Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation
This article is devoted to the investigation of technical process of reinforcement of aluminum sheets with wire for increasing equipment reliability for complex gas preparation. Reduction of operating coalmines forces to give more attention to gas and gas-condensate deposits.
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут геотехнічної механіки імені М.С. Полякова НАН України
2017
|
Schriftenreihe: | Геотехнічна механіка |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/158600 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation / H.S. Makeeva, Ya.V. Frolov, M.Y. Stolbchenko, O.Y. Grydin, M. Schaper, S.Yu. Makeev // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпро: ИГТМ НАНУ, 2017. — Вип. 135. — С. 208-228. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-158600 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1586002019-09-08T01:25:49Z Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation Makeeva, H.S. Frolov, Ya.V. Stolbchenko, M.Y. Grydin, O.Y. Schaper, M. Makeev, S.Yu. This article is devoted to the investigation of technical process of reinforcement of aluminum sheets with wire for increasing equipment reliability for complex gas preparation. Reduction of operating coalmines forces to give more attention to gas and gas-condensate deposits. Статтю присвячено дослідженню технологічного процесу армування алюмінієвих листів дротом для підвищення надійності обладнання для комплексної підготовки газу. Скорочення працюючих вугільних шахт, змушує більше уваги приділяти газовим і газоконденсатним родовищам. Статья посвящена исследованию технологического процесса армирования алюминиевых листов проволокой для повышения надежности оборудования для комплексной подготовки газа. Сокращение работающих угольных шахт, вынуждает больше внимания уделять газовым и газоконденсатным месторождениям. 2017 Article Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation / H.S. Makeeva, Ya.V. Frolov, M.Y. Stolbchenko, O.Y. Grydin, M. Schaper, S.Yu. Makeev // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпро: ИГТМ НАНУ, 2017. — Вип. 135. — С. 208-228. — Бібліогр.: 13 назв. — англ. 1607-4556 http://dspace.nbuv.gov.ua/handle/123456789/158600 669.716:621.77.016.2:539.388.22 en Геотехнічна механіка Інститут геотехнічної механіки імені М.С. Полякова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
This article is devoted to the investigation of technical process of reinforcement of aluminum sheets with wire for increasing equipment reliability for complex gas preparation. Reduction of operating coalmines forces to give more attention to gas and gas-condensate deposits. |
format |
Article |
author |
Makeeva, H.S. Frolov, Ya.V. Stolbchenko, M.Y. Grydin, O.Y. Schaper, M. Makeev, S.Yu. |
spellingShingle |
Makeeva, H.S. Frolov, Ya.V. Stolbchenko, M.Y. Grydin, O.Y. Schaper, M. Makeev, S.Yu. Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation Геотехнічна механіка |
author_facet |
Makeeva, H.S. Frolov, Ya.V. Stolbchenko, M.Y. Grydin, O.Y. Schaper, M. Makeev, S.Yu. |
author_sort |
Makeeva, H.S. |
title |
Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation |
title_short |
Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation |
title_full |
Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation |
title_fullStr |
Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation |
title_full_unstemmed |
Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation |
title_sort |
investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation |
publisher |
Інститут геотехнічної механіки імені М.С. Полякова НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/158600 |
citation_txt |
Investigation of bimetals compound with the aim to increase of equipment reliability for complex gas preparation / H.S. Makeeva, Ya.V. Frolov, M.Y. Stolbchenko, O.Y. Grydin, M. Schaper, S.Yu. Makeev // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпро: ИГТМ НАНУ, 2017. — Вип. 135. — С. 208-228. — Бібліогр.: 13 назв. — англ. |
series |
Геотехнічна механіка |
work_keys_str_mv |
AT makeevahs investigationofbimetalscompoundwiththeaimtoincreaseofequipmentreliabilityforcomplexgaspreparation AT frolovyav investigationofbimetalscompoundwiththeaimtoincreaseofequipmentreliabilityforcomplexgaspreparation AT stolbchenkomy investigationofbimetalscompoundwiththeaimtoincreaseofequipmentreliabilityforcomplexgaspreparation AT grydinoy investigationofbimetalscompoundwiththeaimtoincreaseofequipmentreliabilityforcomplexgaspreparation AT schaperm investigationofbimetalscompoundwiththeaimtoincreaseofequipmentreliabilityforcomplexgaspreparation AT makeevsyu investigationofbimetalscompoundwiththeaimtoincreaseofequipmentreliabilityforcomplexgaspreparation |
first_indexed |
2025-07-14T11:09:48Z |
last_indexed |
2025-07-14T11:09:48Z |
_version_ |
1837620410526466048 |
fulltext |
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
208
UDC 669.716:621.77.016.2:539.388.22
Makeeva H.S., Doctoral Student,
Frolov Ya.V., D.Sc. (Tech.), Professor
(NMetAU),
Stolbchenko M. Y., Doctoral Student,
Grydin O.Y., D.Sc. (Tech.), Professor,
Schaper, M., D.Sc. (Tech.), Рrofessor
(University of Paderborn, Germany)
Makeev S.Yu., Ph.D. (Tech.), Senior Researcher
(IGTM NAS of Ukraine)
INVESTIGATION OF BIMETAL COMPOUND WITH THE AIM TO
INCREASE EQUIPMENT RELIABILITY FOR COMPLEX GAS
PREPARATION
Макеєва Г.С., аспірант,
Фролов Я.В., д-р техн. наук, професор
(НМетАУ)
Столбченко М.Ю., аспірант,
Гридін О.Ю., д-р техн. наук, професор
Шапер М., д-р техн. наук, професор
(Університет м. Падерборн, ФРН)
Макеєв С.Ю., канд. техн. наук, ст. наук. співр.
(ІГТМ НАН України)
ДОСЛІДЖЕННЯ ВЛАСТИВОСТЕЙ З'ЄДНАННЯ БІМЕТАЛУ З МЕТОЮ
ПІДВИЩЕННЯ НАДІЙНОСТІ ОБЛАДНАННЯ ДЛЯ КОМПЛЕКСНОЇ
ПІДГОТОВКИ ГАЗУ
Макеева А.С., аспирант,
Фролов Я.В., д-р техн. наук, профессор
(НМетАУ)
Столбченко М.Ю., аспирант,
Гридин А.Ю., д-р техн. наук, профессор,
Шапер М., д-р техн. наук, профессор
(Университет г. Падерборн, ФРГ)
Макеев С.Ю., канд. техн. наук, ст. науч. сотр.
(ИГТМ НАН Украины)
ИССЛЕДОВАНИЕ СВОЙСТВ СОЕДИНЕНИЯ БИМЕТАЛЛОВ С ЦЕЛЬЮ
ПОВЫШЕНИЯ НАДЕЖНОСТИ ОБОРУДОВАНИЯ ДЛЯ
КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА
Аbstract. This article is devoted to the investigation of technical process of reinforcement of
aluminum sheets with wire for increasing equipment reliability for complex gas preparation.
Reduction of operating coalmines forces to give more attention to gas and gas-condensate deposits.
________________________________________________________________________________
© А.С. Макеева,Я.В. Фролов, М.Ю. Столбченко, А.Ю. Гридин, М. Шапер, С.Ю. Макеев, 2017
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
209
Before supplying gas to the pipeline, it must be cleaned from various impurities at special
plants for complex gas treatment. Separating equipment, absorption or adsorption columns and
other equipment used for these purposes, should be wear-resistant and lightweight and withstand
high loads. Aluminum sheets with mesh reinforcement possess such properties. Actual task is
improving of technology for obtaining such sheets in order to receive higher quality and reduce cost
of the products. The article presents results of experimental studies of the strain parameters of
rolling an aluminium matrix when wire mesh is inserted between aluminium layers. During the
experiment, two types of stainless steel fabric meshes oriented parallel and diagonal to the rolling
axis were placed between two aluminium strips and rolled. Rolling processes were performed, at
which temperature and pressure on the material were varied to produce bonding of matrix layers.
This study focused on measuring strain in areas of longitudinal and cross sections; stretching and
ovalization of the wire mesh; measuring changes in the mesh angles of the cell; and testing
mechanical properties of composites along the rolling direction. Main contradiction resulting from
this experiment was as follows: contact pressure required for the bonding of aluminium layers
produces extreme tensile strain on the inserted wire mesh, degrades mechanical properties of the
reinforcing mesh and, thus, degrades properties of the entire composite. Optimal results in the
longitudinal tension tests were achieved by using strips with diagonally oriented mesh-
reinforcement. This study was supported by German Academic Exchange Service (DAAD) in the
framework of German-Ukrainian project «Praxispartnershaft Metalurgie».
Key words: aluminium matrix, steel mesh, reinforcing, rolling, delamination, mechanical
properties
Introduction
The steady tendency to reduce the number of working mines forces us to pay
more attention to the gas and gas condensate fields. After extraction from the deposit
before supplying gas to the pipeline, it must be cleaned of various impurities. The
presence of water, liquid hydrocarbons, aggressive and mechanical inclusions in the
gas reduces the capacity of gas pipelines, increase the consumption of inhibitors,
increases the corrosion of equipment, leads to the need to increase the capacity of gas
compressor stations, removes the reliability of technological systems, increases the
probability of emergency situations at gas compressor stations and the linear part of
gas pipelines.Gas preparation for long-distance transportation is carried out in gas
complex treatment plants (GCTP) intended for drying natural gas from water,
separating impurities, liquid hydrocarbons and cleaning from sulfur compound.
The choice of industrial equipment for GCTP depends on the composition of the
gas, the content of moisture and impurities, the direction of the further use of gas and
the climatic conditions of the mining and transportation areas. Taking into account
the above factors, the GCTP can include separation units, absorption or adsorption
columns and other equipment.
To increase the resource and reduce the cost of this type of equipment, it is
advisable to use wear-resistant, light materials that are not subject to corrosion,
capable of withstanding high loads. Wire-reinforced aluminum sheets have similar
properties. Actual is the task of improving the technology for obtaining such sheets in
order to improve the quality and reduce the cost of products.
1. Formulation of the problem
The combination of different materials in a single product, known as a composite,
usually incorporates the best properties of each material into a single finished
product. An example of such a composite is aluminium alloy sheet reinforced with
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
210
steel netting. The aluminium is lightweight and highly resistant to corrosion whereas
the steel netting is strong and ductile. The properties and characteristics of such
compositions, including those obtained in the metal forming processes, are described
in [1]. In the United States, Patent [2] claims the methods of producing a metallic
material composite which involves assembling at least two stacked matrix layers of
relatively low-strength metal and one or more reinforcements in the form of wire or
net. This method involves a) placing a wire-wrapped aluminum sheet between two
additional aluminum sheets and rolling it at 400-450 °C; b) hot rolling a wire mesh
sheet placed diagonally between the two sheets of aluminium alloy; c) hot rolling a
multilayer composite of interwoven alternate matrix layers, meshes of woven
stainless steel and aluminium wires; and d) filling mesh cells with aluminium
spraying and rolling between the soft matrix sheets. Aside from production methods,
the results of mechanical and fatigue tests of obtained composites are also presented
in this patent. They show that all composites had an increased fatigue life, especially
with a diagonal net-reinforcement. However, in some experiments, the rolled
sandwiches showed a decreased level of strength and ductility in comparison to pure
matrix material. Unfortunately from study [2], the strain parameters of rolling and the
contraction of cross-sectional wiring remain unclear. Patent [3] describes the
elements of longitudinal steel wire reinforcing technology of an aluminium matrix
during rolling. The methodology begins with the formation of half-rounded
longitudinal grooves on the aluminium matrix surface. Steel wire is then placed in the
grooves of both matrices and rolled flat. The implementation of these methods avoids
significant strain in both the matrix and wiring. In our opinion however, this
technology lacks an additional pre-bonding operation in grooving matrices. In patent
[4] is described another way of reinforcing, which consist compounding and
subsequent rolling of transversally grooved aluminium matrix, with longitudinal steel
wires. This technology with a small rolling reduction provides higher contact
pressure between the matrix and the reinforcement, as well as between the matrix
layers. Its drawback however, is the high probability of a porous appearance inside
the finished sandwich. Authors claim that such porosity can be eliminated following
further deformation processes. Both technologies described in [3] and [4] require
compliance between the wire diameter and diameter of the groove for each material
pairing as well as the determination of strain-temperature conditions of process.
Numerous tests were devoted to investigating strain-temperature conditions at roll
bonding of flat products.
Experiment [5] analyzes the deformation of the longitudinal and transversal net
wires within a flat composite after rolling. Results of the experiment show that the
wire cross section changes in two ways during rolling: ovalisation (flattening) and
stretching. The set of these deformations depends on the position of wire in the
composition as well as on the strain parameters during rolling. The appearance of
carbon fibre breakages inside the twin-roll cast composite, presented in [6], also
reflect the importance of monitoring strain parameters during the composite’s
deformation.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
211
The implementation of the energy-saving twin-roll casting technology for
aluminium-steel clad strips allows a thin and uniform layer of intermetallic phases on
the materials interface of approximately 3 μm thickness with an adhesive strength of
over 70 MPa [7] to be obtained. Moreover, a good cold formability of the twin-roll
cast and consequently hot rolled clad strip of pure aluminium and austenitic steel is
shown in [8]. The results of the research on the roll bonding of two-layer (Al - Al)
and a three-layer (Al - steel - Al) compositions are described in [9]. It is shown that
the strain rate during rolling has no significant impact on the composite’s mechanical
properties. The main parameters are: contact pressure, temperature and strain. A
minor number of known studies is devoted to casting technologies, in particular twin-
roll casting, for manufacturing aluminium matrix composites reinforced with wires
and netting and to the evaluation of their properties. Section [10] describes process
parameters and upper limitations of wire diameter by twin-roll casting of net-
reinforced aluminium strips. At the same time, the contraction of cross-sectional
wiring due to the consequent rolling was not observed considerably. The devices for
feeding and positioning of the wires inside the composite during the twin-roll casting
are described in [11]. Thus, the current level of research shows that strain-
temperature parameters of roll bonding in a certain range can increase composite
properties without a preliminary grooving. Establishing this range is necessary in
understanding how the rolling parameters impact the contraction of reinforcing phase
and how they influence the composite’s properties.
The purpose of this work is to obtain quantitative data on the contraction of cross-
sectional wiring during the roll bonding of net-reinforced aluminium matrix
composites. Moreover, the study serves to evaluate the influence of changes in cross-
sectional wiring on the composite’s tensile strength.
2 Experimental
The flat composite consisting of two outer layers of aluminium alloy and a
stainless steel net in the core was manufactured by means of roll bonding. The
following aluminium alloys in the form of thin strips were used as a matrix material
of the composite:
● EN AW-5056 (Al-Mg system) in the annealed condition; the samples’
dimensions for the experimental roll bonding (h × b × l): 4 × 36 × 120 mm.
● EN AW-6063 (Al-Mg-Si system) in the annealed condition; the samples’
dimensions: (h × b × l) 3 × 36 × 120 mm.
The two types of the 90° fabric wire nets of stainless steel EN 1.4301 were used
as a reinforcement material:
● “A” – diameter of the net wire: 0.5 mm; size of square cell 3 × 3 mm;
● “B” – diameter of the net wire: 0.25 mm; size of square cell 1 × 1 mm.
For each of 4 materials pairs, three types of billets, preliminarily fastened in the
corners with aluminium rivets and forming so-called sandwiches, were prepared for
the subsequent roll bonding (See Fig. 1):
● Type 90 – the net wires oriented along and across the rolling direction.
● Type 45 – the net wires oriented at an angle of 45° (diagonally) to the rolling
direction.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
212
● Type 0 – without reinforcing net.
Figure 1 – Sandwich preparation scheme for the experiments on roll-bonding: RD – rolling
direction, hal- initial thickness of the aluminium strips
The rolling was carried out in one or two passes with a nominal reduction of 30%
in every pass with a preheating to the rolling temperature (see. Table 1) in a two-high
rolling stand with 250 mm diameter rolls. Rolling speed was 23.5 m/min.
The general experimental plan and parameters for the hot roll bonding of
aluminium strips reinforced with a steel net is presented in the Table 1.
Table 1 – The experiments on the hot roll bonding of net-reinforced aluminium composites
Matrix alloy Features
AW-5056 AW-6063
Net type А ● ●
Net type В ● ●
Sandwich type 90 ● ●
Sandwich type 45 ● ●
Samples
Sandwich type 0 ● ●
Rolling temperature 200 °С - ● Nominal reduction 30%
in a single pass ● -
Processing Nominal reduction 60%,
in two passes with
intermediate preheating
Rolling temperature 500 °С
- ●
Measurement of wires strain ● ●
Testing Quasi-static longitudinal tensile test ● ●
Legend to the Table 1:
● – experiments were performed
- – experiments were not performed
The only exception in the experimental series was roll-bonding of non-reinforced
sandwiches with AW-6063 matrix in one pass. In this case, the delamination of
sandwiches occurred immediately after rolling, possibly due to an insufficiently high
rolling temperature of 200 °C. Further analysis of this composite was impossible.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
213
After the roll bonding, the cross-sections of the manufactured composites in the
longitudinal and transversal (to the rolling direction) planes were made to analyze the
position and form of the wires in the matrix material. The cross-sections were
prepared using abrasive cutoff machine and a subsequent grinding with sandpaper up
to 4000 grit. The form and position of the wires in the cross-sections were analysed
and measured using a digital microscope Keyence VHX5000.
To analyze the net distortion of the sample’s length and width, one of the matrix
layers was removed to reveal the net fabric. For this purpose, one of the aluminium
layers was ground and subsequently chemically removed using 5%-solution of NaOH
until the net became visible. Photographs of the net inside the composite were taken
using digital microscope Keyence VHX5000.
To calculate strain values, the initial sandwich thickness h0 was interpreted as the
sum of thicknesses (2 × hal) of the aluminium matrix without factoring in the
thickness of the net fabric. The elongation factor μΣ for sandwich and finished
composites were defined as the ratio of their cross-sectional areas before (h0 × b0) and
after the rolling (h1 × b1). The longitudinal μwL
90 and transversal μwT
90 wire elongation
factors of the Type 90 composites were calculated as a ratio between the initial and
final areas of the wire projection on the transversal (across the rolling axis) and
longitudinal cross-sectional planes correspondingly. The ovalization of the wires in
this type of composite (Ow
90) was determined as a ratio of width bw to height hw (Fig.
2). The elongation factor μw
45 and wire ovalization Ow
45 for the Type 45 sandwich
were defined as analogous to the ones for Type 90. In this case however, the average
area of wire projections and the average width and height of the ovalized wire on the
longitudinal and transversal cross-section planes were used for the calculations. The
number of measured wires was 5-12 for the longitudinal and 3-7 for the composite’s
transversal plane.
Figure 2 – Scheme for the evaluation of elongation factor and ovalization of the wire inside the
Type 90 composite: RD - rolling direction; 1 – the longitudinal cross-sectional plane of the
composite; 2 - projection of the transversal wire (T) on the longitudinal plane; 3 – the transversal
cross-sectional plane of the composite; 4 - projection of the longitudinal wire (L) on the transversal
plane.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
214
In the Type 45 composite, the net elongation factor is not proportional to the wire
elongation factor. They are related via changing of cell angle. The net cell elongation
factor μccan be defined with a help of the scheme, presented in Fig. 3.
Figure 3 – Scheme for calculation of the net cell elongation factor for the net oriented diagonally to
the rolling axis: a – net cell before rolling; b – net cell after rolling; c0, d0 and α0 – respectively,
initial edge length, diagonal length and cell angle; c1, d1 and α1 – respectively, edge length, diagonal
length and cell angle after rolling.
According to Fig. 3: c1 = c0 × μw
45; where: μw
45 – the elongation factor of the
wires in Type 45 sandwiches. μw
45was calculated from the measured wire contraction
in cross sectional planes. The length of diagonal d1 can be calculated using the edge
length c1 and an angle α1 measured after the etching. The net cell elongation factor μc
is equal to the ratio d1/d0. Because the above mentioned local deformation in the wire
intersections is omitted during calculations, the net cell elongation factor is
overestimated by to 5-%-8%.
For the analysis of the mechanical properties, the standard (EN 6892-1:2009)
samples for uniaxial tensile tests were cut from the composite in as-rolled condition,
i.e. without heat treatment, along the rolling direction using spark erosion cutting.
Three samples with the width of the machined part of 12.5 mm and the width of the
gripped ends for the machine clamps equal to 18 mm were sampled from the
composite strips for each condition. The tensile tests were carried out on the universal
hydraulic testing machine MTS Landmark 250 using a tension speed of 4 mm/min.
As a result, the yield strength R0,2, the tensile strength Rm as well as two types of
elongation at fracture, A5(Rm) and A5, were measured for each specimen. A5(Rm) – is a
calculated value reflecting the sample non-proportional elongation at maximal stress;
A5 – is a measured total sample elongation after the test. For every condition, the
mean values of the properties measured from three specimens were taken for further
analysis. Images of the samples’ length during tension were also taken in equal time
intervals using a digital high-speed camera.
3. Results
3.1. General results. The explicit delamination of the sandwiches during the roll
bonding process, as well as at the outlet of the rolling stand were not observed for the
whole range of experiments. During the rolling, the wires rather uniformly filled the
length and width of the composite strips. No visible breaks or gaps were detected.
The chemical removal of one of the matrix layers revealed that the net cells inside the
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
215
composite were unevenly deformed (See Fig. 4). Thus for the Type 90 reinforcement,
the visible substantial bending of transversal wires in the central part of the
composite, as well as uneven increase in the distance between them was noticed.
(Fig. 4a). The analysis of the transversal wire distortion showed that the thicker “A”-
netting is more inclined to bending than the thinner-wire “B”-netting.
At the same time, rolling sandwiches with AW-5056 matrix at a temperature of
500°C results in less wire bending than the rolling of sandwich with AW-6063 matrix
at 200°C. The increase of the strain in the investigated range predictably leads to the
increased bend in transversal wires. The angle between the wires (See Fig. 4b) in the
Type 45 composite changed during rolling, but the wire contraction was still less than
the Type 90 composite.
Figure 4 – Examples of the net distortion in Type 90 (a) and Type 45 (b) composites after rolling:
RD – rolling direction.
Analysis of the net wires intersection area in Type 45 composite (See Fig. 5b)
shows that zones of a localized intensive deformation can be detected near these
intersections. Their appearance is caused by wire-to-wire compression and by the
simultaneous movement of these intersections towards the rolling direction due to the
axial tension and elongation of the whole composite.
Figure 5 – 3D reconstruction of the net (a) and the intersections of the net wire (b) inside the rolled
Type 45 composite. Marked areas – zones of the localized intensive deformation.
The digital microscope image presented in Fig. 5a is a 3D reconstruction of the
net inside the rolled Type 45 composite. Thus, rolling with a 30% nominal reduction,
the maximal deviation of the intersection angle α1 from α0 in ”A”-net was 12° and
13° for composites with AW-5056 and AW-6063 matrices respectively. For the “B”-
net, these values were equal to 16° for the both matrix materials. For the composite
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
216
with AW-6063 matrix, rolled in two passes, the intersection angle α changed on 32°
for the both net types.
3.2. Roll bonding of sandwiches with AW-5056 matrix. The main measured and
calculated strain parameters of this roll bonding series are presented in Table 2.
Table 2 – The strain parameters of rolling sandwiches with AW-5056 matrix.
Experiment
code*
eh eb el µΣ µc μw
45 µwL
90 µwQ
90 Ow
45 OwL
90 OwT
90 Fw, %
5056-A-90-30 -0.32 0.03 0.28 1.28 - - 1.44 1.08 - 1.13 1.07 2.90
5056-A-45-30 -0.38 0.07 0.34 1.37 1.49 1.36 - - 1.15 - - 3.29
5056-B-90-30 -0.37 0.07 0.31 1.35 - - 1.13 1.02 - 1.1 1.04 1.14
5056-B-45-30 -0.38 0.09 0.33 1.37 1.38 1.21 - - 1.08 - - 2.73
5056-0-0-30 -0.37 0.06 0.35 1.35 - - - - - - - -
Legend to Table 2:
* - The experiment code is: the type of the matrix alloy - net type - sandwich type - nominal
reduction at rolling;
eh, eb, el – true logarithmic strain over the height, width and length of the sample, respectively;
μΣ – elongation factor of the whole composite;
μc – elongation factor of the net cell;
μw
45 – wires elongation factor in Type 45 composite;
μwL
90 – longitudinal wires elongation factor in Type 90 composite;
μwT
90 – transversal wires elongation factor in Type 90 composite;
Ow
45 – wires ovalization after rolling in Type 45 composite;
OwL
90 – longitudinal wires ovalization after rolling in Type 90 composite;
OwT
90 – transversal wires ovalization after rolling in Type 90 composite;
Fw,% – part of the composite cross-section filled by the wires. It is calculated as a ratio of wires
projections areas (Fig. 2, Pos. 4) to the area of the composite cross section (Fig. 2, Pos. 3).
The true values of the elongation factor for the transversal wires μwT
90 are 2...4% lower, while the
values of ovalization OwT
90 are overestimated due to the fact that these wires bent during the
rolling and intersect the longitudinal plane at the angles that slightly differ from 90° (See. Fig.
4a).
The analysis of the rolling results shows that while straining of transversal wires
in the Type 90 composite almost did not occur, the longitudinal wires were intensely
strained. The elongation factor of the longitudinal wire μwL
90 which exceeds the
elongation factor of the whole composite μΣ indicates additional localized
deformation in net knots. In the case where the elongation factor of the longitudinal
wires μwL
90 is considerably smaller than the composite elongation μΣ, such as in
specimen 5056-B-90-30, wires breakage inside the sandwich could be indicated.
These assumptions were confirmed by the subsequent sample etching revealing the
net structure. This may be caused by the embrittlement of the stainless steel wire
during the heating at a temperature of 500 °C.
The smaller values of the wire elongation factor for the Type 45 sandwich μw
45 are
compensated for by altering the wire’s intersection angle. The angle changed to 12°
in the experiment 5056-A-45-30 which, together with the wire elongation factor μw
45
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
217
= 1.36, enabled net cell elongation factor results of µc = 1.49. The latter is greater
than the elongation factor of the whole sandwich µΣ = 1.37.
The net cell elongation factor for the experiment 5056-B-45-30 µc was equal to
1.38, which is larger than the elongation factor for the entire sandwich µΣ. This
finding indicates that there is a is relatively low probability of wire breakage in this
sandwich. Furthermore, this probability is lower in specimens with a “A”-net, than in
those with a “B”-net. Despite the elongation factor of the net cells µc = 1.38 being
greater than the total elongation factor of the sandwich µΣ = 1.37, the wires’ fracture
during rolling even occurred in the Type 45 sandwich. However, the development of
methods for a quantitative evaluation of wire fracture probability may be the purpose
of further research.
Using the same initial roll gap, the lowest reduction was achieved while rolling
Type 90 and Type 0 sandwiches. The highest reduction resulted from rolling Type 45
sandwiches. This indicates that the diagonally oriented net promotes the metal flow in
the core layer of the sandwich by reducing internal friction. This effect is greater for
the thinner wires (“B”-net). The sandwich with smaller cells, thinner wires and a
diagonal net orientation also show a greater widening when compared to specimens
with a longitudinally oriented “A”-net. However, it should be noted that the widening
in this experiment was insignificant.
3.3. Single-pass roll bonding of sandwiches with AW-6063 matrix. The main
strain parameters of this rolling series are presented in Table 3.
Table 3 – Strain parameters of rolling sandwiches with AW-6063 matrix with a nominal reduction
of 30%*.
Experiment
code
eh eb el µΣ µc μw
45 µwL
90 µwQ
90 Ow
45 OwL
90 OwT
90
Fw,
%
6063-A-90-30 -0.36 0.04 0.32 1.37 - - 1.68 1.3 - 1.25 1.04 2.51
6063-A-45-30 -0.35 0.05 0.33 1.35 1.49 1.35 - - 1.11 - - 4.35
6063-B-90-30 -0.36 0.03 0.34 1.39 - - 1.24 1.05 - 1.08 1.09 0.91
6063-B-45-30 -0.36 0.04 0.34 1.38 1.45 1.27 - - 1.1 - - 3.51
* - for legend see Table 2.
A more intensive deformation of wires can be seen in this experimental series
than with the composites based on AW-5056. Thus, the calculated stretching and
ovalization of wires have higher values. In all cases, the elongation factor of wire µw,
including extension of cells in Type 45 sandwiches, was greater than the total
elongation factor of the entire sandwich µΣ. This finding indicates that the wires in
the sandwich were not broken. The larger strain, compared to sandwiches with an
AW-5056 matrix, can be explained by the favourable temperature range for the wires
deformation. For the wire material, an austenitic stainless steel, the deformation
occurs in a range of temperatures around 200 °C, referred to as warm rolling [12]. In
Type 45 sandwiches, the cells’ diagonal length increased due to the cell
transformation from a square form to rhombus. The amounts increased by 1.49 and
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
218
1.45 times for the “A”-net and “B”-net respectively. The probability of wire fracture
in this case was minimal. Nevertheless, it is important to pay attention to minor
differences between part of the “A”-net and “B”-net wires in the cross-sectional area
of Type 45 composites.
3.4. Two-pass roll bonding of sandwiches with AW-6063 matrix. The rolling was
carried out in two passes with 30% of nominal reduction in the first pass and the total
nominal reduction of 60% after two passes. Strain parameters for this experimental
series are presented in Table 4.
Table 4 – Strain parameters of rolling sandwiches with AW-6063 matrix in two passes with a total
nominal reduction of 60%*
Experiment
code
eh eb el µΣ µc μw
45 µwL
90 µwQ
90 Ow
45 OwL
90 OwT
90
Fw,
%
6063-A-90-60 -0.74 0.10 0.69 1.90 - - 2.38 1.06 - 1.58 1.28 4.91
6063-A-45-60 -0.73 0.09 0.68 1.89 2.56 2.07 - - 1.47 - - 4.00
6063-B-90-60 -0.81 0.09 0.74 2.06 - 1.65 1.03 - 1.29 1.04 1.80
6063-B-45-60 -0.81 0.10 0.75 2.04 1.4 1.13 - - 1.26 - - 5.79
6063-0-60 -0.88 0.10 0.81 2.19 - - - - - - -
* - for legend see Table 2.
During the rolling process, the “B”-net was unable to withstand the high strain at
rolling and fractured as a result. This can be seen in the ratio between the elongation
factors of the net and composite, as well as from part of net in a cross-section of the
sandwich. Two-pass rolling showed a significant difference in the final size of the
samples rolled with the same roll gap. The sandwiches without a net were most
significantly deformed. Thus, the final thickness of Type 0 composite without the
net-reinforcement was 13% less than sandwiches reinforced with “A”-net.
Sandwiches with a “B”-net behaved like a non-reinforced composite in that the
broken net didn’t hinder the metal flow during rolling.
3.5. Results of tensile tests. Sandwiches with AW-5056 matrix.
Stress-strain curves obtained as a result of tensile tests of this composite type are
plotted in Fig. 6. The best mechanical properties among the net-reinforced
sandwiches were achieved by testing the 5056-A-45 composite. In this composite
however, elongation at fracture was lower than the non-reinforced strip 5056-0-30.
The reinforced composite 5056-B-45 showed slightly lower yield and tensile strength
than 5056-A-45, and at the same time possessed a better ductility, which is
comparable to one of the non-reinforced strips. It is worthy to note that the advanced
properties of the sandwiches with a “B”-net-reinforcement were obtained despite the
partial fracture of the reinforcing wires during rolling, as indicated by the elongation
factor μwL
90 which was smaller than μΣ (See Table 2). Testing of Type 90 composites
revealed their relatively low properties: the ultimate tensile strength and elongation at
fracture cannot reach the same characteristics measured in the non-reinforced 0-Type
strip.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
219
Figure 7 shows images of the samples taken during tensile testing directly prior to
and after fracture. Based on an observation of composite samples during tensile
testing, the mechanism of their fracture was established. It develops in the following
sequence:
1. Fracture of a single layer of the composite
2. Delamination of the composite layers
3. Fracture of the second layer of the composite
In this case, the delamination may be limited inside the area of one or several net
cells and does not occur throughout the sample length (See Fig. 7d).
3.6. Single-pass rolled sandwiches with AW-6063 matrix. The testing of the
composite with AW-6063 matrix, rolled in one pass, showed that its strength and
ductility are not strongly dependent on the type and orientation of the reinforcing
wire (See Fig. 8). The composite reinforced with a thicker “A”-net is generally
stronger. Additional strength can be achieved by means of longitudinal (Type 90) net-
reinforcement.
0 2 4 6 8 10 12 14 16 18
350
300
250
200
150
100
50
5056-A-90-30
5056-A-45-30
5056-B-90-30
5056-B-45-30
5056-0-30
Tensile strain in %
E
ng
in
ee
rin
g
st
re
ss
in
M
P
a
Figure 6 – Stress-strain curves of composites with AW-5056 matrix
Figure 7 – The images of the composite with AW-5056 matrix taken during tensile tests directly
before (upper picture) and after (lower picture) the fracture: a – Type 0; b – Type 90, “A”-net; c -
Type 45, “A”-net; d - Type 45, “B”-net.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
220
0 2 4 6 8 10 12
140
120
100
80
60
40
20
E
ng
in
ee
rin
g
st
re
ss
in
M
P
a
6063-A-90-30
6063-A-45-30
6063-B-90-30
6063-B-45-30
Tensile strain in %
Figure 8 – Stress-strain curves of composites with AW-6063 matrix
Contrary to the sandwiches with an AW-5056 matrix, an analysis of the fracture
mechanism in the AW-6063 matrix composite shows that under the initial tensile
loading, the delamination of matrix layers occurs prior to fracture (See Fig. 9).
Figure 9 – The images of the single-pass rolled composite with AW-6063 matrix, made
during tensile tests prior to their fracture: a – Type 90, “A”-net (the arrows indicate the necking
places of the aluminium matrix); b – Type 45, “A”-net.
Thus, the thinning of the aluminium matrix in Type 90 composite occurs at the
location of the transversal wires which serve as stress concentrators, especially after
the complete delamination of the composite. In Type 45 composites the role of stress
concentrators playsnet knots.
Two-pass rolled sandwiches with AW-6063 matrix. An analysis of tensile tests
results show that all reinforced Type 45 composites, when compared to non-
reinforced composites, have slightly higher tensile strength values (See Fig. 10). In
terms of reinforcing nets, the comparison of Type 45 composites shows that the
sandwiches with “A”-net-reinforcement have higher yield strength, and the ones
reinforced with “B”-net have higher ductility values. The strength and ductility of
Type 90 composites are 10%-15% and 35%-50% below this level, respectively.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
221
0 2 4 6 8 10 12
140
120
100
80
60
40
20E
ng
in
ee
rin
g
st
re
ss
in
M
P
a
Tensile strain in %
6063-A-90-60
6063-A-45-60
6063-B-90-60
6063-B-45-60
6063-0-60
Figure 10 – Stress-strain curves of composites with AW-6063 matrix rolled in two passes
The images captured prior to the fracture of tensile samples (See Fig. 11) show
that rolling in two passes provided the solid compound of aluminium matrix layers
with a proper bonding between them. There was no significant delamination observed
in any test performed.
Figure 11 – Images of two-pass rolled composites with an AW-6063 matrix taken during tensile
tests prior to the fracture (the arrows indicate the necking places of aluminium matrix): a - Type 0; b
–Type 45, “A”-net; c – Type 90, “B”-net, d – Type 45, “B”-net.
The main feature of the Type 45 composite, observed at its fracture, is a multiple
necking of the sample in the zones between net knots. Due to a strong bonding
between the matrix and reinforcing wires, these wires impede strain development. It
is also important to note that only a limited delamination in the Type 0 composite was
observed, while no delamination was observed in the reinforced Type 45 composite.
4. Discussion
The fact that visible delamination after deformation was not observed suggests the
possibility of producing the net-reinforced composites with a matrix of the studied
alloys by means of roll-bonding at temperatures of 200-500°C, with a total reduction
of about 30%.
It was established that the reduction in these roll bonding experiment is limited by
the strength of the reinforcing wire.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
222
The error in the determination of the logarithmic strain was 0.04%-4.63%, caused
by the unavoidable inaccuracy in the measuring of the composite length after rolling.
The error in the determination of the elongation factor, wire ovalization and
change of cross-sectional area is estimated as ± 3%.
For the majority of experiments, stretching was the main type of wire deformation
observed. However, a local reduction of the wires’ cross sectional area is observed in
the knots of their intersection, particularly for the “A”-net. The relation of ovalization
(flattening) to the stretching of the wires depends on the parameters of the
deformation zone at rolling. In particular, it depends on the reduction and rolls
diameter. The application of netting without intersecting knots can be a purpose for
further research.
The “A”-net was most intensely deformed in the Type 45 composite. To avoid
wire fracture in this type of composite, the elongation factor of cell diagonal μc should
be directly correlated with a total elongation factor of the composite μΣ. If the total
elongation factor of the composite μΣ is higher than the elongation factor of cell
diagonal μc, then there is a high probability of wire fracture. Furthermore, even if the
elongation factor of cell diagonal μc is the same or slightly higher than composite μΣ,
the probability of breakage remains. The balance of these factors requires further
clarification. The probability of wire fracture can be estimated as the correlation of
the elongation factors of composite and wires, considering a maximum possible
elongation for the material of current wire.
Longitudinal wires assume the main deformation in the Type 90 composite. The
elongation factor of wire μwL
90 should be directly correlated with the elongation factor
of the composite μΣ to predict the possible fracture of these wires.
In the “A”-net, the strain of longitudinal wires of the Type 90 composite is 29%-
33% higher than the strain of transversal wires, and does not depend on the matrix
material and reduction in the conducted experiments. This difference is about 10%-
60% for the “B”-net.
Wire ovalization largely depends on reduction at roll bonding. The ovalization of
transversal wires in the Type 90 composite is minimal; a moderate ovalization was
observed in the wires of Type 45 composite; and the maximum of this criterion was
reached by the longitudinal wires in Type 90 composite.
Deformation of transversal wires in the Type 90 composite occurs mainly due to
bending in the rolling direction. The ovalization of transversal wires was negligible
for the majority of experiments.
The Type 90 composite showed unsatisfactory results at the tensile tests. It could
be related to the exhaustion of plastic properties of the longitudinal wires at rolling,
and also to the fact that transversal wires serve as stress concentrators under the
tension.
Type 45 composite showed the best results in the tensile tests due to the low
stretching of wires at rolling.
Comparison of obtained results with calculated theoretical strength value for
reinforced composites shows that the latter was reached only once. The single
composite showing so high performance was 5056-A-45-30. The theoretical strength
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
223
was calculated proportionally to the part of composite cross-section filled by the
wires (Fw) taking into account estimated tensile strength of wire equal to 900 N/mm2
using the formula described in [13]. In Fig. 12 the chart showing the ratio of obtained
strength (Rm) to theoretical (Rm(T)) strength of rolled composites is presented. The
reasons for not reaching of the theoretical values during the experimental
investigations seem like a chain of following fails: stress concentration in the net
knots as well as near transversal wires; delamination; premature breakage of wires
and split of matrix with reinforcement due it`s geometrical distortion.
0.61
0.74
0.81
0.88 0.90 0.91
0.99 1.02
0
1
R m
/ R
m
(T
)
Figure 12 – Ratio of obtained strength (Rm) to theoretical (Rm(T)) strength of rolled composites
Wire fracture at rolling reduces the mechanical properties of the whole composite.
However in some cases, it also improves mechanical properties when compared to
non-reinforced composites. This suggests that composite’s strengthening results from
the net-reinforcement as well as from the local hardening of the aluminium matrix
induced by wires.
Depending on the wire distribution in the composite cross-section and on the
bonding strength in matrix-matrix and matrix-reinforcement interfaces, the fracture of
composite occurs by the following mechanisms:
Delamination → Fracture of layers (D-F). This mechanism occurs when the
composite has a low bonding strength in a matrix-matrix system, and also a relatively
small part of wires in the cross section of the composite (Fig. 13).
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
224
1 mm
Figure 13 – Example of “D-F” mechanism at composite`s tension
Fracture of the first layer → Limited delamination → Fracture of the second
layer (F1-D-F2). This mechanism is characteristic of the composite, in which the
part of transversal wires (relative to the tension axis) is small and the bonding
strength between matrix and reinforcement is higher than that between the matrix
layers. In this case, at the elastic return of the destroyed first layer, the reinforcement
“splits” the composite layers (Fig. 14).
1 mm
Figure 14 – Example of “F1-D-F2” mechanism at composite`s tension
Fracture without delamination (F). This mechanism is characteristic to the
composite with a high bonding strength in a matrix-matrix and matrix-reinforcement
interfaces as well as with a large part of wires in the cross section (Fig. 15).
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
225
1 mm
Figure 15 – Example of “F” mechanism at composite`s tension
These three main mechanisms change each other within development of rolling
stresses.
6. Conclusions and outlook
Improving properties of net-reinforced composites is limited due to an
accumulation of tensile strain on wires while rolling. Consequently, when combined
with an additional localized intensive compression on the net knots, this effect leads
to wire fracture and to an induced longitudinal tensile stress on the entire composite.
Thus, there is a contradiction between the strain required for proper bonding of
matrix layers (at a given temperature) and stress, induced by that strain, which causes
excessive tension on reinforcement wires. The most favorable results in the
longitudinal tensile tests were obtained using specimens with a reinforcing net placed
diagonally to the rolling axis. On our opinion, a longitudinal orientation of wires is
useless and a transversal orientation is dangerous due to the concentration of stress.
Parameters of the deformation zone while rolling play a significant role in the
distortion of wires inside the composite. The three types of composite fracture were
detected. Each of them depends on own composition of followed factors: the part of
wires in a cross section of the composite, properties of the wires, orientation of the
wires to the rolling axis, 4) properties of the matrix, 5) bonding strength on the net-
matrix and matrix-matrix interfaces.
___________________________________
REFERENCES
1. Portnoi KI, Salibekov SE, Svetlov IL [and others] (1979), "The structure and properties of composite
materials", Engineering,. Moscow, p. 255.
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
226
2. Forsyth PJ, Farnham S, George RW [and others] (1967), Composite metal structural components. – a
new method, USA,. Patent US3314825.
3. Gotoh, K. (1965), Process for making steel-reinforced aluminum members- a new method, USA,
Patent US3201862.
4. Cole DQ, Davis LRW and Sumner EV. (1971), Process for the production of aluminum-steel
composite.-a new method, USA, Patent US3551996.
5. Haga T, Takahashi K, Nakamura R [and others] (2010), "Roll casting of net inserted aluminum alloy
strip", Mater Form, 3,: 1063-1066.
6. Grydin O, Stolbchenko M,. and Schaper M. (2016), "Twin-Roll Casting of Carbon Fiber-Reinforced
and Glass Fiber-Reinforced Aluminum Strips", Light Metals, Published Online,
http://dx.doi.org/10.1002/9781119274780.ch168 (2016, 7 February 2016)
7. Grydin O, Gerstein G, Nürnberger F. [and others] (2013), "Twin-roll casting of aluminum-steel clad
strips", Journal of Manufacturing Processes; 15 (4):501-507,DOI: 10.1016/j.jmapro.2013.08.008
8. Stolbchenko M, Grydin O, Nürnberger F,. [and others] (2014),. "Sandwich rolling of twin-roll cast
aluminium-steel clad strips", Procedia Engineering; 81: 1541-1546, DOI: 10.1016/j.proeng.2014.10.187
9. Manesh HD and Shahabi HSh. (2009), "Effective parameters on bonding strength of roll bonded
Al/St/Al multilayer strips", Journal of Alloys and Compounds; 476: 292–299.
10. Haga T, Takahashi K, Nakamura R,. [and others] (2007),. "Casting of wire-inserted composite
aluminum alloy strip using a twin roll caster", Journal of Materials Processing Technology; 192–193: P.
108–113.
11. Haga T, Takahashi K, Kumai S,. [and others] (2011), "Casting of a wire inserted strip using a twin
roll caster equipped with two nozzlesb", Advanced Materials Research; 337:556-559.
12. Frolov YaV, Mamuzic I,. and Danchenko VN. (2006), "The heat conditions of the pilger rolling",
Metallurgia, 3: 179-184.
13. Heinrich W,. and Nixdorf J. (1971), "Die Faser- und Fadenverstärkung von plastischen und spröden
Matrixmaterialien", Materialwissenschaft und Werkstofftechnik, 2 (8): 398-405.
СПИСОК ЛИТЕРАТУРЫ
1. Структура и свойства композитных материалов / К.И. Портной, СюЕ. Салибеков, И.Л. Светлов
[и др]. – М: Строительство, 2000. – 255с.
2. Forsyth PJ, Farnham S, George RW [and others] (1967), Composite metal structural components. – a
new method, USA,. Patent US3314825.
3. Gotoh, K. (1965), Process for making steel-reinforced aluminum members- a new method, USA,
Patent US3201862.
4. Cole DQ, Davis LRW and Sumner EV. (1971), Process for the production of aluminum-steel
composite.-a new method, USA, Patent US3551996.
5. Haga T, Takahashi K, Nakamura R [and others] (2010), "Roll casting of net inserted aluminum alloy
strip", Mater Form, 3,: 1063-1066.
6. Grydin O, Stolbchenko M,. and Schaper M. (2016), "Twin-Roll Casting of Carbon Fiber-Reinforced
and Glass Fiber-Reinforced Aluminum Strips", Light Metals, Published Online,
http://dx.doi.org/10.1002/9781119274780.ch168 (2016, 7 February 2016)
7. Grydin O, Gerstein G, Nürnberger F. [and others] (2013), "Twin-roll casting of aluminum-steel clad
strips", Journal of Manufacturing Processes; 15 (4):501-507,DOI: 10.1016/j.jmapro.2013.08.008
8. Stolbchenko M, Grydin O, Nürnberger F,. [and others] (2014),. "Sandwich rolling of twin-roll cast
aluminium-steel clad strips", Procedia Engineering; 81: 1541-1546, DOI: 10.1016/j.proeng.2014.10.187
9. Manesh HD and Shahabi HSh. (2009), "Effective parameters on bonding strength of roll bonded
Al/St/Al multilayer strips", Journal of Alloys and Compounds; 476: 292–299.
10. Haga T, Takahashi K, Nakamura R,. [and others] (2007),. "Casting of wire-inserted composite
aluminum alloy strip using a twin roll caster", Journal of Materials Processing Technology; 192–193: P.
108–113.
11. Haga T, Takahashi K, Kumai S,. [and others] (2011), "Casting of a wire inserted strip using a twin
roll caster equipped with two nozzlesb", Advanced Materials Research; 337:556-559.
12. Frolov YaV, Mamuzic I,. and Danchenko VN. (2006), "The heat conditions of the pilger rolling",
Metallurgia, 3: 179-184.
13. Heinrich W,. and Nixdorf J. (1971), "Die Faser- und Fadenverstärkung von plastischen und spröden
Matrixmaterialien", Materialwissenschaft und Werkstofftechnik, 2 (8): 398-405.
http://dx.doi.org/10.1002/9781119274780.ch168 (2016�
http://dx.doi.org/10.1002/9781119274780.ch168 (2016�
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
227
________________________________________
About the authors
Makeeva Anna Sergeevna, Doctoral Student in Metal forming Department named by Acad. A.P.
Chekmaryov, National Metallurgical Academy of Ukraine (NMetAU), Dnepr, Ukraine, makeeva@metal-
forming.org
Frolov Yaroslav Viktorovich, Doctor of Technical Sciences (D.Sc.), Professor, Head of Metal forming
Department named by Acad. A.P. Chekmaryov, National Metallurgical Academy of Ukraine (NMetAU),
Dnepr, Ukraine, frolov@metal-forming.org
Stolbchenko Mikhail Yuryevich, Doctoral Student in Materials Science Department, Mechanical
Engineering Faculty, University of Paderborn, Paderborn, Germany, stolbchenko@lwk.upb.de
Grydin Aleksandr Yurievich, Doctor of Technical Science (D.Sc.), Professor, Chief Engineer in
Materials Science Department, Mechanical Engineering Faculty, University of Paderborn, Paderborn,
Germany, grydin@lwk.upb.de
Shaper Mirko, Doctor of Technical Science (D.Sc.), Professor, Head of Materials Science Department,
Mechanical Engineering Faculty, University of Paderborn, Paderborn, Germany, schaper@lwk.upb.de
Makeev Sergey Yurievich, Candidate of Technical Sciences (Ph.D), Senior Researcher, Senior
Researcher in Department of Mineral Mining at Great Depths, M.S. Polyakov Institute of Geotechnical
Mechanics under the National Academy of Sciences of Ukraine (IGTM NASU), Dnepr, Ukraine,
smakeev@ukr.net
Об авторах
Макеева Анна Сергеевна, аспирант кафедры обработки металлов давлением им. акад.
А.П.Чекмарева, Национальная металлургическая академия Украины (НМетАУ), Днепр, Украина,
makeeva@metal-forming.org
Фролов Ярослав Викторович, доктор технических наук, профессор, заведующий кафедрой
обработки металлов давлением им. акад. А.П.Чекмарева, Национальная металлургическая академия
Украины (НМетАУ), Днепр, Украина, frolov@metal-forming.org
Столбченко Михаил Юрьевич, аспирант кафедры материаловедения, факультет
машиностроения, Университет г. Падерборн, Падерборн, Федеративная Республика Германия,
stolbchenko@lwk.upb.de
Гридин Александр Юрьевич, доктор технических наук, профессор, главный инженер кафедры
материаловедения, факультет машиностроения, Университет г. Падерборн, Падерборн, Федеративная
Республика Германия, grydin@lwk.upb.de
Шапер Мирко, доктор технических наук, профессор, заведующий кафедрой материаловедения,
факультет машиностроения, Университет г. Падерборн, Падерборн, Федеративная Республика
Германия, schaper@lwk.upb.de
Макеев Сергей Юрьевич, кандидат технических наук, старший научный сотрудник, старший
научный сотрудник в отделе проблем разработки месторождений на больших глубинах, Институт
геотехнической механики им. Н.С. Полякова Национальной академии наук Украины (ИГТМ НАН
Украины), Днепр, Украина, smakeev@ukr.net
–––––––––––––––––––––––––––––––
Анотація. Статтю присвячено дослідженню технологічного процесу армування
алюмінієвих листів дротом для підвищення надійності обладнання для комплексної
підготовки газу. Скорочення працюючих вугільних шахт, змушує більше уваги приділяти
газовим і газоконденсатним родовищам. Перед подачею газу в трубопровід його обов'язково
очищають від різних домішок на спеціальних установках комплексної підготовки газу.
Застосовувана для цих цілей апаратура сепарації, абсорбції або адсорбційні колони та інше
обладнання повинні бути зносостійкими, легкими і витримувати високі навантаження.
Такими властивостями володіють армовані сіткою листи алюмінію. Актуальною є задача
вдосконалення технології отримання таких листів з метою поліпшення якості та зменшення
вартості виробів. У статті представлені результати експериментальних досліджень
параметрів деформації прокатки алюмінієвої матриці, коли дротова сітка вставлена між
шарами алюмінію. Під час експерименту два типи сітки з нержавіючої сталі, орієнтовані
паралельно і по діагоналі вздовж осі прокатки, містилися між двома алюмінієвими смужками
і прокатувалися. Проводилися процеси прокатки, в яких температура і тиск на матеріал
mailto:makeeva@metal-forming.org�
mailto:makeeva@metal-forming.org�
https://mail.ukr.net/classic#sendmsg,to=JW8eF2L79u8NtuReFWVX9ucwFXi5JWJ�
mailto:grydin@lwk.upb.de�
mailto:schaper@lwk.upb.de�
mailto:makeeva@metal-forming.org�
https://mail.ukr.net/classic#sendmsg,to=JW8eF2L79u8NtuReFWVX9ucwFXi5JWJ�
mailto:grydin@lwk.upb.de�
mailto:schaper@lwk.upb.de�
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2017. № 135
228
змінювалися для зв'язування матричних шарів. Це дослідження присвячене виміру
деформації на ділянках поздовжнього і поперечного перерізу; розтягування і овалізаціі сітки;
виміру змін в сітчастих кутах осередку; і випробуванню механічних властивостей композитів
вздовж напрямку прокатки. Основне протиріччя, що випливає з цього експерименту,
полягала в наступному: контактний тиск, необхідний для з'єднання шарів алюмінію, створює
екстремальну розтягувальну деформацію на вставлених сітчастих проводах, зменшуючи
механічні властивості армуючої сітки і, таким чином, зменшуючи властивості всього
композиту. Оптимальні результати в тестах поздовжнього натягу були досягнуті з
використанням смуг з діагонально орієнтованої сіткою. Дослідження, результати яких
наведені в даній статті, виконані в рамках спільного німецько-українського проекту
«Praxispartnershaft Metalurgie», що фінансується німецьким товариством академічних обмінів
DAAD.
Ключові слова: алюмінієва матриця, сталева сітка, армування, прокатка, відшарування,
механічні властивості.
Аннотация. Статья посвящена исследованию технологического процесса армирования
алюминиевых листов проволокой для повышения надежности оборудования для
комплексной подготовки газа. Сокращение работающих угольных шахт, вынуждает больше
внимания уделять газовым и газоконденсатным месторождениям. Перед подачей газа в
трубопровод его обязательно очищают от различных примесей на специальных установках
комплексной подготовки газа. Применяемая для этих целей аппаратура сепарации,
абсорбционные или адсорбционные колонны и другое оборудование должны быть
износостойкими, легкими и выдерживать высокие нагрузки. Такими свойствами обладают
армированные сеткой листы алюминия. Актуальной является задача совершенствования
технологий получения таких листов с целью улучшения качества и уменьшения стоимости
изделий. В статье представлены результаты экспериментальных исследований параметров
деформации прокатки алюминиевой матрицы, когда проволочная сетка вставлена между
слоями алюминия. Во время эксперимента два типа сетки из нержавеющей стали,
ориентированные параллельно и по диагонали вдоль оси прокатки, помещались между
двумя алюминиевыми полосками и прокатывались. Проводились процессы прокатки, в
которых температура и давление на материал изменялись для связывания матричных слоев.
Это исследование посвящено измерению деформации на участках продольного и
поперечного сечения; растяжению и овализации сетки; измерению изменений в сетчатых
углах ячейки; и испытанию механических свойств композитов вдоль направления прокатки.
Основное противоречие, вытекающее из этого эксперимента, заключалось в следующем:
контактное давление, требуемое для соединения слоев алюминия, создает экстремальную
растягивающую деформацию на вставленных сетчатых проводах, уменьшая механические
свойства армирующей сетки и, таким образом, уменьшая свойства всего композита.
Оптимальные результаты в тестах продольного натяжения были достигнуты с
использованием полос с диагонально ориентированной сеткой. Исследования, результаты
которых приведены в данной статье, выполнены в рамках совместного немецко-украинского
проекта «Praxispartnershaft Metalurgie», финансируемого немецким обществом
академических обменов DAAD.
Ключевые слова: алюминиевая матрица, стальная сетка, армирование, прокатка,
отслоение, механические свойства
Cтатья поступила в редакцию 3.09. 2017
Рекомендовано к печати д-ром техн. наук С.А. Курносовым
Sb 135.pdf
ОБОСНОВАНИЕ МЕТОДОВ И АЛГОРИТМОВ ОЦЕНКИ
СПИСОК ЛИТЕРАТУРЫ
REFERENCES
УДК 622.349.5.002.68:622.8
Рекомендовано к печати д-ром техн. наук Б.А. БлюссомУДК 622.7.069.002.5:[621.796:622.002.68].001.24
ОБҐРУНТУВАННЯ ТА РОЗРАХУНОК ПАРАМЕТРІВ ОБЛАДНАННЯ
PARAMETERS JUSTIFICATION AND CALCULATION FOR SEPARATOR DIVIDING WASHERY REFUSES INTO STREAMS WITH DIFFERENT CONCENTRATION
_______________________________________________________
Обоснование методов и алгоритмов оценки геомеханической безопасности ведения горных работ
|