Energy commitment: a planning of energy carrier based on energy consumption

Purpose. Energy consumption is one of the criteria for determining the quality of life in a country. Continued supply of energy and the possibility of long-term access to resources require a comprehensive plan. One of the key issues in the field of energy planning is energy carriers. In this paper,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Dehghani, M., Montazeri, Z., Malik, O.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут технічних проблем магнетизму НАН України 2019
Назва видання:Електротехніка і електромеханіка
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/159082
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Energy commitment: a planning of energy carrier based on energy consumption / M. Dehghani, Z. Montazeri, O.P. Malik // Електротехніка і електромеханіка. — 2019. — № 4. — С. 69-72. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-159082
record_format dspace
spelling irk-123456789-1590822019-09-23T01:25:58Z Energy commitment: a planning of energy carrier based on energy consumption Dehghani, M. Montazeri, Z. Malik, O.P. Електричні станції, мережі і системи Purpose. Energy consumption is one of the criteria for determining the quality of life in a country. Continued supply of energy and the possibility of long-term access to resources require a comprehensive plan. One of the key issues in the field of energy planning is energy carriers. In this paper, a new theory is introduced to energy network studies for planning of energy carriers called Energy Commitment. In this theory, an appropriate planning is applied for energy carriers based the final energy consumption. Energy carriers are available either naturally or after the energy conversion process. Energy commitment is modeled on an energy network with the presence of electrical energy, gas energy, transportation section, agriculture section, industrial section, residential section, commercial section, and general section. Цель. Потребление энергии является одним из критериев определения качества жизни в стране. Непрерывные поставки энергии и возможность долгосрочного доступа к ресурсам требуют комплексного плана. Одним из ключевых вопросов в области энергетического планирования являются энергоносители. В данной статье в исследования энергетических сетей для планирования энергоносителей вводится новая теория под названием Energy Commitment («энергетическое обязательство»). В этой теории для энергоносителей применяется соответствующее планирование на основе конечного потребления энергии. Энергоносители доступны либо естественным путем, либо после процесса преобразования энергии. Energy Commitment моделируется в энергетической сети с учетом электрической энергии, энергии газа, транспортной отрасли народного хозяйства, сельскохозяйственной отрасли, промышленного сектора экономики, жилищно-коммунального хозяйства, реального сектора экономики и прочих видов экономической активности. 2019 Article Energy commitment: a planning of energy carrier based on energy consumption / M. Dehghani, Z. Montazeri, O.P. Malik // Електротехніка і електромеханіка. — 2019. — № 4. — С. 69-72. — Бібліогр.: 25 назв. — англ. DOI: https://doi.org/10.20998/2074-272X.2019.4.10 2074-272X http://dspace.nbuv.gov.ua/handle/123456789/159082 621.3 en Електротехніка і електромеханіка Інститут технічних проблем магнетизму НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Електричні станції, мережі і системи
Електричні станції, мережі і системи
spellingShingle Електричні станції, мережі і системи
Електричні станції, мережі і системи
Dehghani, M.
Montazeri, Z.
Malik, O.P.
Energy commitment: a planning of energy carrier based on energy consumption
Електротехніка і електромеханіка
description Purpose. Energy consumption is one of the criteria for determining the quality of life in a country. Continued supply of energy and the possibility of long-term access to resources require a comprehensive plan. One of the key issues in the field of energy planning is energy carriers. In this paper, a new theory is introduced to energy network studies for planning of energy carriers called Energy Commitment. In this theory, an appropriate planning is applied for energy carriers based the final energy consumption. Energy carriers are available either naturally or after the energy conversion process. Energy commitment is modeled on an energy network with the presence of electrical energy, gas energy, transportation section, agriculture section, industrial section, residential section, commercial section, and general section.
format Article
author Dehghani, M.
Montazeri, Z.
Malik, O.P.
author_facet Dehghani, M.
Montazeri, Z.
Malik, O.P.
author_sort Dehghani, M.
title Energy commitment: a planning of energy carrier based on energy consumption
title_short Energy commitment: a planning of energy carrier based on energy consumption
title_full Energy commitment: a planning of energy carrier based on energy consumption
title_fullStr Energy commitment: a planning of energy carrier based on energy consumption
title_full_unstemmed Energy commitment: a planning of energy carrier based on energy consumption
title_sort energy commitment: a planning of energy carrier based on energy consumption
publisher Інститут технічних проблем магнетизму НАН України
publishDate 2019
topic_facet Електричні станції, мережі і системи
url http://dspace.nbuv.gov.ua/handle/123456789/159082
citation_txt Energy commitment: a planning of energy carrier based on energy consumption / M. Dehghani, Z. Montazeri, O.P. Malik // Електротехніка і електромеханіка. — 2019. — № 4. — С. 69-72. — Бібліогр.: 25 назв. — англ.
series Електротехніка і електромеханіка
work_keys_str_mv AT dehghanim energycommitmentaplanningofenergycarrierbasedonenergyconsumption
AT montazeriz energycommitmentaplanningofenergycarrierbasedonenergyconsumption
AT malikop energycommitmentaplanningofenergycarrierbasedonenergyconsumption
first_indexed 2025-07-14T11:39:39Z
last_indexed 2025-07-14T11:39:39Z
_version_ 1837622289139499008
fulltext Електричні станції, мережі і системи  ISSN 2074-272X. Електротехніка і Електромеханіка. 2019. №4 69 © M. Dehghani, Z. Montazeri, O.P. Malik UDC 621.3 doi: 10.20998/2074-272X.2019.4.10 M. Dehghani, Z. Montazeri, O.P. Malik ENERGY COMMITMENT: A PLANNING OF ENERGY CARRIER BASED ON ENERGY CONSUMPTION Purpose. Energy consumption is one of the criteria for determining the quality of life in a country. Continued supply of energy and the possibility of long-term access to resources require a comprehensive plan. One of the key issues in the field of energy planning is energy carriers. In this paper, a new theory is introduced to energy network studies for planning of energy carriers called Energy Commitment. In this theory, an appropriate planning is applied for energy carriers based the final energy consumption. Energy carriers are available either naturally or after the energy conversion process. Energy commitment is modeled on an energy network with the presence of electrical energy, gas energy, transportation section, agriculture section, industrial section, residential section, commercial section, and general section. References 25, tables 3. Key words: energy, energy commitment, energy carrier, energy consumption, unit commitment. Цель. Потребление энергии является одним из критериев определения качества жизни в стране. Непрерывные поставки энергии и возможность долгосрочного доступа к ресурсам требуют комплексного плана. Одним из ключевых вопросов в области энергетического планирования являются энергоносители. В данной статье в исследования энергетических сетей для планирования энергоносителей вводится новая теория под названием Energy Commitment («энергетическое обязательство»). В этой теории для энергоносителей применяется соответствующее планирование на основе конечного потребления энергии. Энергоносители доступны либо естественным путем, либо после процесса преобразования энергии. Energy Commitment моделируется в энергетической сети с учетом электрической энергии, энергии газа, транспортной отрасли народного хозяйства, сельскохозяйственной отрасли, промышленного сектора экономики, жилищно- коммунального хозяйства, реального сектора экономики и прочих видов экономической активности. Библ. 25, табл. 3. Ключевые слова: энергия, энергетическое обязательство, энергоноситель, энергопотребление, единичное обязательство. Introduction. Energy consumption is one of the criteria for determining the level of development and quality of life in a country [1]. If energy used properly and reasonably, it can in any country make progress in the science, technology and welfare of its people. Otherwise, it will cause irreparable economic losses and a massive economic downturn [2]. The energy consumption trend has been very fast and critical in recent years. Continued supply of energy and the possibility of long-term access to resources require a comprehensive energy planning, which is why energy planning is indisputable economic, national and strategic imperatives. One of the key issues in the field of energy planning is energy resources. Many studies is done on the power system such as: transformers [3], battery energy storage [4], distributed generation [5], energy [6]. One of the most important studies of electric power network is the issue of Unit Commitment (UC) [7]. UC is to determine the most appropriate electrical power generation pattern at power plants, firstly, to meet technical requirements, and then to be the most economical [8]. UC has been studied using various methods. The priority list method and dynamic programing are the first methods in UC [9]. In the Lagrange method, equal and unequal constraints were added to the objective function [10]. In [11] UC problem is investigated the in presence of FACTS devices and energy storage. In [12] UC problem is studied under cyber-attacks. In addition, evolutionary methods have been used for solving UC in recent years. In [13] a method is proposed based on the classical genetic algorithm. Integer-coded genetic algorithm in [14] is proposed. Researchers have also used other methods to solve the UC problem such as: Particle Swarm Optimization (PSO) [15], Teaching Learning Based Optimization (TLBO) [16], Gravitational Search Algorithm (GSA) [17] , Water Cycle Algorithm (WCA) [18] and Grey Wolf Optimization (GWO) [19], Whale Optimization Algorithm (WOA) [20]. Other algorithms are also suggested for UC solving [21-24]. Energy Commitment (EC) is to determine the most appropriate pattern for using energy resources to meet energy demand, firstly, to meet technical requirements, and secondly, to be the most economical. In other words, energy sources should be used as much as needed, if the energy sources are in line with the demand peak it will cost a lot. Therefore, EC reduces energy supply costs. This problem can be articulated mathematically, so that a function called F is defined as the objective function, which is equal to the total cost of supplying energy demand. In this case, the problem is to minimize F. Note that losses are discarded and there is no explicit mention of any exploitation restrictions in the issue. So:          ,... 1 321 1321 i s sNs s N i isN sss EFEF EFEFEFF     (1) where F is the objective function, Fi is the cost of i-th source, isE is the i-th kind of energy demand and Ns is the number of energy carriers. The above issue is an optimization problem that can be examined using appropriate methods. Problem Formulation. Energy grid modelling. The energy network consists of the following sections: transportation, agriculture, industrial, residential, commercial and general. In the energy grid, energy demand is calculated as a sum of sub networks of the grid: ,... 1 21    N i iNf ECECECECEC (2) where ECf is the final energy consumption, N is the number of different sections of energy consumption and ECi is the energy consumption of i-th section. 70 ISSN 2074-272X. Електротехніка і Електромеханіка. 2019. №4 Firstly, the final energy consumption matrix based on different sections is determined as   ,......211 T Ni ECECECECE  (3) where E1 is the final energy consumption matrix based on different sections. Now final energy consumption matrix based on different energy carriers is determined as ,12,12 ETE  (4) where E2 is the final energy consumption matrix based on different energy carriers and T1,2 is the transpose matrix of different sections to different energy carriers. Energy losses is modeled as ,23,23 ETE  (5) where E3 is the final energy consumption based on different energy carriers considering losses and T2,3 is the efficiency matrix. At this stage, electrical energy is converted into energy carriers. The electrical energy of different power plants is determined as ,euu ETE  (6) where Eu is the electrical energy of different power plants, Tu is the separation matrix of electricity generation by different power plants and Ee is the total electricity demand. Input fuel for different power plants is determined as ,,1 ufue ETE  (7) where 1e E is the input fuel for different power plant and Electrical manufacturer carriers is determined as , 12 , ecfe ETE  (8) where 2eE is the electrical manufacturer carriers and Tf,c is the conversion matrix of input fuel to energy carriers. After simulation of electrical energy, final energy consumption is calculated as , 234 ee EEEE  (9) where E4 is the final energy consumption after conversion of electrical energy. At this stage, the process of refining crude oil is simulated as , 1 ppp ETE  (10) where 1pE is the energy carriers produced by refining, Tp is the separation matrix of produced products from refining crude oil and Ep is the maximum capacity of refineries. After simulation of process of refining crude oil, final energy consumption is calculated as , 145 pp EEEE  (11) where E5 is the final energy consumption after refining crude oil. Actually E5 determines energy carriers in order to supply of energy demand. Test energy grid. EC is applied to energy grid with 10 power units. Electrical network information is adapted from [25]. Simulation. After modeling the energy network, EC is simulated on energy grid. The simulation results of EC on the energy grid studied are presented in Tables 1-3. In Table 1, dynamic scheduling results are presented with equal paths to the maximum number of states per hour of the study. The second path, (S2) is identified as an appropriate strategy. The cost of EC in this path is equal by 8,554,182 USD. The need for energy carriers to provide final energy consumption is specified in Table 2. The result of economic distribution of electrical energy is presented in Table 3. Table 1 The output result of dynamic planning in ten unit energy grids Strategy Hour S1 S2 S3 S 4 S5 S6 The initial state 2 2 2 2 2 2 1 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 5 3 3 3 3 3 3 6 4 4 4 4 4 4 7 4 4 4 4 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 10 9 9 9 9 9 9 11 10 10 10 10 10 10 12 10 10 10 10 10 10 13 10 10 10 10 10 10 14 9 9 9 9 9 9 15 9 9 9 9 9 9 16 9 9 9 9 9 9 17 9 9 9 9 9 9 18 9 9 9 9 9 9 19 9 9 9 9 9 9 20 9 9 9 9 9 9 21 4 4 4 4 9 9 22 3 3 4 4 6 9 23 3 3 4 4 6 7 24 2 3 4 5 6 7 Cost (USD) 8,555,398 8,554,182 8,554,502 8,557,153 8,557,192 8,557,932 ISSN 2074-272X. Електротехніка і Електромеханіка. 2019. №4 71 Table 2 The need of energy carriers in ten unit energy grids Hour 1 2 3 4 5 6 7 8 Petroleum 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 Liquid gas –19.404 –12.28471.95407 16.1928123.3121837.55091 44.67028 51.78965 Fuel oil –647.68 –612.154–539.254–466.355–429.906–354.657 –365.265 –350.552 Gas oil –470.252–426.903–340.182–253.46 –210.1 –123.351 –61.1345 –11.7441 Kerosene –143.154–127.065–94.8888–62.7124–46.6241–14.4476 1.640607 17.72885 Gasoline –7.0615234.16357116.6137199.0639240.289 322.7392 363.9642 405.1893 Plane fuel 30.9534433.1644 37.5863242.0082444.2192 48.64113 50.85209 53.06305 Natural gas 2519.4152699.7963065.9593432.1233615.2043988.239 4190.728 4380.603 Coke gas 15.5181516.6265818.8434621.0603422.1687824.38566 25.4941 26.60254 Coal 34.2986736.7485741.6483846.5481948.9981 53.89791 56.34781 58.79772 Hour 9 10 11 12 13 14 15 16 Petroleum 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 Liquid gas 66.0283980.2671387.3865 94.5058680.2671366.02839 51.78965 30.43155 Fuel oil –275.591–198.861–158.969–135.511–198.861–275.868 –350.552 –459.901 Gas oil 75.0014 161.7678205.169 260.843 161.767874.99814 –11.7441 –141.826 Kerosene 49.9053382.0818 98.17004114.258382.0818 49.90533 17.72885 –30.5359 Gasoline 487.6395570.0897611.3148652.5398570.0897487.6395 405.1893 281.5141 Plane fuel 57.4849761.9068964.1178566.3288161.9068957.48497 53.06305 46.43017 Natural gas 4752.7985130.1685323.32 5531.0335130.1684751.988 4380.603 3831.358 Coke gas 28.8194131.0362932.1447333.2531731.0362928.81941 26.60254 23.27722 Coal 63.6975368.5973471.0472473.4971468.5973463.69753 58.79772 51.448 Hour 17 18 19 20 21 22 23 24 Petroleum 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 3721.1 Liquid gas 23.3121837.5509151.7896580.2671366.0283937.55091 9.073439 –5.1653 Fuel oil –496.351–423.452–350.552–198.861–275.868–423.452 –548.095 –595.486 Gas oil –185.186–98.4652–11.7441161.767874.99813–98.4652 –277.548 –370.456 Kerosene –46.6241–14.447617.7288582.0818 49.90533–14.4476 –78.8006 –110.977 Gasoline 240.289 322.7392405.1893570.0897487.6395322.7392 157.8388 75.38865 Plane fuel 44.2192 48.6411353.0630561.9068957.4849748.64113 39.79728 35.37536 Natural gas 3648.2774014.44 4380.6035130.1684751.9884014.44 3278.051 2913.867 Coke gas 22.1687824.3856626.6025431.0362928.8194124.38566 19.9519 17.73502 Coal 48.9981 53.8979158.7977268.5973463.6975353.89791 44.09829 39.19848 Table 3 The electrical energy economical distribution within the energy grid H ou r U ni t 1 U ni t 2 U ni t 3 U ni t 4 U ni t 5 U ni t 6 U ni t 7 U ni t 8 U ni t 9 U ni t 1 0 1 420.9897 150 129.90540 0 0 0 0 0 0 2 455 165.9591130 0 0 0 0 0 0 0 3 455 266.087 130 0 0 0 0 0 0 0 4 455 366.2149130 0 0 0 0 0 0 0 5 455 416.2788130 0 0 0 0 0 0 0 6 455 455 130 61.406680 0 0 0 0 0 7 455 455 130 111.47060 0 0 0 0 0 8 454.5755 403.1555129.939520 25 78.9150125 10 54.949040 9 453.831 454.393 129.884740.5152425 79.9172725 38.19602 54.925220 10 454.8368 454.8779129.966 129.967525 79.9785575.69185 46.54565 54.990110 11 455 455 130 130 51.9821380 85 55 55 55 12 455 455 130 130 157.116480 85 55 55 55 13 455 455 130 130 25.8043580 85 55 55 31.11385 14 454.9096 455 130 130 25.1880380 25.09276 46.5999 55 0 15 446.8778 452.7482129.083420 25 42.3577225 10 50.467450 16 451.0978 260.4829129.572 20 25 75.6122625 10 54.577760 17 451.5645 209.902 129.481320 25 75.7485625 10 54.582480 18 455 401.2152130 20.1296325.0831580 25.04071 10.06585 55 0 19 455 455 130 130 25.1399780 25.03679 46.61355 55 0 20 453.5704 454.3342129.790670.7083525 79.8935325 10 53.365350 21 455 455 130 61.406680 0 0 0 0 0 22 455 316.1509130 0 0 0 0 0 0 0 23 455 216.023 130 0 0 0 0 0 0 0 24 455 216.023 130 0 0 0 0 0 0 0 Conclusions. Energy Commitment (EC) was introduced as a planning of energy carrier based on energy consumption. EC is to determine the most appropriate pattern for using energy resources to meet energy demand, firstly, to meet technical requirements, and secondly, to be the most economical. The energy grid including different sections was modeled in matrix form. EC was simulated on the one energy grid with ten power plants and result was 72 ISSN 2074-272X. Електротехніка і Електромеханіка. 2019. №4 presented. Different combinations of power plants are available to provide final energy consumption. Due to the different fuel inputs to each power plant, there are different combinations of energy carriers. The proper combination of energy carriers is determined to provide final energy consumption using the dynamic programming method. REFERENCES 1. Dehghani M., Montazeri Z., Ehsanifar A., Seifi A.R., Ebadi M.J., Grechko O.M. Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization. Electrical engineering & electromechanics, 2018, no.5, pp. 62-71. doi: 10.20998/2074-272X.2018.5.10. 2. Montazeri Z., Niknam T. Energy carriers management based on energy consumption. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017. doi: 10.1109/kbei.2017.8325036. 3. Ehsanifar A., Dehghani M., Allahbakhshi M. Calculating the leakage inductance for transformer inter-turn fault detection using finite element method. 2017 Iranian Conference on Electrical Engineering (ICEE), May 2017. doi: 10.1109/iraniancee.2017.7985256. 4. Dehbozorgi S., Ehsanifar A., Montazeri Z., Dehghani M., Seifi A. Line loss reduction and voltage profile improvement in radial distribution networks using battery energy storage system. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017. doi: 10.1109/kbei.2017.8324976. 5. Dehghani M., Mardaneh M., Montazeri Z., Ehsanifar A., Ebadi M.J., Grechko O.M. Spring search algorithm for simultaneous placement of distributed generation and capacitors. Electrical engineering & electromechanics, 2018, no.6, pp. 68- 73. doi: 10.20998/2074-272X.2018.6.10. 6. Montazeri Z., Niknam T. Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm. Electrical engineering & electromechanics, 2018, no.4, pp. 70-73. doi: 10.20998/2074- 272X.2018.4.12. 7. Shi J., Oren S.S. Stochastic Unit Commitment With Topology Control Recourse for Power Systems With Large-Scale Renewable Integration. IEEE Transactions on Power Systems, 2018, vol.33, no.3, pp. 3315-3324. doi: 10.1109/tpwrs.2017.2772168. 8. Gupta A., Anderson C.L. Statistical Bus Ranking for Flexible Robust Unit Commitment. IEEE Transactions on Power Systems, 2019, vol.34, no.1, pp. 236-245. doi: 10.1109/tpwrs.2018.2864131. 9. Yamin H.Y. Review on methods of generation scheduling in electric power systems. Electric Power Systems Research, 2004, vol.69, no.2-3, pp. 227-248. doi: 10.1016/j.epsr.2003.10.002. 10. Geoffrion A.M. Lagrangian Relaxation for Integer Programming. 50 Years of Integer Programming 1958-2008. Nov. 2009, pp. 243-281, doi:10.1007/978-3-540-68279-0_9. 11. Luburić Z., Pandžić H. FACTS devices and energy storage in unit commitment. International Journal of Electrical Power & Energy Systems, 2019, vol.104, pp. 311-325 doi: 10.1016/j.ijepes.2018.07.013. 12. Shayan H., Amraee T. Network Constrained Unit Commitment Under Cyber Attacks Driven Overloads. IEEE Transactions on Smart Grid, pp. 1–1, 2019. doi: 10.1109/tsg.2019.2904873. 13. Swarup K.S., Yamashiro S. Unit commitment solution methodology using genetic algorithm. IEEE Transactions on Power Systems, 2002, vol.17, no.1, pp. 87-91. doi: 10.1109/59.982197. 14. Damousis I.G., Bakirtzis A.G., Dokopoulos P.S. A Solution to the Unit-Commitment Problem Using Integer-Coded Genetic Algorithm. IEEE Transactions on Power Systems, 2004, vol.19, no.2, pp. 1165-1172. doi: 10.1109/tpwrs.2003.821625. 15. Anand H., Narang N., Dhillon J.S. Multi-objective combined heat and power unit commitment using particle swarm optimization. Energy, 2019, vol.172, pp. 794-807. doi: 10.1016/j.energy.2019.01.155. 16. Krishna P.V.R., Sao S. An Improved TLBO Algorithm to Solve Profit Based Unit Commitment Problem under Deregulated Environment. Procedia Technology, 2016, vol.25, pp. 652-659. doi: 10.1016/j.protcy.2016.08.157. 17. Barani F., Mirhosseini M., Nezamabadi-pour H., Farsangi M.M. Unit commitment by an improved binary quantum GSA. Applied Soft Computing, 2017, vol.60, pp. 180-189. doi: 10.1016/j.asoc.2017.06.051. 18. El-Azab H.-A.I., Swief R.A.-W., El-Amary N.H., Temraz H.K. Decarbonized Unit Commitment Applying Water Cycle Algorithm Integrating Plug-In Electric Vehicles. 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Dec. 2018. pp. 455-462. doi: 10.1109/mepcon.2018.8635152. 19. Srikanth K., Panwar L.K., Panigrahi B., Herrera-Viedma E., Sangaiah A.K., Wang G.-G. Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Computers & Electrical Engineering, 2018, vol.70, pp. 243-260. doi: 10.1016/j.compeleceng.2017.07.023. 20. Kumar V., Kumar D. Binary whale optimization algorithm and its application to unit commitment problem. Neural Computing and Applications, Oct. 2018, pp. 1-29, doi: 10.1007/s00521-018-3796-3. 21. Dehghani M., Montazeri Z., Dehghani A., Nouri N., Seifi A. BSSA: Binary spring search algorithm. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017. doi: 10.1109/kbei.2017.8324977. 22. Dehghani M., Montazeri Z., Dehghani A., Seifi A. Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke's law. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017. doi: 10.1109/kbei.2017.8324975. 23. Dehghani M., Montazeri Z., Malik O.P., Ehsanifar A., Dehghani A. OSA: Orientation Search Algorithm. International Journal of Industrial Electronics, Control and Optimization, 2019, vol.2, pp. 99-112. 24. Dehghani M., Mardaneh M., Malik O. FOA: Following Optimization Algorithm for solving power engineering optimization problems. Journal of Operation and Automation in Power Engineering, 2019. (Article in press). doi: 10.22098/JOAPE.2019.5522.1414. 25. Ebrahimi J., Hosseinian S.H., Gharehpetian G.B. Unit Commitment Problem Solution Using Shuffled Frog Leaping Algorithm. IEEE Transactions on Power Systems, 2011, vol.26, no.2, pp. 573-581. doi: 10.1109/tpwrs.2010.2052639. Received 19.04.2019 M. Dehghani1, Candidate of Power Engineering, PhD Student, Z. Montazeri1, Candidate of Power Engineering, PhD Student, O.P. Malik2, Doctor of Power Engineering, Professor, 1 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran, e-mail: adanbax@gmail.com, Z.Montazeri@sutech.ac.ir 2 Department of Electrical Engineering, University of Calgary, Calgary Alberta Canada e-mail: maliko@ucalgary.ca