueproblemsindomainswithoutacondition
AT ryazanovvi onboundaryvalueproblemsindomainswithoutacondition
AT yakubove onboundaryvalueproblemsindomainswithoutacondition
AT yefimushkinas onboundaryvalueproblemsindomainswithoutacondition
first_indexed 2025-07-14T10:31:25Z
last_indexed 2025-07-14T10:31:25Z
_version_ 1837617997294862336
fulltext 17ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2019. № 3 1. Introduction. Let D be a domain in the complex plane £ , and let : Dµ →£ be a measu­ rable function with ( ) 1zµ < a.e. The equation of the form ( )z zf z f= µ , (1) where ( ) / 2z x yf f f if= ∂ = + , ( ) / 2z x yf f f if= ∂ = − , z x iy= + , xf and yf are partial deriva­ tives of f with respect to x and y , is said to be a Beltrami equation. Equation (1) is called non­ degenerate if || || 1∞µ < . Homeomorphic solutions f of the nondegenerate equation (1) in the class 1, 2 locW are called quasiconformal mappings (see, e.g., [1]). D. Hilbert studied the boundary­value problem formulated as follows: To find an analytic function ( )f z in a domain D bounded by a rectifiable Jordan contour C that satisfies the boun dary condition Re{ ( ) ( )} ( ) ,lim z f z C →ζ λ ζ = ϕ ζ ∀ζ ∈ (2) © V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin, 2019 doi: https://doi.org/10.15407/dopovidi2019.03.017 UDC 517.5 V.Ya. Gutlyanskii1, V.I. Ryazanov1,2, E. Yakubov3, A.S. Yefimushkin1 1 Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yansk 2 Bogdan Khmelnytsky National University of Cherkasy 3 Holon Institute of Technology, Israel E­mail: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com, yakubov@hit.ac.il, eduardyakubov@gmail.com, a.yefimushkin@gmail.com On boundary­value problems in domains without (A)­condition Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskii We study the Hilbert boundary­value problem for the Beltrami equations in the Jordan domains satisfying the quasi­ hyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)­condition by Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem are functions of countable bounded va­ riation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundary­value problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media. Keywords: Hilbert, Dirichlet, Neumann, and Poincaré boundary­value problems, Beltrami equations, quasiconformal functions, angular limits, quasihyperbolic boundary condition, logarithmic capacity. 18 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2019. № 3 V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin where both the coefficient λ and the boundary data ϕ of the problem are continuously diffe ren­ tiable with respect to the natural parameter s on C . Moreover, it was assumed by Hilbert that 0λ ≠ everywhere on C . The latter allows us with no loss of generality to consider that | | 1λ ≡ on C . In this case, the quantity Re { }fλ from the left in (2) has the geometric sense as a projection of f onto the direction λ interpreted as vectors in 2¡ . Historic comments in the subject can be found in the recent paper [2]. In the present paper, we study the Hilbert boundary­value problem for the Beltrami equation and find its regular so­ lutions in the class of quasiconformal functions F represented as a composition of analytic func­ tions A and quasiconformal mappings f satisfying (2). Proceeding the above, the problem under consideration is to find quasiconformal functions satisfying both the Beltrami equation (1) in a Jordan domain D and the Hilbert boundary condi­ tion (2). We substantially weaken the regularity conditions both on the functions λ and ϕ in the boundary condition (2) and on the boundary C of the domain D . On the one hand, we will deal with the coefficients λ of a countable bounded variation and the boundary data ϕ , which are measurable with respect to the logarithmic capacity, see the corresponding definitions in our previ­ ous paper [3]. On the other hand, we study here the Hilbert boundary­value problem in domains D with a more general boundary condition, see discussions in the next section. 2. On the quasihyperbolic boundary condition. Let D be a domain in £ . As usual, 0( , )Dk z z denotes the quasihyperbolic distance between points z and 0z in D 0( , ) inf ( , )D ds k z z d Dγ γ = ς ∂∫ (3) introduced in work [4]. Here, ( , )d Dζ ∂ denotes the Euclidean distance from the point Dζ ∈ to D∂ , and the infimum is taken over all rectifiable curves γ joining the points z and 0z in D . Further, it is said that a domain D satisfies the quasihyperbolic boundary condition if ∂ + ∀ ∈ ∂ 0 0 ( , ) ( , ) ln ( , )D d z D k z z a b z D d z D � (4) for constants a and b and a point 0z D∈ . The latter notion was introduced in [5], but it was first applied in [6]. Recall also that the images of the unit disk { :| | 1}z z= ∈ <£D under the quasiconformal map­ pings of £ onto itself are called quasidisks, and their boundaries are called quasicircles or quasi­ conformal curves. It is known that every smooth (or Lipschitz) Jordan curve is a quasiconformal curve, and, at the same time, quasiconformal curves can be locally nonrectifiable, as it follows from the known examples (see, e.g., point II.8.10 in [1]). Remark 1. Quasidisks D satisfy the quasihyperbolic boundary condition. Indeed, as is well known, the Riemann conformal mapping : Dω →D is extended to a quasiconformal mapping of £ onto itself (see, e.g., Theorem II.8.3 in [1]). By one of the main Bojarski results, the derivatives of a quasiconformal mapping in the plane are locally integrable with some power 2q > , and its Jacobian 2 2( ) | | | |w wJ w = ω − ω (see [1]). Consequently, ( )pJ L D∈ in this case for some 1p > , and we have the desired conclusion by the criterion in Theorem 2.4 [7]. 19ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2019. № 3 On boundary­value problems in domains without (A)­condition Recall that a domain D in n¡ , 2n� , is called satisfying (A)­condition if ∩ ζ ρ Θ ζ ρ ∀ζ ∈∂ ρ ρ0 0mes ( , ) mes ( , ) ,D B B D� � (5) for some 0Θ and 0 (0,1)ρ ∈ (see 1.1.3 in [8]). Recall also that a domain D in n¡ , 2n� , is said to be satisfying the outer cone condition if there is a cone that makes possible to be touched by its top to every boundary point of D from the completion of D after its suitable rotations and shifts. It is clear that the outer cone condition implies (A)­condition. It is well known that the above conditions are standard in the theory of boundary­value problems for the partial dif­ ferential equations. Remark 2. Note that quasidisks D satisfy (A)­condition. Indeed, the quasidisks are the so­ called QED − domains by Gehring—Martio (see Theorem 2.22 in [9]), and the latter satisfy the condition ∗∩ ζ ρ Θ ζ ρ ∀ζ ∈∂ ρmes ( , ) mes ( , ) , diamD B B D D� � (6) for some (0,1)∗Θ ∈ (see Lemma 2.13 in [9]), and quasidisks (as domains with quasihyperbo­ lic boundary condition) have boundaries of the Lebesgue measure zero (see, e.g., Theorem 2.4 in [7]). Thus, it remains to note that, by definition, the completions of quasidisks D in the extended complex plane : { }= ∪ ∞£ £ are also quasidisks up to the inversion with respect to a circle in D . As we know, the first example of a simply connected plane domain D with the quasihyperbolic boundary condition, which is not a quasidisk, was constructed in Theorem 2 [6]. However, this domain satisfied (A)­condition. Remark 3. Probably one of the simplest examples of a domain D with the quasihyperbolic boundary condition and without (A)­condition is the union of 3 open disks with radius 1 cente­ red at the points 0 and 1 i± . It is clear that the domain has zero interior angle at its boundary point 1, and, by Remark 2, it is not a quasidisk. Note that D∂ is almost smooth. Thus, there exist almost smooth Jordan curves (see (5) in [3]) with the quasihyperbolic boundary condition that are not quasi conformal curves. 3. The Hilbert problem for the Beltrami equation. Let D be a Jordan domain with a tangent at a point Dς∈∂ . A path in D terminating at ζ is called nontangential if its part in a neighbor­ hood of ζ lies inside of an angle in D with the vertex at ζ . The limit along all nontangential paths at ζ is called angular at the point. The latter notion is a standard tool for the study of the boun­ dary behavior of analytic and harmonic functions (see, e.g., [10]). Theorem 1. Let D be a Jordan domain with the quasihyperbolic boundary condition, and let D∂ have a tangent q.e. Suppose that : Dµ →£ is in ( )L D∞ with || || 1∞µ < , : , | ( ) | 1Dλ ∂ → λ ζ ≡£ , is in ( )D∂CBV , and : Dϕ ∂ →¡ is a measurable function with respect to the logarithmic capacity. Then the Beltrami equation (1) has a regular solution :f D →£ with the angular limit lim Re[ ( ) ( )] ( ) . . z f z q e on D →ς λ ζ = ϕ ζ ∂ . (7) Proof. Let g be a conformal mapping of D onto D that exists by the Riemann mapping theorem (see, e.g., Theorem II.2.1 in [11]). Setting, in the unit disk D , 1( ) : ( ) g w g w g −′  ν = µ ′  o , (8) 20 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2019. № 3 V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin we see that ( )L∞ν ∈ D and 1∞ ∞ν = µ <P P P P . Hence, by the Measurable Riemann Mapping theo­ rem (see, e.g., [1]), there is a quasiconformal mapping G of D onto itself, (0) 0G = , satisfying the Beltrami equation ( )w wG w G= ν a.e. in D . By the reflection principle (see, e.g., Theorem I.8.4 in [1]), G can be extended to a quasiconformal mapping G% of C onto itself. Both functions * : |G G ∂= % D and 1 *G− are Hölder continuous (see, e.g., [1], Theorem II.4.3). Now, by the Carathéo­ do ry theorem (see, e.g., Theorem II.3.4 in [11]), g is extended to a homeomorphism g% of D on to D . By Corollary of Theorem 1 in [6], * : | Dg g ∂= % and its inverse function are Hölder continuous. Thus, the mapping * * *: :h G g D= ∂ → ∂o D and its inverse are also Hölder continuous. In particu­ lar, then 1 *: ( )h−Λ = λ ∈ ∂o DCBV and 1 *: h−Φ = ϕo is measurable with respect to the logarithmic capacity by Remark 1 in [3]. Next, by Theorem 1 in [3], there is an analytic function :A →£D that has the angular limit lim Re{ ( ) ( )} ( ) . . .A q e on ω→η Λ η ω = Φ η ∂D (9) Setting :h G g= o , we see by an elementary computation that ( ) ( )z wh G g z g z′= o and z wh G g z g z= ( ) ( )z wh G g z g z= ′o a.e. in D , i.e. h is a quasiconformal mapping of D onto D satisfying Eq. (1) a.e. in D . Let us consider the function :=f A ho . Since = ( )′ oz zf A h z h and = ( )′ oz zf A h z h a.e. in D, we see that f satisfies the Eq. (1). On the other hand, the mapping f is continuous, open, and discrete, and, therefore, f is the regular solution of (1). It remains to show that f satisfies also the boundary condition (2). Indeed, by the Lindelöf theorem (see, e.g., Theorem II.C.2 in [10]), if D∂ has a tangent at a point ζ , then arg[ ( ) ( )] arg[ ]g g z z constζ − − ζ − → as z → ζ . In other words, the images under the conformal mapping g of sectors in D with a vertex at ζ are asymp­ totically the same as sectors in D with a vertex at ( )w g= ζ . Consequently, nontangential paths in D are transformed under g into nontangential paths in D and inversely q.e. on D∂ and ∂D respectively, because D is almost smooth, and g∗ and 1g− ∗ keep sets of logarithmic capacity zero. Moreover, it is known that the distortion of angles under a quasiconformal mapping is bounded (see, e.g., [1]). Hence, the mapping :G →% £ £ and its inverse also transform nontangential paths into nontangential paths, and G∗ and 1 *G− keep sets of logarithmic capacity zero. Consequently, :h D →D and 1 :h D− →D also transform nontangential paths into nontangential paths q.e. on D∂ and ∂D respectively. Thus, (9) implies the existence of the angular limit (2) q.e. on D∂ . 4. On Dirichlet, Neumann, and Poincaré problems. Recall that (see, e.g., Theorem 16.1.6 in [12]) if f u iv= + is a regular solution of the nondegenerate Beltrami equation (1), then the fun­ ction u is a continuous generalized solution of the divergence type equation div ( ) 0A z u∇ = (10) and is called the A­harmonic function, where ( )A z is a matrix function: 2 2 2 2 2 2 | 1 ( ) | 2Im ( ) 1 | ( ) | 1 | ( ) | ( ) . 2Im ( ) |1 ( ) | 1 | ( ) | 1 | ( ) | z z z z A z z z z z  −µ − µ   − µ − µ =   − µ + µ   − µ − µ  . (11) 21ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2019. № 3 On boundary­value problems in domains without (A)­condition As we see, the matrix function ( )A z in (11) is symmetric, det ( ) 1A z ≡ , and its entries ( )ij ija a z= are dominated by the quantity 1 | ( ) | ( ) 1 | ( ) | z K z zµ + µ = − µ . Thus, they are bounded if Beltra mi’s equa­ tion (1) is not degenerate. Vice versa, the uniformly elliptic equations (10) with symmetric ( )A z and det ( ) 1A z ≡ just correspond to the nondegenerate Beltrami equations (1) with the coefficient 22 11 21 22 11 21 21 ( 2 ) det( ) 1 det a a ia a a ia I A Tr A A − − µ = − − = + + + . (12) We denote by B the collection of all such matrix functions ( )A z Recall that Eq. (10) is said to be uniformly elliptic if ija L∞∈ and 2( ) , | |A z〈 η η〉 ε η� for some 0ε > and for all 2η∈¡ . Corollary 1. Let D be a domain in £ with the quasihyperbolic boundary condition, and let D∂ have a tangent q. e. Suppose that A∈B and : Dϕ ∂ →¡ is measurable with respect to the logarith­ mic capacity. Then there exists an A­harmonic function :u D →¡ with the angular limit lim ( ) ( ) . . .u z q e on D ω→η = ϕ ζ ∂ (13) Theorem 2. Let D be a domain in £ with the quasihyperbolic boundary condition, and let D∂ have a tangent q. e. Suppose that ( )A z , z D∈ , is a matrix function in the class Cα∩B , (0,1)α∈ , : Dν ∂ →£, | ( ) | 1ν ζ ≡ , is in the class CBV and : Dϕ ∂ →¡ is measurable with respect to logarith mic capacity. Then there exists an A­harmonic function :u D →¡ in the class 1C +α with the angular limit lim ( ) ( ) . . z u z q e on D →ς ∂ = ϕ ζ ∂ ∂ν . (14) Proof. By the above remarks, the desired function u is the real part of a solution f in the class 1,1 locW for the Beltrami equation (1) with Cαµ∈ given by formula (12). By Lemma 1 in [13], µ is extended to a Hölder continuous function :∗µ →£ £ of the class Cα . Set max | ( ) | 1k z= µ < in D . Then, for every * ( ,1)k k∈ , there is an open neighborhood U of D , where * *| ( ) |z kµ � . Let D∗ be a connected component of U containing D . By the Measurable Riemann Mapping Theorem (see, e.g., [1]), there is a quasiconformal map­ ping *:h D →£ a.e. satisfying the Beltrami equation (1) with the complex coefficient * * * : |Dµ = µ in D∗ . Note that the mapping h has the Hölder continuous first partial derivatives in D∗ with the same order of the Hölder continuity as µ (see, e.g., [14]). Moreover, its Jacobian *( ) 0hJ z z D≠ ∀ ∈ , (15) (see, e.g., Theorem V.7.1 in [1]). Thus, the directional derivative * 0 ( ) ( ) ( ) ( ) : lim 0 t h h z t h z h z z z D tω → ∂ + ω − = = ≠ ∀ ∈ ∀ω∈∂ ∂ω D , and it is continuous in the collection of the variables ω∈∂D and z D∗∈ . Thus, the functions ν ζ ν ζ ν ζ ζ ϕ ζ ν ζ = ϕ ζ = ζ ζ ( ) * * ( ) ( ) | ( ) | ( ) ( ) : and ( ) : ( ) | ( ) | h h h are measurable with respect to the logarithmic capacity. 22 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2019. № 3 V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin The logarithmic capacity of a set coincides with its transfinite diameter (see, e.g., point 110 in [15]). Moreover, quasiconformal mappings are Hölder continuous on compacta (see, e.g., Theorem II.4.3 in [1]). Hence the mappings h and 1h− transform sets of logarithmic capacity zero on D∂ into sets of logarithmic capacity zero on D∗∂ , where * : ( )D h D= , and vice versa. Further, the functions 1 * *: | D N h− ∂ = ν o and − ∂ Φ = ϕ o 1 * *: | D h are measurable with respect to the logarith­ mic capacity. Indeed, a measurable set with respect to the logarithmic capacity is transformed under the mappings h and 1h− into measurable sets with respect to the logarithmic ca pacity. Really, such a set can be represented as the union of a sigma­compactum and a set of lo garithmic capacity zero. On the other hand, the compacta are transformed under continuous mappings into compacta, and the compacta are measurable with respect to the logarithmic capacity. Recall that the distortion of angles under quasiconformal mappings h and 1h− is bounded (see, e.g., [1]). Thus, nontangential paths to D∂ are transformed into nontangential paths to D∗∂ for a.e. Dζ ∈∂ with respect to the logarithmic capacity and inversely. By Theorem 3 in [3], one can find a harmonic function *:U D →¡ that has the angular limit *lim ( ) ( ) . . w U w q e on D →ξ ∂ = Φ ξ ∂ ∂N . (16) Moreover, one can find a harmonic function V in the simply connected domain D∗ such that F U iV= + is an analytic function and, thus, : Reu f U h= = o , where :f F h= o , is a desired A­harmonic function in Theorem 2, because f is a regular solution of the corresponding Beltrami equation (1) and * * * *, , , Re ( ) U U u U h h U h h h h h hν ν ν ν ν ∂ ∂ = 〈∇ 〉 = 〈ν ∇ ν 〉 = 〈 ν 〉 = ν ∂ ∂ o o o o N N . The following statement concerning the Neumann problem for A­harmonic functions is a par­ tial case of Theorem 2. Corollary 2. Let D be a domain in £ with the quasihyperbolic boundary condition, and let D∂ have a tangent q.e. Suppose that ( )A z , z D∈ , is a matrix function in the class Cα∩B , (0,1)α∈ , the interior unit normal ( )n n= ζ to D∂ is in the class CBV , and : Dϕ ∂ →¡ is measurable with re­ spect to the logarithmic capacity. Then there is an A­harmonic function :u D →¡ of the class 1C +α such that there exist q.e. on D∂ : 1) the finite limit along the normal ( )n ζ ( ) : lim ( ) z u u z →ς ζ = ; 2) the normal derivative 0 ( ) ( ) ( ) : lim ( ) t u u t n u n t→ ∂ ζ + − ζ ζ = = ϕ ζ ∂ ; 3) the angular limit lim ( ) ( ). z u u z n n→ς ∂ ∂ = ζ ∂ ∂ This work was partially supported by grants of the Ministry of Education and Science of Ukraine, the project number is 0119U100421. 23ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2019. № 3 On boundary­value problems in domains without (A)­condition REFERENCES 1. Lehto O. & Virtanen, K. J. (1973). Quasiconformal mappings in the plane. Berlin, Heidelberg: Springer. 2. Efimushkin, A. S. & Ryazanov, V. I. (2015). On the Riemann—Hilbert problem for the Beltrami equations in quasidisks. J. Math. Sci., 211, No. 5, pp. 646­659. 3. Gutlyanskii, V., Ryazanov, V., Yakubov, E. & Yefimushkin, A. (2019). On the Hilbert problem for analytic functions in quasihyperbolic domains. Dopov. Nac. acad. nauk Ukr., No. 2, pp. 23­30. doi: https://doi. org/10.15407/dopovidi2019.02.023 4. Gehring, F. W. & Palka, B. P.(1976). Quasiconformally homogeneous domains. J. Anal. Math., 30, pp. 172­199. 5. Gehring, F. W. & Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10, pp. 203­219. 6. Becker, J. & Pommerenke, Ch. (1982). Hölder continuity of conformal mappings and nonquasiconformal Jordan curves. Comment. Math. Helv., 57, No. 2, pp. 221­225. 7. Astala, K. & Koskela, P. (1991). Quasiconformal mappings and global integrability of the derivative. J. Anal. Math., 57, pp. 203­220. 8. Ladyzhenskaya, O. A. & Ural’tseva, N. N. (1964). Linear and quasilinear elliptic equations. New York, London: Academic Press. 9. Gehring, F. W. & Martio, O. (1985). Quasiextremal distance domains and extension of quasiconformal map­ pings. J. Anal. Math., 45, pp. 181­206. 10. Koosis, P. (1998). Introduction to Hp spaces, Cambridge Tracts in Mathematics. (Vol. 115). Cambridge: Cambridge Univ. Press. 11. Goluzin, G. M. (1969). Geometric theory of functions of a complex variable. Translations of Mathematical Monographs. (Vol. 26). Providence, R.I.: American Mathematical Society. 12. Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal map­ pings in the plane. Princeton Mathematical Series. (Vol. 48). Princeton: Princeton Univ. Press. 13. Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundary­value problems for quasiconformal functions in the plane. J. Math. Sci., 214, No. 2, pp. 200­219. 14. Iwaniec, T. (1979). Regularity of solutions of certain degenerate elliptic systems of equations that realize quasiconformal mappings in n­dimensional space. Differential and integral equations. Boundary value prob­ lems. Tbilisi: Tbilis. Gos. Univ., pp. 97­111. 15. Nevanlinna, R. (1944). Eindeutige analytische Funktionen. Michigan: Ann Arbor. Received 26.12.2018 В.Я. Гутлянський1, В.І. Рязанов1,2, E. Якубов3, А.С. Єфімушкін1 1 Інститут прикладної математики і механіки НАН України, Слов’янськ 2 Черкаський національний університет ім. Богдана Хмельницького 3 Холонський інститут технологій, Ізраїль E­mail: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com, yakubov@hit.ac.il, eduardyakubov@gmail.com, a.yefimushkin@gmail.com ПРО КРАЙОВІ ЗАДАЧІ В ОБЛАСТЯХ БЕЗ (А)­УМОВИ Вивчено крайову задачу Гільберта для рівнянь Бельтрамі в жорданових областях, які задовольняють квазі­ гіперболічну крайову умову Герінга—Мартіо, взагалі кажучи, без стандартної (А)­умови Ладижен ської— Уральцевої. З припущенням, що коефіцієнти задачі є функціями зліченно­обмеженої варіації і граничні дані є вимірними відносно логарифмічної ємності, доведено існування розв’язків цієї задачі. Як наслідки отримано існування некласичних розв’язків крайових задач Діріхле, Неймана і Пуанкаре для узагальнень рівняння Лапласа в анізотропних і неоднорідних середовищах. Ключові слова: крайові задачі Гільберта, Діріхле, Неймана і Пуанкаре, рівняння Бельтрамі, квазіконформ­ ні функції, кутова границя, квазігіперболічна крайова умова, логарифмічна ємність. 24 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2019. № 3 V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin В.Я. Гутлянский1, В.И. Рязанов1,2, Э. Якубов3, А.С. Ефимушкин1 1 Институт прикладной математики и механики НАН Украины, Славянск 2 Черкасский национальный университет им. Богдана Хмельницкого 3 Холонский институт технологий, Израиль E­mail: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com, yakubov@hit.ac.il, eduardyakubov@gmail.com, a.yefimushkin@gmail.com О КРАЕВЫХ ЗАДАЧАХ В ОБЛАСТЯХ БЕЗ (А)­УСЛОВИЯ Изучена краевая задача Гильберта для уравнений Бельтрами в жордановых областях, удовлетворяющих квазигиперболическому краевому условию Геринга—Мартио, вообще говоря, без стандартного (А)­ус­ ловия Ладыженской—Уральцевой. С предположением, что коэффициенты задачи являются функциями счетно­ограниченной вариации, а граничные данные измеримы относительно логарифмической емкости, доказано существование решений этой задачи. В качестве следствий получено существование неклассиче­ ских решений краевых задач Дирихле, Неймана и Пуанкаре для обобщений уравнения Лапласа в анизо­ тропных и неоднородных средах. Ключевые слова: краевые задачи Гильберта, Дирихле, Неймана и Пуанкаре, уравнения Бельтрами, ква­ зиконформные функции, угловой предел, квазигиперболическое краевое условие, логарифмическая емкость.