Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell
The results on variable mechanisms of lithium action on generation of membrane potential (MP) oscillations in the Nitella cell are presented. Generating of several classes of oscillations, single and local impulses of the membrane potential depend strongly on the high lithium concentration in the nu...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Iнститут фізіології рослин і генетики НАН України
2015
|
Schriftenreihe: | Физиология растений и генетика |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/159478 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell / C.N. Radenovic, G.V. Maksimov, D.M. Grodzinskij // Физиология растений и генетика. — 2015. — Т. 47, № 1. — С. 3-14. — Бібліогр.: 34 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-159478 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1594782019-10-06T01:25:19Z Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell Radenovic, C.N. Maksimov, G.V. Grodzinskij, D.M. The results on variable mechanisms of lithium action on generation of membrane potential (MP) oscillations in the Nitella cell are presented. Generating of several classes of oscillations, single and local impulses of the membrane potential depend strongly on the high lithium concentration in the nutrient solution (LiCl concentration 10 mM), when the cell membrane is strongly excited. The assertion is that oscillations of the MP are caused by the total oscillatory transport processes for Li.⁺, K.⁺, Na.⁺ and Cl⁻ in cell membrane. The hypothesis on mechanisms of oscillatory transport processes of ions (Li.⁺, Na.⁺, K.⁺ and Cl⁻) expressed over different classes of oscillations, single and local impulses of the membrane potential across the excitable membrane of the Nitella cell is proposed. Изложены результаты исследования воздействия лития на осцилляции мембранного потенциала (МП) в клетках нителлы. Показано, что под влиянием высокой концентрации хлорида лития (10 мМ) возникает несколько классов осцилляций МП, включая единичные и локальные импульсы в случае сильного возбуждения клетки. Предполагается, что осцилляции МП, индуцируемые литием, обусловлены колебательным характером процессов транспорта Li.⁺, K.⁺, Na.⁺, Cl⁻ через клеточную мембрану. Предложена гипотеза, объясняющая механизмы колебательных процессов транспорта ионов (Li.⁺, Na.⁺, K.⁺ и Cl⁻) и наличие различных классов колебаний, а также возникновения единичных и локальных импульсов МП в возбудимой мембране клетки Nitella. Викладено результати дослідження дії літію на осциляції мембранного потенціалу (10 мМ) виникає кілька класів осциляцій МП, включно з поодинокими й локальними імпульсами в разі сильного збудження клітини. Припускається, що осциляції МП, індуковані літієм, зумовлені коливальним характером процесів транспорту Li.⁺, K.⁺, Na.⁺ і Cl⁻ через клітинну мембрану. Запропоновано гіпотезу, що пояснює механізми коливальних процесів транспорту іонів (Li.⁺, K.⁺, Na.⁺, Cl⁻) і наявність різних класів коливань, а також виникнення одиничних і локальних імпульсів МП у збудливій мембрані клітини Nitella. 2015 Article Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell / C.N. Radenovic, G.V. Maksimov, D.M. Grodzinskij // Физиология растений и генетика. — 2015. — Т. 47, № 1. — С. 3-14. — Бібліогр.: 34 назв. — англ. 2308-7099 http://dspace.nbuv.gov.ua/handle/123456789/159478 577.352 + 581.17 + 632.954 en Физиология растений и генетика Iнститут фізіології рослин і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The results on variable mechanisms of lithium action on generation of membrane potential (MP) oscillations in the Nitella cell are presented. Generating of several classes of oscillations, single and local impulses of the membrane potential depend strongly on the high lithium concentration in the nutrient solution (LiCl concentration 10 mM), when the cell membrane is strongly excited. The assertion is that oscillations of the MP are caused by the total oscillatory transport processes for Li.⁺, K.⁺, Na.⁺ and Cl⁻ in cell membrane. The hypothesis on mechanisms of oscillatory transport processes of ions (Li.⁺, Na.⁺, K.⁺ and Cl⁻) expressed over different classes of oscillations, single and local impulses of the membrane potential across the excitable membrane of the Nitella cell is proposed. |
format |
Article |
author |
Radenovic, C.N. Maksimov, G.V. Grodzinskij, D.M. |
spellingShingle |
Radenovic, C.N. Maksimov, G.V. Grodzinskij, D.M. Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell Физиология растений и генетика |
author_facet |
Radenovic, C.N. Maksimov, G.V. Grodzinskij, D.M. |
author_sort |
Radenovic, C.N. |
title |
Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell |
title_short |
Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell |
title_full |
Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell |
title_fullStr |
Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell |
title_full_unstemmed |
Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell |
title_sort |
mechanisms of lithium action on generation of membrane potential oscillations of the nitella cell |
publisher |
Iнститут фізіології рослин і генетики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/159478 |
citation_txt |
Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell / C.N. Radenovic, G.V. Maksimov, D.M. Grodzinskij // Физиология растений и генетика. — 2015. — Т. 47, № 1. — С. 3-14. — Бібліогр.: 34 назв. — англ. |
series |
Физиология растений и генетика |
work_keys_str_mv |
AT radenoviccn mechanismsoflithiumactionongenerationofmembranepotentialoscillationsofthenitellacell AT maksimovgv mechanismsoflithiumactionongenerationofmembranepotentialoscillationsofthenitellacell AT grodzinskijdm mechanismsoflithiumactionongenerationofmembranepotentialoscillationsofthenitellacell |
first_indexed |
2025-07-14T12:01:43Z |
last_indexed |
2025-07-14T12:01:43Z |
_version_ |
1837623677735141376 |
fulltext |
УДК 577.352 + 581.17 + 632.954
MECHANISMS OF LITHIUM ACTION ON GENERATION OF
MEMBRANE POTENTIAL OSCILLATIONS OF THE NITELLA CELL
Č.N. RADENOVIĆ1,2, G.V. MAKSIMOV3, D.M. GRODZINSKIJ4
1Maize Research Institute, Zemun Polje
1 Slobodana Bajica, 11080, Belgrade, Republic of Serbia
e-mail: radenovich@sbb.rs
2University of Belgrade,
1 Studentski Trg, 11000, Belgrade, Republic of Serbia
3Lomonosov Moscow State University
GSP-1, Leninskie Gory, 119991, Moscow, Russian Federation
4Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of
Ukraine
148 Acad. Zobolotnogo St., 03143, Kyiv, Ukraine
e-mail: dmgrod@gmail.com
The results on variable mechanisms of lithium action on generation of membrane
potential (MP) oscillations in the Nitella cell are presented. Generating of several clas-
ses of oscillations, single and local impulses of the membrane potential depend
strongly on the high lithium concentration in the nutrient solution (LiCl concentra-
tion 10 mM), when the cell membrane is strongly excited. The assertion is that oscil-
lations of the MP are caused by the total oscillatory transport processes for Li+, K+,
Na+ and Cl– in cell membrane. The hypothesis on mechanisms of oscillatory transport
processes of ions (Li+, Na+, K+ and Cl–) expressed over different classes of oscillations,
single and local impulses of the membrane potential across the excitable membrane of
the Nitella cell is proposed.
Key words: Nitella mucronata (A. Braun) F. Miquel, lithium, excitable membrane,
membrane potential, oscillation parameters, oscillatory transport of ions.
Lithium is alkaline earth metal, which occurs in nature in the form of diffe-
rent minerals or ions in minerals or sea water (140—270 ppb, parts per billion)
[7]. Particularly lithium in low concentrations (69—5760 ppb) found in plants,
planktons and invertebrates. Almost all tissues and tissue fluids of vertebrates
contain lithium (21—763 ppb). Marine organisms have tendency to accumu-
late lithium in greater concentrations [2]. The role of lithium in biological sys-
tems and at physiological conditions is not sufficiently studied. Recent nutri-
tional researches on mammals show that the consumption of lithium in the
rate of 1 mg per day provides health of organisms, and this fact suggests that
lithium can be regarded as an essential biomicroelement. It was found that a
low-dose lithium uptake promotes longevity in humans and metazoans [34]. In
medicine lithium in the form of Li-carbonate or Li-citrate is used to treat
bipolar disorder [3, 10, 16, 17]. This element is widely used in many industries
due to its special properties [15].
We revealed lithium-oscillations of the membrane potential (MP). The
method of biopotential recording by means of microelectrodes is used for study
ФИЗИОЛОГИЯ РАСТЕНИЙ И ГЕНЕТИКА. 2015. Т. 47. № 1
3
© Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ, 2015
a variable mechanism of action of lithium during generating of membrane
potential oscillations (MPO), and indirectly during the inducement of the
oscillatory lithium transport across the cell membrane of the Nitella [6, 7]. A
rhythmic fluctuation of the MP recorded using the certain improvement of this
method [26]. The first time, in 1976, some of the Nitella cell bioelectric
responses (change in ψm, membrane oscillations and single impulses) stimula-
ted by lithium were registered [20]. Somewhat later typical ψm oscillations were
registered [27] and then ψm oscillations caused by monovalent cations among
which Li+ had also been present were registered [2].
Results obtained in scarce previous studies are not sufficient to develop a
complete and complex idea of the oscillatory transport of Li+ in the membrane
of the Nitella cell and some new issues related to oscillatory membrane
processes have been aroused. It was found that Li+ was their inevitable indu-
cer, but not single [1, 9, 13, 28]. New issues are primarily related to various
oscillations of transport processes caused by effects of shocking levels of lithi-
um ions [2, 25].
The aim of this study was to investigate the different mechanisms of lithi-
um transport processes during MPO in the Nitella cell.
Methods
The Nitella and Chara (freshwater green algae of the family Characeae) have
been used as an object of studies on MPO induced by lithium. The greatest
number of experiments with actions of lithium was performed on the Nitella
mucronata (A. Braun) Miquel cells.
These cells are large (diameter: 0.6—1.0 mm, length: 40—80 mm) and
they are suitable for bioelectrochemical and electrophysiological studies.
Today, these green algae are considered as conventional model object for stu-
dies of complex membrane-transport processes [5, 9, 21, 22, 24, 25, 30].
Growing conditions, object preparations, treatment prior and during
measuring of ψm were described in previously published papers [2, 4, 27, 28].
The measurement of rhythmic and membrane bioelectric signals: single
impulses, sequences of impulses and different forms of MPO (ψm, mV) were
carried out by means of method of a microelectrode technique, which was also
previously described in principle and details in studies carried out by
Radenović, Penčić and Vuchinić [2, 4, 27, 28]. Scheme of an apparatus for
measuring the membrane potential shown in Fig. 1.
Results and discussion
The initial measurement of the equilibrium resting membrane potential (ψm,
mV) is generally accepted as a rule, for bioelectric (bioelectrochemical and
electrophysiological) measurements of MP of the Nitella cell. If its value ranges
from –80 mV to –150 mV the experiment on the membrane of the Nitella cell
can be continued. It is known that the value of the uniform resting membrane
potential (RMP) in the Nitella cell depends on a physiological state of the cell,
growing conditions, age as well as on the season of year [4].
There is a possibility to observe different classes of MPO, single and local
impulses (action potentials, AP) within numerous bioelectric studies [15]. In
order to recognise easily the MPO the following features are given: 1) local
impulse can occur in the initial part of the oscillation, under such conditions
it is clearly seen and easily registered; 2) single AP may become more regular
4
Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
and it can be simply registered; 3) sequences of AP occur often and they are
simply registered (in the literature, they are regarded as membrane potential
oscillations); 4) it has been shown that the membranes of Nitella cell are capa-
ble under effect of selected stimuli to generate local and single AP as well as
MPO [2, 27, 28].
Importantly, the oscillations in membrane of Nitella cell arise various
types in the same experimental conditions under influence of high lithium con-
centration.
This paper presents four examples of Li-oscillations of the membrane
potential.
1. Instantaneous generation of lithium-oscillations in the direction of mem-
brane potential depolarisation. Generation of lithium-MPO at depolarisation of
the membrane is manifested in the forms of six different classes (Fig. 2). The
MPO generation is explained by the effects of the increased concentration of
lithium (10 mM) in the presence of sodium (1 mM) and potassium (0.1 mM)
in the nutrient solution. Furthermore, the electrochemical gradient and the
electric potential gradient also affect the generation of lithium MPO. It stim-
ulates the formation of an electric field that pulls out the ions (Li+, Na+ and
K+) and in such a way, their transport is provided. The intensity and dynamics
of the Li+, Na+ and K+ transport processes are significantly depend on the
nature of movements of active molecules (proteins, lipids and pigments): rota-
tional, flip-flop and lateral diffusion. When the membrane is in a strongly
excited state the mentioned types of movements of active molecules and the
effects of ion gradients establish the interdependence of processes that exhibit
six different classes of oscillations. Therefore, the interdependence of process-
es of competitiveness of ions (Li+, Na+ and K+) in the overall transport
processes, the dominance of certain types of movements of active molecules
and the very excitable membrane, determine parameters and form of six class-
es of membrane potential oscillations.
The stated classes of Li-oscillations of the membrane potential are cha-
racterised by non-standard parameters (Tab. 1).
5
MECHANISMS OF LITHIUM ACTION
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
Fig. 1. Schematic diagram of the method of measurement of the membrane potential across the
Nitella cell applying the microelectrode technique:
ME1 — microelectrode in the vacuole; ME2 — microelectrode in the cell wall; RE — reference electrode;
A1 and A2 — amplifiers; REC — recorders
2. Delayed generation of lithium-oscillations in the direction of membrane
potential depolarisation. Delayed generation of lithium-MPO at membrane
depolarisation is presented in the form of three different classes (Fig. 3). They
are depended on the concentration gradients of competitive ions (Li+, Na+ and
K+) in transport processes. The certain classes of membrane potential oscillations
(ψm, mV) appear when dominance of particular types of movements of active
molecules (protein, lipids and pigments) are occurred. A gradual generation of
the equilibrium membrane potential (ψ1) in the direction of its repolarisation
(Fig. 3, c) preceedes the occurrence of membrane potential oscillations. It is
6
Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
Fig. 2. Six different classes of membrane potential oscillations. Instantaneous generation of lithi-
um-oscillations in the direction of membrane potential depolarisation triggered off by the exchange
of the standard solution for the LiCl solution of the shocking concentration of 10 mM
Symbols: standard solution (SR: 0.1 mM KCl + 1.0 mM NaCl), ψ1 — equilibrium membrane potential prior to
oscillating, ψ2 — equilibrium membrane potential generated by effects of Li after oscillating, ψos — class of mem-
brane potential oscillations established by effects of shocking LiCl concentration, arrows — indicate the moment
when SR was replaced with LiCl solution of the shocking concentration
a b
c d
e f
believed that Na+ causes such generation of ψ1. However ψos oscillations differ
from all three classes of membrane potential oscillations (ψm, mV).
These classes of cell lithium-MPO (Fig. 3) can be analysed through non-
standard parameters (Tab. 2).
3. Instantaneous generation of lithium-oscillations in the direction of mem-
brane potential repolarisation. Generation of lithium-MPO in the direction of
membrane potential repolarisation rarely occurs (Fig. 4). Therefore, the expla-
nation of this class of lithium-MPO is identical to those shown in Fig. 2 and
Fig. 3. Different physical and chemical conditions occurring in strongly
excitable membrane lead not so infrequently to interdependence of various
processes that move in the opposite direction. Such a state of interdependent
processes refers to both transport processes of ions (Li+, Na+ and K+) and fre-
quent changes in types of movements of active molecules first of all proteins.
Bearing in mind herein stated, it is possible to understand «anomalies» occur-
ring during generation of ψ2, and in the case of specific ψos oscillation pre-
sented in Fig. 4.
Lithium-MPO at the membrane potential repolarisation (Fig. 4) has the
following non-standard parameters: ψ1 = —20 mV, ψ2 = —130 mV, number
of impulses is five, duration of lithium-oscillations is 7 min and the type of
lithium-oscillation is irregular, asymmetric and undamped.
4. Instantaneous generation of lithium with the unaltered level of membrane
potential prior to and after oscillating. Generation of lithium-MPO with the
unaltered level of membrane potential prior to and after oscillating extremely
rarely occurs and it is depicted in Fig. 5. It was triggered off by the exchange
7
MECHANISMS OF LITHIUM ACTION
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
TABLE 1. Non-standard parameters of lithium-MPO in the direction of membrane potential
depolarisation
Non-standard parameters os
Figures
designations 1 2 Number of
impulses Duration of oscillation Type of oscillation
Fig. 2, a –155 –110 10 shorter than standard symmetric damped
Fig. 2, b –160 –60 10 shorter than standard asymmetric damped
Fig. 2, c –135 –55 18 within limits of standard symmetric / asymmetric
damped
Fig. 2, d –120 –40 28 longer than standard asymmetric damped
Fig. 2, e –150 –30 16 somewhat shorter than
standard
irregularly - symmetric
dumped
Fig. 2, f –90 –30 14 somewhat longer than
standard
differently damped
TABLE 2. Non-standard parameters of delayed generation of lithium-MPO
Non-standard parameters os
Figures
designations 1 2 Number of
impulses
Duration of
oscillation, min Type of oscillation
Fig. 3, a –95 –60 16 8 irregularly - asymmetric dumped
Fig. 3, b –120 –55 20 15 asymmetric dumped
Fig. 3, c –100 –60 8 10 irregularly - asymmetric dumped
of SR for the LiCl solution of a shocking concentration and has the following
non-standard parameters: ψ1 = —100 mV, ψ2 = —100 mV, number of impul-
ses is 8, duration of lithium-oscillation is 4 min and the type of lithium-oscil-
lation is less regular, asymmetric and damped.
Molecular mechanisms of effects of lithium are still insufficiently clarified
[14]. According to its ionic radius Li+ is the most similar to Mg2+ ion, which
suggests its possible competition with the activities of Mg2+ ion. It is believed
that Li+ ion can affect inactivation of enzyme GSK3 that can cause resetting
of the brain «circadian clock» [33]. Recently it has been suggested that lithi-
um could interact with NO regulatory pathway, which has a key role in the
nervous system [16]. It was also shown that lithium could interfere with ino-
sitol phosphatases, i.e. could inhibit inositol monophosphatase [14]. Further
consider that the Li+ ions interact with the transmembrane transport of univa-
8
Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
Fig. 3. Three different classes of membrane potential oscillations.
Delayed generation of lithium-oscillations in the direction of membrane potential depolarisation triggered off by
the exchange of SR for the LiCl solution of shocking concentration (10 mM). Symbols are the same as in Fig. 2
a
b
c
lent and bivalent cations in nerve cells due to its similarity with Na+, K+ and
Mg2+ (Tab. 3) [19].
Results obtained in the studies of oscillatory bioelectric signals (local
impulses, isolated single AP, sequence of local and single impulses and typical
oscillation of the membrane potential) are presented in this paper. These
results are only a smaller part of our long-term studies on total membrane
potential oscillations, and indirectly on oscillatory transport of ions (K+, Na+,
Ca2+, Li+ and Cl–) across excitable cell membrane [9, 21, 29, 31, 32]. This is
especially true for lithium-MPO of the membrane potential which is very spe-
cific and as such gives the possibility to analyze a number questions to which
answers are not yet known in details.
9
MECHANISMS OF LITHIUM ACTION
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
Fig. 4. Instantaneous generation of lithium-oscillations in the direction of membrane potential
repolarisation triggered off by the exchange of SR for the LiCl solution of the shocking concen-
tration of 10 mM. Symbols are the same as in Fig. 2.
Fig. 5. Instantaneous generation of lithium oscillations with the unaltered level of the equilibrium
membrane potential prior to and after oscillating triggered off by the exchange of SR for the LiCl
solution of the shocking concentration of 10 mM. Symbols are the same as in Fig. 2.
TABLE 3. Physical and chemical characteristics of Li, K, Na and Mg [19]
Characteristics Li K Na Mg
Atomic radius () 1.33 2.03 1.57 1.36
Ionic radius () 0.60 1.33 0.95 0.65
Hydrated radius () 3.40 2.32 2.76 4.67
Polarizing power (z/r2) 2.80 0.56 1.12 2.05
Electronegativity 1.0 0.80 0.9 1.0
Some parameters of lithium-MPO have already been studied [2, 9, 21,
22] and the following note that their use provides an opportunity to estab-
lish some correlation between oscillations in physical and biological systems
[8, 30]. These parameters are: basic level of the membrane potential oscil-
lations, impulse AP (the level up to which a membrane is depolarised du-
ring generation single or successive AP and the oscillation), amplitude of
single or successive impulses generated during the membrane potential oscil-
lation. The relationship of the amplitude of one AP with the amplitude of
the following or previous AP in the selected MPO, impulse interval (the
duration between two successive impulses) and other standard parameters
are given in Tab. 4 [2].
Special attention should be paid to the kinetics of single AP and the
kinetics of the oscillation of the membrane potential. The important issues are
not only a character of occurrence and behaviour of rhythms of bioelectric sig-
nals [13, 28, 29] but also effects of selected ions on generating membrane
potential oscillations [31, 32]. Above mentioned issues and parameters of MPO
are directly dependent on transport processes occurring across the very
excitable cell membrane [23].
Furthermore different types of movements of lipids, proteins, pigments
and other complex-bound structures contribute to the mechanisms of the
transport processes across the cell membrane [23]. These types of movements
within the membrane can be as follows: lateral movement (typical for lipids
and proteins), rotational movement (typical for proteins specialised for the ion
transport) and so-called flip-flop movement (typical for lipids and proteins that
regulate the ion transport from one side of excitable cell membrane to other).
When the degree of sensitivity to excitability of the cell membrane is high then
the variable types of movements of active molecules (lipids, proteins and other
molecules) are more significant in their intensity, dynamics and diversity,
which affects the total ion transport processes [8, 23] especially lithium trans-
port processes [1, 2, 5, 25].
As it is known transport of ions (including lithium) across the strongly
excitable cell membrane is characterised by passive and active ion transport
processes. Diffusion is considered as a dominant bearer of passive transport
processes in the very excitable membrane. It is expressed as a simple, limited
and facilitated diffusion. It is clear that there are at least three promoters of
the passive ion transport: concentration gradient, electrochemical potential
gradient and electric potential gradient (electrochemical potential includes
electric potential and concentration potential)
Results presented in this paper indicate that lithium-oscillations in the
direction of membrane potential depolarisation occur under particular condi-
tions (Fig. 2, Tab. 1). Moreover delayed generation of lithium-oscillations in
10
Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
TABLE 4. Standard parameters of membrane potential oscillations induced by effects of standard
concentrations of Li, Na and K on the membrane of the Nitella cell [2]
Ions Oscillation
duration (min)
Number of
impulses
Impulse amplitude
(mV)
Frequency
(imp/min)
Damping
factor
Li+ 11.7 13 39±14 1.44±0.6 1.195
K+ 1.9 6 39±19 3.62±1.4 2.153
Na+ 24.1 24 54±16 1.04±0.5 1.081
the direction of membrane potential depolarisation occurs (Fig. 3, Tab. 2).
Generation of lithium-oscillations in the direction of membrane potential
repolarisation also occurs (Fig. 4). It is interesting to mention that generation
of lithium oscillations with the unaltered level of the membrane potential
before and after oscillating also occurs (Fig. 5).
Based on the gained results and the discussion as well as on our overall
information on oscillatory processes induced by Li+, K+, Na+, NH4
+ and
Ca2+, we present the following hypothesis:
1). Lithium-oscillations (local and single impulses and other classes of
oscillations) in the membrane potential occur when the cell membrane is
strongly excited. Such membrane state as a rule is accompanied by the activ-
ities of ions K+, Na +, Li+ and Cl– that are not constant under such condi-
tions in subcellular components (vacuole, cytoplasm and cell wall).
2). The usual ion transport processes are disturbed under effects of lithi-
um: first of all diffusion (concentration gradient is altered), electrodiffusion
(electrochemical potential gradient is changed), biocurrents (electric potential
gradient is altered) and fluid flow (hydrostatic pressure gradient is modified).
The mentioned dynamic states determine the degree of excitability of the
strongly excitable cell membrane. Therefore when the cell membrane is strong-
ly excited local, single and complete membrane potential oscillations inevitably
occur. These oscillations occur in the form of certain classes but sometimes
they can appear in the form of different irregularities (chaos). At the same time
and under such conditions oscillating of active proteins starts in the cell mem-
brane, and they rhythmically, regularly, irregularly (state of chaos) induce the
transport of ions Na+, K+ and Li+ across the strongly excitable membrane
which takes an oscillatory regime. In such state transport processes of ions K+,
Na+ and Li+ adopt a co-operative character which induce conformational
changes of active ion channels that stretch and contract within the oscillatory
regime and thereby rhythmically modify transport ability of the excitable cell
membrane for ions of K+, Na+ and Li+.
3). Under such conditions, oscillatory changes occur in cell supplying and
thereby in supplying the very excitable membrane with energy: electric, osmo-
tic and chemical.
4). Moreover, the bonds between membrane transport processes and
metabolism are disturbed i.e. weakened. This is particularly related to weake-
ning of the self-regulation of the matter within each cell.
5). Rhythmic process in excitable cell depends on relation between slow
depolarisation and repolarisation processes after single action potential propa-
gation. Slow depolarisation connected with activation of Na- and Ca-mem-
brane potential depends on Na-pump activation. In Li case, possible all this
mechanisms play famous role. For example, when slow membrane depolarisa-
tion increases the frequency of rhythmic membrane potential oscillation
increases, but when slow membrane repolarisation increases — frequency
decreases.
Authors devote this paper to a memory and long remembrance of pre-
maturely deceased L.N. Vorobiev, Department of Biophysics, Faculty of
Biology, Lomonosov Moscow State University, Moscow, Russia.
1. Воробьев Л.Н., Раденович Ч., Хитров Я.А., Яглова Л.Г. Исследование скачков биопотен-
циалов при введении микроэлектрода в вакуоль клеток Nitella // Биофизика. — 1967. —
12, № 6. — P. 1016—1021.
11
MECHANISMS OF LITHIUM ACTION
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
2. Воробьев Л.Н., Су-Юнь Л., Раденович Ч. Регулирование ионного состава и биоэлектри-
ческих потенциалов клеток при изменении их внешней и внутренней среды // Физи-
ко-химические основы авторегуляции в клетках, 1968. — М.: Наука, 1968. — C. 143—
154.
3. Кольс О.Р., Максимов Г.В., Раденович Ч. Н. Биофизика ритмического возбуждения. —
M.: Изд-во Моск. ун-та им. Ломоносова, 1993. — 206 c.
4. Раденович Ч. Ритмические электрические сигналы у растений // Физиология и био-
химия культ. растений. — 1985. — 7, № 6. — C. 523—529.
5. Раденович Ч., Карева Л.А., Синюхин А.М. О различной природе ритмических колебаний
мембранного потенциала // Биофизика. — 1968. — 13. — С. 270—281.
6. Baldessarini R.J., Tondo L., Davis P. et al. Decreased risk of suicides and attempts during
long-term lithium treatment: A meta-analytic review // Bipolar Disord. — 2006. — 8. —
P. 625—639.
7. Chassard-Bouchaud C., Galle P., Escaig F., Miyawaki M. Bioaccumulation of lithium by marine
organisms in European, American and Asian coastal zones: microanalytic study using secon-
dary ion emission // C. R. Acad. Sci. — 1984. — 299. — P. 719—724.
8. Crichton R. (2008): Some Facts about Lithium. ENC Labs. — 1984. http://www.enclabs.com/
lithium.html. Retrieved 2010-10-15.
9. Damjanović Z., Radenović Č. Some implications of ringing bioelectrical response in Nitella
cels // Membranes, Transport. — Viena: Verlag der Wiener Medizinischen Academie, 1971. —
P. 441—445.
10. Einat H., Kofman O., Itkin O. et al. Augmentation of lithium's behavioral effect by inositol
uptake inhibitors // J. Neural Transm. — 1998. — 105, N 1. — P. 31—38.
11. Ebensperger A., Maxwell P., Moscoso C. The lithium industry: Its recent evolution and future
prospects // Resour. Policy. — 30, N 3. — 2005. — P. 218—231.
12. Ghasemi M., Raza M., Dehpour A.R. NMDA receptor antagonists augment antidepressant-like
effects of lithium in the mouse forced swimming test // J. Psychopharmacol. — 2010. — 24,
N 4. — P. 585—594.
13. Ghasemi M., Sadeghipour H., Mosleh A. Nitric oxide involvement in the antidepressant-like
effects of acute lithium administration in the mouse forced swimming test // Europ.
Neuropsychopharmacol. — 2008. — 18, N 5. — P. 323—332.
14. Ghasemi M., Sadeghipour H., Poorheidari G., Dehpour A.R. A role for nitrergic system in the
antidepressant-like effects of chronic lithium treatment in the mouse forced swimming test //
Behav. Brain Res. — 2009. — 200, N 1. — P. 76—82.
15. Klein P.S., Melton D.A. A molecular mechanism for the effect of lithium on development //
Proc. Natl. Acad. Sci. USA. — 1996. — 93, N 16. — P. 8455—8459.
16. Lassalles J.P., Hartmann A., Thellier M. Oscillation of the electric potential of frog skin under
the effect of Li+: experimental approach // J. Memb. Biol. — 1980. — 56, N 2. — P. 107—
119.
17. Radenović Č. Bioelektrične pojave biljnih sistema. — Beograd: Nolit, 1974. — 161 p.
18. Radenović Č. Some models of bioelectric response (changes in membrane potential, membrane
oscillations and individual impulses) caused by lithium concentrations in the membrane of the
living plant cells // Book of Abstracts, VII Yugoslav Symposium on Biophysics, November 11-
13, 1976, Bled, Slovenia, Yugoslavia. — 1976. — P. 23—24.
19. Radenović Č. Ritmični bioelektrični signali kod biljaka // U: Multidisciplinarne nauke i nji-
hova uloga u naučnotehničkom progresu. — Beograd: Centar za multidisciplinarne studije,
1982. — P. 89—103.
20. Radenović Č. Karakteristike nekih klasa oscilacija membranskog potencijala // Zb. rad. IX
Jugoslovenskog simpozijuma o elektrohemiji. — Dubrovnik, Jugoslavija. — 1985. — P. 78—
81.
21. Radenović Č. Transportni procesi kroz membranu // Savremena biofizika. — Beograd: Velarta,
1998. — P. 3—90.
22. Radenović Č. The mechanism of oscillatory ion transport and biopotential across the excited
cell membrane // Proc. Nat. Sci. Matica Srpska — 2001. — 100. — P. 91—104.
23. Radenović Č.N., Beljanski M.V., Maksmov G.V. et al. The mechanism of the NH4
+ ion oscil-
latory transport across the excitable cell membrane // Proc. Nat. Sci. Matica Srpska. —
2005. — 109. — P. 5—19.
24. Radenović Č., Beljanski M., Maksimova N., Maksimov G.V. Characteristics of lithium oscilla-
tory transport through excited biomembrane // Book of Proceedings of Physical Chemistry
Belgrade. — 2006. — P. 276—278.
25. Radenović Č.N., Penčić M. Oscillations bioelectriques dans des membranes de Nitella //
Physiol. Plant. — 1970. — 23. — P. 697—703.
26. Radenović Č., Vučinić Ž. Simultaneous measurement of the cell wall and the vacuoles during
the oscilltory response to the Nitella cell // Ibid. — 1976. — 37. — P. 207—212.
12
Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
27. Radenović Č., Vučinić Ž. Oscillations of the membrane potential // Period. Biol. — 1985. —
87, N 2. — P. 161—165.
28. Radenović Č., Vučinić Ž., Damjanović Z. Oscillations of the bioelectric potential across the
membranes of Nitella triggered by monovalent cations // Electrical phenomena at the
Biological Membrane Level, ed. By E. Roux. — Amsterdam: Elsevier Pub. Co., 1977. —
P. 25—32.
29. Vučinić Ž., Radenović Č., Damjanović Z. Oscillations of the vacuolar potential in Nitella //
Physiol. Plant. — 1987. — 44. — P. 181—186.
30. Vuksanovic V., Radenović Č., Beleslin B. Oscillatory phenomena, processes and mechanisms —
physical and biological analogy // Yugoslav. Physiol. Pharmacol. Acta. — 1998. — 34. —
P. 247—258.
31. Vuletić M., Radenović Č., Vučinić Ž. The role of calcium in the generation of membrane poten-
tial oscillations in Nitella cells // Gen. Physiol. Biophys. — 1987. — 6. — P. 203—207.
32. Vuletić M., Vucinic Z., Radenović Č. Electrogenic proton pump in Nitella and the effect of cal-
cium // Ibid. — 1985. — 4. — P. 195—200.
33. Yin L., Wang J., Klein P.S., Lazar M.A. Nuclear receptor Rev-erbalpha is a critical lithium-
sensitive component of the circadian clock // Science. — 2006. — 311, N 5763. — P. 1002—
1005.
34. Zarse K., Terao T., Tian J. et al. Low-dose lithium uptake promotes longevity in humans and
metazoans // Eur. J. Nutr. — 2011. — 50, N 5. — P. 387—389.
Received 14.07.14
МЕХАНИЗМЫ ВЛИЯНИЯ ЛИТИЯ НА ГЕНЕРАЦИЮ КОЛЕБАНИЙ МЕМБРАННОГО
ПОТЕНЦИАЛА В КЛЕТКАХ НИТЕЛЛЫ
Ч.Н. Раденович1,2, Г.В. Максимов3, Д.М. Гродзинский4
1Научно-исследовательский институт кукурузы, Земун Поле, Белград, Сербия
2Белградский университет, Сербия
3Московский государственный университет им. М.В. Ломоносова, Россия
4Институт клеточной биологии и генетической инженерии Национальной академии наук
Украины, Киев, Украина
Изложены результаты исследования воздействия лития на осцилляции мембранного по-
тенциала (МП) в клетках нителлы. Показано, что под влиянием высокой концентрации
хлорида лития (10 мМ) возникает несколько классов осцилляций МП, включая единичные
и локальные импульсы в случае сильного возбуждения клетки. Предполагается, что осцил-
ляции МП, индуцируемые литием, обусловлены колебательным характером процессов
транспорта Li+, K+, Na+, Cl– через клеточную мембрану. Предложена гипотеза, объясняю-
щая механизмы колебательных процессов транспорта ионов (Li+, Na+, K+ и Cl–) и нали-
чие различных классов колебаний, а также возникновения единичных и локальных им-
пульсов МП в возбудимой мембране клетки Nitella.
МЕХАНIЗМИ ВПЛИВУ ЛIТIЮ НА ГЕНЕРАЦІЮ ОСЦИЛЯЦIЙ МЕМБРАННОГО
ПОТЕНЦIАЛУ В КЛIТИНАХ НIТЕЛИ
Ч.Н. Раденович1,2, Г.В. Максимов3, Д.М. Гродзинський4
1Науково-дослідний інститут кукурудзи, Земун Поле, Белград, Сербія
2Белградський університет, Сербія
3Московський державний університет ім. М.В. Ломоносова, Росія
4Iнститут клітинної біології та генетичної інженерії Національної академії наук України,
Київ, Україна
Викладено результати дослідження дії літію на осциляції мембранного потенціалу
(МП) в клітинах нітели. Показано, що під впливом високої концентрації хлориду літію
13
MECHANISMS OF LITHIUM ACTION
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
(10 мМ) виникає кілька класів осциляцій МП, включно з поодинокими й локальними
імпульсами в разі сильного збудження клітини. Припускається, що осциляції МП,
індуковані літієм, зумовлені коливальним характером процесів транспорту Li+, K+, Na+ і
Cl– через клітинну мембрану. Запропоновано гіпотезу, що пояснює механізми
коливальних процесів транспорту іонів (Li+, K+, Na+, Cl–) і наявність різних класів
коливань, а також виникнення одиничних і локальних імпульсів МП у збудливій
мембрані клітини Nitella.
Ключові слова: Nitella mucronata (A. Braun) F. Miquel, літій, збудлива мембрана, мембран-
ний потенціал, параметри осциляцій, осциляційний транспорт іонів.
14
Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ
ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1
|