On boundary value problems in domains without (A)-condition
We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)condition by Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem a...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2019
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/158074 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On boundary value problems in domains without (A)-condition / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 3. — С. 17-24. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-158074 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1580742019-07-11T01:24:55Z On boundary value problems in domains without (A)-condition Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. Математика We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)condition by Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundaryvalue problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media. Вивчено крайову задачу Гільберта для рівнянь Бельтрамі в жорданових областях, які задовольняють квазігіперболічну крайову умову Герінга Мартіо, взагалі кажучи, без стандартної (А) умови Ладиженської-Уральцевої. З припущенням, що коефіцієнти задачі є функціями зліченно обмеженої варіації і граничні дані є вимірними відносно логарифмічної ємності, доведено існування розв'язків цієї задачі. Як наслідки отримано існування некласичних розв'язків крайових задач Діріхле, Неймана і Пуанкаре для узагальнень рівняння Лапласа в анізотропних і неоднорідних середовищах. Изучена краевая задача Гильберта для уравнений Бельтрами в жордановых областях, удовлетворяющих квазигиперболическому краевому условию Геринга Мартио, вообще говоря, без стандартного (А) условия Ладыженской-Уральцевой. С предположением, что коэффициенты задачи являются функциями счетно-ограниченной вариации, а граничные данные измеримы относительно логарифмической емкости, доказано существование решений этой задачи. В качестве следствий получено существование неклассических решений краевых задач Дирихле, Неймана и Пуанкаре для обобщений уравнения Лапласа в анизотропных и неоднородных средах. 2019 Article On boundary value problems in domains without (A)-condition / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 3. — С. 17-24. — Бібліогр.: 15 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2019.03.017 http://dspace.nbuv.gov.ua/handle/123456789/158074 517.5 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Математика Математика |
spellingShingle |
Математика Математика Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. On boundary value problems in domains without (A)-condition Доповіді НАН України |
description |
We study the Hilbert boundaryvalue
problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic
boundary condition by Gehring—Martio, generally speaking, without the standard (A)condition
by
Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem are functions of countable bounded variation
and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its
solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré
boundaryvalue
problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media. |
format |
Article |
author |
Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. |
author_facet |
Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. |
author_sort |
Gutlyanskii, V.Ya. |
title |
On boundary value problems in domains without (A)-condition |
title_short |
On boundary value problems in domains without (A)-condition |
title_full |
On boundary value problems in domains without (A)-condition |
title_fullStr |
On boundary value problems in domains without (A)-condition |
title_full_unstemmed |
On boundary value problems in domains without (A)-condition |
title_sort |
on boundary value problems in domains without (a)-condition |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2019 |
topic_facet |
Математика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/158074 |
citation_txt |
On boundary value problems in domains without (A)-condition / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 3. — С. 17-24. — Бібліогр.: 15 назв. — англ. |
series |
Доповіді НАН України |
work_keys_str_mv |
AT gutlyanskiivya onboundaryvalueproblemsindomainswithoutacondition AT ryazanovvi onboundaryvalueproblemsindomainswithoutacondition AT yakubove onboundaryvalueproblemsindomainswithoutacondition AT yefimushkinas onboundaryvalueproblemsindomainswithoutacondition |
first_indexed |
2025-07-14T10:31:25Z |
last_indexed |
2025-07-14T10:31:25Z |
_version_ |
1837617997294862336 |
fulltext |
17ISSN 10256415. Допов. Нац. акад. наук Укр. 2019. № 3
1. Introduction. Let D be a domain in the complex plane £ , and let : Dµ →£ be a measu
rable function with ( ) 1zµ < a.e. The equation of the form
( )z zf z f= µ , (1)
where ( ) / 2z x yf f f if= ∂ = + , ( ) / 2z x yf f f if= ∂ = − , z x iy= + , xf and yf are partial deriva
tives of f with respect to x and y , is said to be a Beltrami equation. Equation (1) is called non
degenerate if || || 1∞µ < . Homeomorphic solutions f of the nondegenerate equation (1) in the class
1, 2
locW are called quasiconformal mappings (see, e.g., [1]).
D. Hilbert studied the boundaryvalue problem formulated as follows: To find an analytic
function ( )f z in a domain D bounded by a rectifiable Jordan contour C that satisfies the
boun dary condition
Re{ ( ) ( )} ( ) ,lim
z
f z C
→ζ
λ ζ = ϕ ζ ∀ζ ∈ (2)
© V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin, 2019
doi: https://doi.org/10.15407/dopovidi2019.03.017
UDC 517.5
V.Ya. Gutlyanskii1, V.I. Ryazanov1,2,
E. Yakubov3, A.S. Yefimushkin1
1 Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yansk
2 Bogdan Khmelnytsky National University of Cherkasy
3 Holon Institute of Technology, Israel
Email: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com, yakubov@hit.ac.il,
eduardyakubov@gmail.com, a.yefimushkin@gmail.com
On boundaryvalue problems in domains without (A)condition
Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskii
We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasi
hyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)condition by
Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem are functions of countable bounded va
riation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its
solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré
boundaryvalue problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.
Keywords: Hilbert, Dirichlet, Neumann, and Poincaré boundaryvalue problems, Beltrami equations, quasiconformal
functions, angular limits, quasihyperbolic boundary condition, logarithmic capacity.
18 ISSN 10256415. Dopov. Nac. akad. nauk Ukr. 2019. № 3
V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin
where both the coefficient λ and the boundary data ϕ of the problem are continuously diffe ren
tiable with respect to the natural parameter s on C . Moreover, it was assumed by Hilbert that
0λ ≠ everywhere on C .
The latter allows us with no loss of generality to consider that | | 1λ ≡ on C . In this case,
the quantity Re { }fλ from the left in (2) has the geometric sense as a projection of f onto the
direction λ interpreted as vectors in 2¡ .
Historic comments in the subject can be found in the recent paper [2]. In the present paper,
we study the Hilbert boundaryvalue problem for the Beltrami equation and find its regular so
lutions in the class of quasiconformal functions F represented as a composition of analytic func
tions A and quasiconformal mappings f satisfying (2).
Proceeding the above, the problem under consideration is to find quasiconformal functions
satisfying both the Beltrami equation (1) in a Jordan domain D and the Hilbert boundary condi
tion (2). We substantially weaken the regularity conditions both on the functions λ and ϕ in the
boundary condition (2) and on the boundary C of the domain D . On the one hand, we will deal
with the coefficients λ of a countable bounded variation and the boundary data ϕ , which are
measurable with respect to the logarithmic capacity, see the corresponding definitions in our previ
ous paper [3]. On the other hand, we study here the Hilbert boundaryvalue problem in domains
D with a more general boundary condition, see discussions in the next section.
2. On the quasihyperbolic boundary condition. Let D be a domain in £ . As usual, 0( , )Dk z z
denotes the quasihyperbolic distance between points z and 0z in D
0( , ) inf
( , )D
ds
k z z
d Dγ
γ
=
ς ∂∫ (3)
introduced in work [4]. Here, ( , )d Dζ ∂ denotes the Euclidean distance from the point Dζ ∈ to
D∂ , and the infimum is taken over all rectifiable curves γ joining the points z and 0z in D .
Further, it is said that a domain D satisfies the quasihyperbolic boundary condition if
∂
+ ∀ ∈
∂
0
0
( , )
( , ) ln
( , )D
d z D
k z z a b z D
d z D
� (4)
for constants a and b and a point 0z D∈ . The latter notion was introduced in [5], but it was
first applied in [6].
Recall also that the images of the unit disk { :| | 1}z z= ∈ <£D under the quasiconformal map
pings of £ onto itself are called quasidisks, and their boundaries are called quasicircles or quasi
conformal curves. It is known that every smooth (or Lipschitz) Jordan curve is a quasiconformal
curve, and, at the same time, quasiconformal curves can be locally nonrectifiable, as it follows from
the known examples (see, e.g., point II.8.10 in [1]).
Remark 1. Quasidisks D satisfy the quasihyperbolic boundary condition. Indeed, as is well
known, the Riemann conformal mapping : Dω →D is extended to a quasiconformal mapping of
£ onto itself (see, e.g., Theorem II.8.3 in [1]). By one of the main Bojarski results, the derivatives
of a quasiconformal mapping in the plane are locally integrable with some power 2q > , and its
Jacobian 2 2( ) | | | |w wJ w = ω − ω (see [1]). Consequently, ( )pJ L D∈ in this case for some 1p > ,
and we have the desired conclusion by the criterion in Theorem 2.4 [7].
19ISSN 10256415. Допов. Нац. акад. наук Укр. 2019. № 3
On boundaryvalue problems in domains without (A)condition
Recall that a domain D in n¡ , 2n� , is called satisfying (A)condition if
∩ ζ ρ Θ ζ ρ ∀ζ ∈∂ ρ ρ0 0mes ( , ) mes ( , ) ,D B B D� � (5)
for some 0Θ and 0 (0,1)ρ ∈ (see 1.1.3 in [8]). Recall also that a domain D in n¡ , 2n� , is said
to be satisfying the outer cone condition if there is a cone that makes possible to be touched by
its top to every boundary point of D from the completion of D after its suitable rotations
and shifts. It is clear that the outer cone condition implies (A)condition. It is well known that
the above conditions are standard in the theory of boundaryvalue problems for the partial dif
ferential equations.
Remark 2. Note that quasidisks D satisfy (A)condition. Indeed, the quasidisks are the so
called QED − domains by Gehring—Martio (see Theorem 2.22 in [9]), and the latter satisfy
the condition
∗∩ ζ ρ Θ ζ ρ ∀ζ ∈∂ ρmes ( , ) mes ( , ) , diamD B B D D� � (6)
for some (0,1)∗Θ ∈ (see Lemma 2.13 in [9]), and quasidisks (as domains with quasihyperbo
lic boundary condition) have boundaries of the Lebesgue measure zero (see, e.g., Theorem 2.4 in
[7]). Thus, it remains to note that, by definition, the completions of quasidisks D in the extended
complex plane : { }= ∪ ∞£ £ are also quasidisks up to the inversion with respect to a circle in D .
As we know, the first example of a simply connected plane domain D with the quasihyperbolic
boundary condition, which is not a quasidisk, was constructed in Theorem 2 [6]. However, this
domain satisfied (A)condition.
Remark 3. Probably one of the simplest examples of a domain D with the quasihyperbolic
boundary condition and without (A)condition is the union of 3 open disks with radius 1 cente
red at the points 0 and 1 i± . It is clear that the domain has zero interior angle at its boundary
point 1, and, by Remark 2, it is not a quasidisk. Note that D∂ is almost smooth. Thus, there exist
almost smooth Jordan curves (see (5) in [3]) with the quasihyperbolic boundary condition that
are not quasi conformal curves.
3. The Hilbert problem for the Beltrami equation. Let D be a Jordan domain with a tangent
at a point Dς∈∂ . A path in D terminating at ζ is called nontangential if its part in a neighbor
hood of ζ lies inside of an angle in D with the vertex at ζ . The limit along all nontangential paths
at ζ is called angular at the point. The latter notion is a standard tool for the study of the boun
dary behavior of analytic and harmonic functions (see, e.g., [10]).
Theorem 1. Let D be a Jordan domain with the quasihyperbolic boundary condition, and let
D∂ have a tangent q.e. Suppose that : Dµ →£ is in ( )L D∞ with || || 1∞µ < , : , | ( ) | 1Dλ ∂ → λ ζ ≡£ , is
in ( )D∂CBV , and : Dϕ ∂ →¡ is a measurable function with respect to the logarithmic capacity. Then
the Beltrami equation (1) has a regular solution :f D →£ with the angular limit
lim Re[ ( ) ( )] ( ) . .
z
f z q e on D
→ς
λ ζ = ϕ ζ ∂ . (7)
Proof. Let g be a conformal mapping of D onto D that exists by the Riemann mapping
theorem (see, e.g., Theorem II.2.1 in [11]). Setting, in the unit disk D ,
1( ) : ( )
g
w g w
g
−′
ν = µ ′
o , (8)
20 ISSN 10256415. Dopov. Nac. akad. nauk Ukr. 2019. № 3
V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin
we see that ( )L∞ν ∈ D and 1∞ ∞ν = µ <P P P P . Hence, by the Measurable Riemann Mapping theo
rem (see, e.g., [1]), there is a quasiconformal mapping G of D onto itself, (0) 0G = , satisfying
the Beltrami equation ( )w wG w G= ν a.e. in D . By the reflection principle (see, e.g., Theorem I.8.4
in [1]), G can be extended to a quasiconformal mapping G% of C onto itself. Both functions
* : |G G ∂= % D and 1
*G− are Hölder continuous (see, e.g., [1], Theorem II.4.3). Now, by the Carathéo
do ry theorem (see, e.g., Theorem II.3.4 in [11]), g is extended to a homeomorphism g% of D on to
D . By Corollary of Theorem 1 in [6], * : | Dg g ∂= % and its inverse function are Hölder continuous.
Thus, the mapping * * *: :h G g D= ∂ → ∂o D and its inverse are also Hölder continuous. In particu
lar, then 1
*: ( )h−Λ = λ ∈ ∂o DCBV and 1
*: h−Φ = ϕo is measurable with respect to the logarithmic
capacity by Remark 1 in [3]. Next, by Theorem 1 in [3], there is an analytic function :A →£D
that has the angular limit
lim Re{ ( ) ( )} ( ) . . .A q e on
ω→η
Λ η ω = Φ η ∂D (9)
Setting :h G g= o , we see by an elementary computation that ( ) ( )z wh G g z g z′= o and z wh G g z g z=
( ) ( )z wh G g z g z= ′o a.e. in D , i.e. h is a quasiconformal mapping of D onto D satisfying Eq. (1)
a.e. in D .
Let us consider the function :=f A ho . Since = ( )′ oz zf A h z h and = ( )′ oz zf A h z h a.e. in D,
we see that f satisfies the Eq. (1). On the other hand, the mapping f is continuous, open, and
discrete, and, therefore, f is the regular solution of (1). It remains to show that f satisfies also
the boundary condition (2). Indeed, by the Lindelöf theorem (see, e.g., Theorem II.C.2 in [10]), if
D∂ has a tangent at a point ζ , then arg[ ( ) ( )] arg[ ]g g z z constζ − − ζ − → as z → ζ . In other
words, the images under the conformal mapping g of sectors in D with a vertex at ζ are asymp
totically the same as sectors in D with a vertex at ( )w g= ζ . Consequently, nontangential paths
in D are transformed under g into nontangential paths in D and inversely q.e. on D∂ and ∂D
respectively, because D is almost smooth, and g∗ and 1g−
∗ keep sets of logarithmic capacity zero.
Moreover, it is known that the distortion of angles under a quasiconformal mapping is bounded
(see, e.g., [1]). Hence, the mapping :G →% £ £ and its inverse also transform nontangential paths
into nontangential paths, and G∗ and 1
*G− keep sets of logarithmic capacity zero. Consequently,
:h D →D and 1 :h D− →D also transform nontangential paths into nontangential paths q.e. on
D∂ and ∂D respectively. Thus, (9) implies the existence of the angular limit (2) q.e. on D∂ .
4. On Dirichlet, Neumann, and Poincaré problems. Recall that (see, e.g., Theorem 16.1.6 in
[12]) if f u iv= + is a regular solution of the nondegenerate Beltrami equation (1), then the fun
ction u is a continuous generalized solution of the divergence type equation
div ( ) 0A z u∇ = (10)
and is called the Aharmonic function, where ( )A z is a matrix function:
2
2 2
2
2 2
| 1 ( ) | 2Im ( )
1 | ( ) | 1 | ( ) |
( ) .
2Im ( ) |1 ( ) |
1 | ( ) | 1 | ( ) |
z z
z z
A z
z z
z z
−µ − µ
− µ − µ =
− µ + µ
− µ − µ
. (11)
21ISSN 10256415. Допов. Нац. акад. наук Укр. 2019. № 3
On boundaryvalue problems in domains without (A)condition
As we see, the matrix function ( )A z in (11) is symmetric, det ( ) 1A z ≡ , and its entries ( )ij ija a z=
are dominated by the quantity
1 | ( ) |
( )
1 | ( ) |
z
K z
zµ
+ µ
=
− µ
. Thus, they are bounded if Beltra mi’s equa
tion (1) is not degenerate. Vice versa, the uniformly elliptic equations (10) with symmetric ( )A z
and det ( ) 1A z ≡ just correspond to the nondegenerate Beltrami equations (1) with the coefficient
22 11 21
22 11 21
21
( 2 )
det( ) 1 det
a a ia
a a ia
I A Tr A A
− −
µ = − − =
+ + +
. (12)
We denote by B the collection of all such matrix functions ( )A z Recall that Eq. (10) is
said to be uniformly elliptic if ija L∞∈ and 2( ) , | |A z〈 η η〉 ε η� for some 0ε > and for all 2η∈¡ .
Corollary 1. Let D be a domain in £ with the quasihyperbolic boundary condition, and let D∂
have a tangent q. e. Suppose that A∈B and : Dϕ ∂ →¡ is measurable with respect to the logarith
mic capacity. Then there exists an Aharmonic function :u D →¡ with the angular limit
lim ( ) ( ) . . .u z q e on D
ω→η
= ϕ ζ ∂ (13)
Theorem 2. Let D be a domain in £ with the quasihyperbolic boundary condition, and let D∂
have a tangent q. e. Suppose that ( )A z , z D∈ , is a matrix function in the class Cα∩B , (0,1)α∈ ,
: Dν ∂ →£, | ( ) | 1ν ζ ≡ , is in the class CBV and : Dϕ ∂ →¡ is measurable with respect to logarith mic
capacity. Then there exists an Aharmonic function :u D →¡ in the class 1C +α with the angular limit
lim ( ) ( ) . .
z
u
z q e on D
→ς
∂
= ϕ ζ ∂
∂ν
. (14)
Proof. By the above remarks, the desired function u is the real part of a solution f in the
class 1,1
locW for the Beltrami equation (1) with Cαµ∈ given by formula (12). By Lemma 1 in [13],
µ is extended to a Hölder continuous function :∗µ →£ £ of the class Cα . Set max | ( ) | 1k z= µ <
in D . Then, for every * ( ,1)k k∈ , there is an open neighborhood U of D , where * *| ( ) |z kµ � . Let
D∗ be a connected component of U containing D .
By the Measurable Riemann Mapping Theorem (see, e.g., [1]), there is a quasiconformal map
ping *:h D →£ a.e. satisfying the Beltrami equation (1) with the complex coefficient *
* *
: |Dµ = µ
in D∗ . Note that the mapping h has the Hölder continuous first partial derivatives in D∗ with
the same order of the Hölder continuity as µ (see, e.g., [14]). Moreover, its Jacobian
*( ) 0hJ z z D≠ ∀ ∈ , (15)
(see, e.g., Theorem V.7.1 in [1]). Thus, the directional derivative
*
0
( ) ( )
( ) ( ) : lim 0
t
h h z t h z
h z z z D
tω
→
∂ + ω −
= = ≠ ∀ ∈ ∀ω∈∂
∂ω
D ,
and it is continuous in the collection of the variables ω∈∂D and z D∗∈ . Thus, the functions
ν ζ
ν ζ ν ζ
ζ ϕ ζ
ν ζ = ϕ ζ =
ζ ζ
( )
* *
( ) ( )
| ( ) | ( )
( ) : and ( ) :
( ) | ( ) |
h
h h
are measurable with respect to the logarithmic capacity.
22 ISSN 10256415. Dopov. Nac. akad. nauk Ukr. 2019. № 3
V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin
The logarithmic capacity of a set coincides with its transfinite diameter (see, e.g., point 110
in [15]). Moreover, quasiconformal mappings are Hölder continuous on compacta (see, e.g.,
Theorem II.4.3 in [1]). Hence the mappings h and 1h− transform sets of logarithmic capacity zero
on D∂ into sets of logarithmic capacity zero on D∗∂ , where * : ( )D h D= , and vice versa. Further,
the functions 1
* *: |
D
N h−
∂
= ν o and −
∂
Φ = ϕ o 1
* *: |
D
h are measurable with respect to the logarith
mic capacity. Indeed, a measurable set with respect to the logarithmic capacity is transformed
under the mappings h and 1h− into measurable sets with respect to the logarithmic ca pacity.
Really, such a set can be represented as the union of a sigmacompactum and a set of lo garithmic
capacity zero. On the other hand, the compacta are transformed under continuous mappings into
compacta, and the compacta are measurable with respect to the logarithmic capacity.
Recall that the distortion of angles under quasiconformal mappings h and 1h− is bounded
(see, e.g., [1]). Thus, nontangential paths to D∂ are transformed into nontangential paths to D∗∂
for a.e. Dζ ∈∂ with respect to the logarithmic capacity and inversely. By Theorem 3 in [3], one
can find a harmonic function *:U D →¡ that has the angular limit
*lim ( ) ( ) . .
w
U
w q e on D
→ξ
∂
= Φ ξ ∂
∂N
. (16)
Moreover, one can find a harmonic function V in the simply connected domain D∗ such that
F U iV= + is an analytic function and, thus, : Reu f U h= = o , where :f F h= o , is a desired
Aharmonic function in Theorem 2, because f is a regular solution of the corresponding Beltrami
equation (1) and
* * * *, , , Re ( )
U U
u U h h U h h h h h hν ν ν ν ν
∂ ∂
= 〈∇ 〉 = 〈ν ∇ ν 〉 = 〈 ν 〉 = ν
∂ ∂
o o o o
N N
.
The following statement concerning the Neumann problem for Aharmonic functions is a par
tial case of Theorem 2.
Corollary 2. Let D be a domain in £ with the quasihyperbolic boundary condition, and let D∂
have a tangent q.e. Suppose that ( )A z , z D∈ , is a matrix function in the class Cα∩B , (0,1)α∈ ,
the interior unit normal ( )n n= ζ to D∂ is in the class CBV , and : Dϕ ∂ →¡ is measurable with re
spect to the logarithmic capacity. Then there is an Aharmonic function :u D →¡ of the class 1C +α
such that there exist q.e. on D∂ :
1) the finite limit along the normal ( )n ζ ( ) : lim ( )
z
u u z
→ς
ζ = ;
2) the normal derivative
0
( ) ( )
( ) : lim ( )
t
u u t n u
n t→
∂ ζ + − ζ
ζ = = ϕ ζ
∂
;
3) the angular limit lim ( ) ( ).
z
u u
z
n n→ς
∂ ∂
= ζ
∂ ∂
This work was partially supported by grants of the Ministry of Education and Science of Ukraine,
the project number is 0119U100421.
23ISSN 10256415. Допов. Нац. акад. наук Укр. 2019. № 3
On boundaryvalue problems in domains without (A)condition
REFERENCES
1. Lehto O. & Virtanen, K. J. (1973). Quasiconformal mappings in the plane. Berlin, Heidelberg: Springer.
2. Efimushkin, A. S. & Ryazanov, V. I. (2015). On the Riemann—Hilbert problem for the Beltrami equations
in quasidisks. J. Math. Sci., 211, No. 5, pp. 646659.
3. Gutlyanskii, V., Ryazanov, V., Yakubov, E. & Yefimushkin, A. (2019). On the Hilbert problem for analytic
functions in quasihyperbolic domains. Dopov. Nac. acad. nauk Ukr., No. 2, pp. 2330. doi: https://doi.
org/10.15407/dopovidi2019.02.023
4. Gehring, F. W. & Palka, B. P.(1976). Quasiconformally homogeneous domains. J. Anal. Math., 30, pp. 172199.
5. Gehring, F. W. & Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn.
Ser. A. I. Math., 10, pp. 203219.
6. Becker, J. & Pommerenke, Ch. (1982). Hölder continuity of conformal mappings and nonquasiconformal
Jordan curves. Comment. Math. Helv., 57, No. 2, pp. 221225.
7. Astala, K. & Koskela, P. (1991). Quasiconformal mappings and global integrability of the derivative. J. Anal.
Math., 57, pp. 203220.
8. Ladyzhenskaya, O. A. & Ural’tseva, N. N. (1964). Linear and quasilinear elliptic equations. New York, London:
Academic Press.
9. Gehring, F. W. & Martio, O. (1985). Quasiextremal distance domains and extension of quasiconformal map
pings. J. Anal. Math., 45, pp. 181206.
10. Koosis, P. (1998). Introduction to Hp spaces, Cambridge Tracts in Mathematics. (Vol. 115). Cambridge:
Cambridge Univ. Press.
11. Goluzin, G. M. (1969). Geometric theory of functions of a complex variable. Translations of Mathematical
Monographs. (Vol. 26). Providence, R.I.: American Mathematical Society.
12. Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal map
pings in the plane. Princeton Mathematical Series. (Vol. 48). Princeton: Princeton Univ. Press.
13. Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundaryvalue problems for quasiconformal
functions in the plane. J. Math. Sci., 214, No. 2, pp. 200219.
14. Iwaniec, T. (1979). Regularity of solutions of certain degenerate elliptic systems of equations that realize
quasiconformal mappings in ndimensional space. Differential and integral equations. Boundary value prob
lems. Tbilisi: Tbilis. Gos. Univ., pp. 97111.
15. Nevanlinna, R. (1944). Eindeutige analytische Funktionen. Michigan: Ann Arbor.
Received 26.12.2018
В.Я. Гутлянський1, В.І. Рязанов1,2,
E. Якубов3, А.С. Єфімушкін1
1 Інститут прикладної математики і механіки НАН України, Слов’янськ
2 Черкаський національний університет ім. Богдана Хмельницького
3 Холонський інститут технологій, Ізраїль
Email: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com,
yakubov@hit.ac.il, eduardyakubov@gmail.com, a.yefimushkin@gmail.com
ПРО КРАЙОВІ ЗАДАЧІ В ОБЛАСТЯХ БЕЗ (А)УМОВИ
Вивчено крайову задачу Гільберта для рівнянь Бельтрамі в жорданових областях, які задовольняють квазі
гіперболічну крайову умову Герінга—Мартіо, взагалі кажучи, без стандартної (А)умови Ладижен ської—
Уральцевої. З припущенням, що коефіцієнти задачі є функціями зліченнообмеженої варіації і граничні
дані є вимірними відносно логарифмічної ємності, доведено існування розв’язків цієї задачі. Як наслідки
отримано існування некласичних розв’язків крайових задач Діріхле, Неймана і Пуанкаре для узагальнень
рівняння Лапласа в анізотропних і неоднорідних середовищах.
Ключові слова: крайові задачі Гільберта, Діріхле, Неймана і Пуанкаре, рівняння Бельтрамі, квазіконформ
ні функції, кутова границя, квазігіперболічна крайова умова, логарифмічна ємність.
24 ISSN 10256415. Dopov. Nac. akad. nauk Ukr. 2019. № 3
V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin
В.Я. Гутлянский1, В.И. Рязанов1,2,
Э. Якубов3, А.С. Ефимушкин1
1 Институт прикладной математики и механики НАН Украины, Славянск
2 Черкасский национальный университет им. Богдана Хмельницкого
3 Холонский институт технологий, Израиль
Email: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com, yakubov@hit.ac.il,
eduardyakubov@gmail.com, a.yefimushkin@gmail.com
О КРАЕВЫХ ЗАДАЧАХ В ОБЛАСТЯХ БЕЗ (А)УСЛОВИЯ
Изучена краевая задача Гильберта для уравнений Бельтрами в жордановых областях, удовлетворяющих
квазигиперболическому краевому условию Геринга—Мартио, вообще говоря, без стандартного (А)ус
ловия Ладыженской—Уральцевой. С предположением, что коэффициенты задачи являются функциями
счетноограниченной вариации, а граничные данные измеримы относительно логарифмической емкости,
доказано существование решений этой задачи. В качестве следствий получено существование неклассиче
ских решений краевых задач Дирихле, Неймана и Пуанкаре для обобщений уравнения Лапласа в анизо
тропных и неоднородных средах.
Ключевые слова: краевые задачи Гильберта, Дирихле, Неймана и Пуанкаре, уравнения Бельтрами, ква
зиконформные функции, угловой предел, квазигиперболическое краевое условие, логарифмическая емкость.
|