Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell

The results on variable mechanisms of lithium action on generation of membrane potential (MP) oscillations in the Nitella cell are presented. Generating of several classes of oscillations, single and local impulses of the membrane potential depend strongly on the high lithium concentration in the nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Radenovic, C.N., Maksimov, G.V., Grodzinskij, D.M.
Format: Artikel
Sprache:English
Veröffentlicht: Iнститут фізіології рослин і генетики НАН України 2015
Schriftenreihe:Физиология растений и генетика
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/159478
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell / C.N. Radenovic, G.V. Maksimov, D.M. Grodzinskij // Физиология растений и генетика. — 2015. — Т. 47, № 1. — С. 3-14. — Бібліогр.: 34 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-159478
record_format dspace
spelling irk-123456789-1594782019-10-06T01:25:19Z Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell Radenovic, C.N. Maksimov, G.V. Grodzinskij, D.M. The results on variable mechanisms of lithium action on generation of membrane potential (MP) oscillations in the Nitella cell are presented. Generating of several classes of oscillations, single and local impulses of the membrane potential depend strongly on the high lithium concentration in the nutrient solution (LiCl concentration 10 mM), when the cell membrane is strongly excited. The assertion is that oscillations of the MP are caused by the total oscillatory transport processes for Li.⁺, K.⁺, Na.⁺ and Cl⁻ in cell membrane. The hypothesis on mechanisms of oscillatory transport processes of ions (Li.⁺, Na.⁺, K.⁺ and Cl⁻) expressed over different classes of oscillations, single and local impulses of the membrane potential across the excitable membrane of the Nitella cell is proposed. Изложены результаты исследования воздействия лития на осцилляции мембранного потенциала (МП) в клетках нителлы. Показано, что под влиянием высокой концентрации хлорида лития (10 мМ) возникает несколько классов осцилляций МП, включая единичные и локальные импульсы в случае сильного возбуждения клетки. Предполагается, что осцилляции МП, индуцируемые литием, обусловлены колебательным характером процессов транспорта Li.⁺, K.⁺, Na.⁺, Cl⁻ через клеточную мембрану. Предложена гипотеза, объясняющая механизмы колебательных процессов транспорта ионов (Li.⁺, Na.⁺, K.⁺ и Cl⁻) и наличие различных классов колебаний, а также возникновения единичных и локальных импульсов МП в возбудимой мембране клетки Nitella. Викладено результати дослідження дії літію на осциляції мембранного потенціалу (10 мМ) виникає кілька класів осциляцій МП, включно з поодинокими й локальними імпульсами в разі сильного збудження клітини. Припускається, що осциляції МП, індуковані літієм, зумовлені коливальним характером процесів транспорту Li.⁺, K.⁺, Na.⁺ і Cl⁻ через клітинну мембрану. Запропоновано гіпотезу, що пояснює механізми коливальних процесів транспорту іонів (Li.⁺, K.⁺, Na.⁺, Cl⁻) і наявність різних класів коливань, а також виникнення одиничних і локальних імпульсів МП у збудливій мембрані клітини Nitella. 2015 Article Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell / C.N. Radenovic, G.V. Maksimov, D.M. Grodzinskij // Физиология растений и генетика. — 2015. — Т. 47, № 1. — С. 3-14. — Бібліогр.: 34 назв. — англ. 2308-7099 http://dspace.nbuv.gov.ua/handle/123456789/159478 577.352 + 581.17 + 632.954 en Физиология растений и генетика Iнститут фізіології рослин і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The results on variable mechanisms of lithium action on generation of membrane potential (MP) oscillations in the Nitella cell are presented. Generating of several classes of oscillations, single and local impulses of the membrane potential depend strongly on the high lithium concentration in the nutrient solution (LiCl concentration 10 mM), when the cell membrane is strongly excited. The assertion is that oscillations of the MP are caused by the total oscillatory transport processes for Li.⁺, K.⁺, Na.⁺ and Cl⁻ in cell membrane. The hypothesis on mechanisms of oscillatory transport processes of ions (Li.⁺, Na.⁺, K.⁺ and Cl⁻) expressed over different classes of oscillations, single and local impulses of the membrane potential across the excitable membrane of the Nitella cell is proposed.
format Article
author Radenovic, C.N.
Maksimov, G.V.
Grodzinskij, D.M.
spellingShingle Radenovic, C.N.
Maksimov, G.V.
Grodzinskij, D.M.
Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell
Физиология растений и генетика
author_facet Radenovic, C.N.
Maksimov, G.V.
Grodzinskij, D.M.
author_sort Radenovic, C.N.
title Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell
title_short Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell
title_full Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell
title_fullStr Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell
title_full_unstemmed Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell
title_sort mechanisms of lithium action on generation of membrane potential oscillations of the nitella cell
publisher Iнститут фізіології рослин і генетики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/159478
citation_txt Mechanisms of lithium action on generation of membrane potential oscillations of the Nitella cell / C.N. Radenovic, G.V. Maksimov, D.M. Grodzinskij // Физиология растений и генетика. — 2015. — Т. 47, № 1. — С. 3-14. — Бібліогр.: 34 назв. — англ.
series Физиология растений и генетика
work_keys_str_mv AT radenoviccn mechanismsoflithiumactionongenerationofmembranepotentialoscillationsofthenitellacell
AT maksimovgv mechanismsoflithiumactionongenerationofmembranepotentialoscillationsofthenitellacell
AT grodzinskijdm mechanismsoflithiumactionongenerationofmembranepotentialoscillationsofthenitellacell
first_indexed 2025-07-14T12:01:43Z
last_indexed 2025-07-14T12:01:43Z
_version_ 1837623677735141376
fulltext УДК 577.352 + 581.17 + 632.954 MECHANISMS OF LITHIUM ACTION ON GENERATION OF MEMBRANE POTENTIAL OSCILLATIONS OF THE NITELLA CELL Č.N. RADENOVIĆ1,2, G.V. MAKSIMOV3, D.M. GRODZINSKIJ4 1Maize Research Institute, Zemun Polje 1 Slobodana Bajica, 11080, Belgrade, Republic of Serbia e-mail: radenovich@sbb.rs 2University of Belgrade, 1 Studentski Trg, 11000, Belgrade, Republic of Serbia 3Lomonosov Moscow State University GSP-1, Leninskie Gory, 119991, Moscow, Russian Federation 4Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Acad. Zobolotnogo St., 03143, Kyiv, Ukraine e-mail: dmgrod@gmail.com The results on variable mechanisms of lithium action on generation of membrane potential (MP) oscillations in the Nitella cell are presented. Generating of several clas- ses of oscillations, single and local impulses of the membrane potential depend strongly on the high lithium concentration in the nutrient solution (LiCl concentra- tion 10 mM), when the cell membrane is strongly excited. The assertion is that oscil- lations of the MP are caused by the total oscillatory transport processes for Li+, K+, Na+ and Cl– in cell membrane. The hypothesis on mechanisms of oscillatory transport processes of ions (Li+, Na+, K+ and Cl–) expressed over different classes of oscillations, single and local impulses of the membrane potential across the excitable membrane of the Nitella cell is proposed. Key words: Nitella mucronata (A. Braun) F. Miquel, lithium, excitable membrane, membrane potential, oscillation parameters, oscillatory transport of ions. Lithium is alkaline earth metal, which occurs in nature in the form of diffe- rent minerals or ions in minerals or sea water (140—270 ppb, parts per billion) [7]. Particularly lithium in low concentrations (69—5760 ppb) found in plants, planktons and invertebrates. Almost all tissues and tissue fluids of vertebrates contain lithium (21—763 ppb). Marine organisms have tendency to accumu- late lithium in greater concentrations [2]. The role of lithium in biological sys- tems and at physiological conditions is not sufficiently studied. Recent nutri- tional researches on mammals show that the consumption of lithium in the rate of 1 mg per day provides health of organisms, and this fact suggests that lithium can be regarded as an essential biomicroelement. It was found that a low-dose lithium uptake promotes longevity in humans and metazoans [34]. In medicine lithium in the form of Li-carbonate or Li-citrate is used to treat bipolar disorder [3, 10, 16, 17]. This element is widely used in many industries due to its special properties [15]. We revealed lithium-oscillations of the membrane potential (MP). The method of biopotential recording by means of microelectrodes is used for study ФИЗИОЛОГИЯ РАСТЕНИЙ И ГЕНЕТИКА. 2015. Т. 47. № 1 3 © Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ, 2015 a variable mechanism of action of lithium during generating of membrane potential oscillations (MPO), and indirectly during the inducement of the oscillatory lithium transport across the cell membrane of the Nitella [6, 7]. A rhythmic fluctuation of the MP recorded using the certain improvement of this method [26]. The first time, in 1976, some of the Nitella cell bioelectric responses (change in ψm, membrane oscillations and single impulses) stimula- ted by lithium were registered [20]. Somewhat later typical ψm oscillations were registered [27] and then ψm oscillations caused by monovalent cations among which Li+ had also been present were registered [2]. Results obtained in scarce previous studies are not sufficient to develop a complete and complex idea of the oscillatory transport of Li+ in the membrane of the Nitella cell and some new issues related to oscillatory membrane processes have been aroused. It was found that Li+ was their inevitable indu- cer, but not single [1, 9, 13, 28]. New issues are primarily related to various oscillations of transport processes caused by effects of shocking levels of lithi- um ions [2, 25]. The aim of this study was to investigate the different mechanisms of lithi- um transport processes during MPO in the Nitella cell. Methods The Nitella and Chara (freshwater green algae of the family Characeae) have been used as an object of studies on MPO induced by lithium. The greatest number of experiments with actions of lithium was performed on the Nitella mucronata (A. Braun) Miquel cells. These cells are large (diameter: 0.6—1.0 mm, length: 40—80 mm) and they are suitable for bioelectrochemical and electrophysiological studies. Today, these green algae are considered as conventional model object for stu- dies of complex membrane-transport processes [5, 9, 21, 22, 24, 25, 30]. Growing conditions, object preparations, treatment prior and during measuring of ψm were described in previously published papers [2, 4, 27, 28]. The measurement of rhythmic and membrane bioelectric signals: single impulses, sequences of impulses and different forms of MPO (ψm, mV) were carried out by means of method of a microelectrode technique, which was also previously described in principle and details in studies carried out by Radenović, Penčić and Vuchinić [2, 4, 27, 28]. Scheme of an apparatus for measuring the membrane potential shown in Fig. 1. Results and discussion The initial measurement of the equilibrium resting membrane potential (ψm, mV) is generally accepted as a rule, for bioelectric (bioelectrochemical and electrophysiological) measurements of MP of the Nitella cell. If its value ranges from –80 mV to –150 mV the experiment on the membrane of the Nitella cell can be continued. It is known that the value of the uniform resting membrane potential (RMP) in the Nitella cell depends on a physiological state of the cell, growing conditions, age as well as on the season of year [4]. There is a possibility to observe different classes of MPO, single and local impulses (action potentials, AP) within numerous bioelectric studies [15]. In order to recognise easily the MPO the following features are given: 1) local impulse can occur in the initial part of the oscillation, under such conditions it is clearly seen and easily registered; 2) single AP may become more regular 4 Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 and it can be simply registered; 3) sequences of AP occur often and they are simply registered (in the literature, they are regarded as membrane potential oscillations); 4) it has been shown that the membranes of Nitella cell are capa- ble under effect of selected stimuli to generate local and single AP as well as MPO [2, 27, 28]. Importantly, the oscillations in membrane of Nitella cell arise various types in the same experimental conditions under influence of high lithium con- centration. This paper presents four examples of Li-oscillations of the membrane potential. 1. Instantaneous generation of lithium-oscillations in the direction of mem- brane potential depolarisation. Generation of lithium-MPO at depolarisation of the membrane is manifested in the forms of six different classes (Fig. 2). The MPO generation is explained by the effects of the increased concentration of lithium (10 mM) in the presence of sodium (1 mM) and potassium (0.1 mM) in the nutrient solution. Furthermore, the electrochemical gradient and the electric potential gradient also affect the generation of lithium MPO. It stim- ulates the formation of an electric field that pulls out the ions (Li+, Na+ and K+) and in such a way, their transport is provided. The intensity and dynamics of the Li+, Na+ and K+ transport processes are significantly depend on the nature of movements of active molecules (proteins, lipids and pigments): rota- tional, flip-flop and lateral diffusion. When the membrane is in a strongly excited state the mentioned types of movements of active molecules and the effects of ion gradients establish the interdependence of processes that exhibit six different classes of oscillations. Therefore, the interdependence of process- es of competitiveness of ions (Li+, Na+ and K+) in the overall transport processes, the dominance of certain types of movements of active molecules and the very excitable membrane, determine parameters and form of six class- es of membrane potential oscillations. The stated classes of Li-oscillations of the membrane potential are cha- racterised by non-standard parameters (Tab. 1). 5 MECHANISMS OF LITHIUM ACTION ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 Fig. 1. Schematic diagram of the method of measurement of the membrane potential across the Nitella cell applying the microelectrode technique: ME1 — microelectrode in the vacuole; ME2 — microelectrode in the cell wall; RE — reference electrode; A1 and A2 — amplifiers; REC — recorders 2. Delayed generation of lithium-oscillations in the direction of membrane potential depolarisation. Delayed generation of lithium-MPO at membrane depolarisation is presented in the form of three different classes (Fig. 3). They are depended on the concentration gradients of competitive ions (Li+, Na+ and K+) in transport processes. The certain classes of membrane potential oscillations (ψm, mV) appear when dominance of particular types of movements of active molecules (protein, lipids and pigments) are occurred. A gradual generation of the equilibrium membrane potential (ψ1) in the direction of its repolarisation (Fig. 3, c) preceedes the occurrence of membrane potential oscillations. It is 6 Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 Fig. 2. Six different classes of membrane potential oscillations. Instantaneous generation of lithi- um-oscillations in the direction of membrane potential depolarisation triggered off by the exchange of the standard solution for the LiCl solution of the shocking concentration of 10 mM Symbols: standard solution (SR: 0.1 mM KCl + 1.0 mM NaCl), ψ1 — equilibrium membrane potential prior to oscillating, ψ2 — equilibrium membrane potential generated by effects of Li after oscillating, ψos — class of mem- brane potential oscillations established by effects of shocking LiCl concentration, arrows — indicate the moment when SR was replaced with LiCl solution of the shocking concentration a b c d e f believed that Na+ causes such generation of ψ1. However ψos oscillations differ from all three classes of membrane potential oscillations (ψm, mV). These classes of cell lithium-MPO (Fig. 3) can be analysed through non- standard parameters (Tab. 2). 3. Instantaneous generation of lithium-oscillations in the direction of mem- brane potential repolarisation. Generation of lithium-MPO in the direction of membrane potential repolarisation rarely occurs (Fig. 4). Therefore, the expla- nation of this class of lithium-MPO is identical to those shown in Fig. 2 and Fig. 3. Different physical and chemical conditions occurring in strongly excitable membrane lead not so infrequently to interdependence of various processes that move in the opposite direction. Such a state of interdependent processes refers to both transport processes of ions (Li+, Na+ and K+) and fre- quent changes in types of movements of active molecules first of all proteins. Bearing in mind herein stated, it is possible to understand «anomalies» occur- ring during generation of ψ2, and in the case of specific ψos oscillation pre- sented in Fig. 4. Lithium-MPO at the membrane potential repolarisation (Fig. 4) has the following non-standard parameters: ψ1 = —20 mV, ψ2 = —130 mV, number of impulses is five, duration of lithium-oscillations is 7 min and the type of lithium-oscillation is irregular, asymmetric and undamped. 4. Instantaneous generation of lithium with the unaltered level of membrane potential prior to and after oscillating. Generation of lithium-MPO with the unaltered level of membrane potential prior to and after oscillating extremely rarely occurs and it is depicted in Fig. 5. It was triggered off by the exchange 7 MECHANISMS OF LITHIUM ACTION ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 TABLE 1. Non-standard parameters of lithium-MPO in the direction of membrane potential depolarisation Non-standard parameters os Figures designations 1 2 Number of impulses Duration of oscillation Type of oscillation Fig. 2, a –155 –110 10 shorter than standard symmetric damped Fig. 2, b –160 –60 10 shorter than standard asymmetric damped Fig. 2, c –135 –55 18 within limits of standard symmetric / asymmetric damped Fig. 2, d –120 –40 28 longer than standard asymmetric damped Fig. 2, e –150 –30 16 somewhat shorter than standard irregularly - symmetric dumped Fig. 2, f –90 –30 14 somewhat longer than standard differently damped TABLE 2. Non-standard parameters of delayed generation of lithium-MPO Non-standard parameters os Figures designations 1 2 Number of impulses Duration of oscillation, min Type of oscillation Fig. 3, a –95 –60 16 8 irregularly - asymmetric dumped Fig. 3, b –120 –55 20 15 asymmetric dumped Fig. 3, c –100 –60 8 10 irregularly - asymmetric dumped of SR for the LiCl solution of a shocking concentration and has the following non-standard parameters: ψ1 = —100 mV, ψ2 = —100 mV, number of impul- ses is 8, duration of lithium-oscillation is 4 min and the type of lithium-oscil- lation is less regular, asymmetric and damped. Molecular mechanisms of effects of lithium are still insufficiently clarified [14]. According to its ionic radius Li+ is the most similar to Mg2+ ion, which suggests its possible competition with the activities of Mg2+ ion. It is believed that Li+ ion can affect inactivation of enzyme GSK3 that can cause resetting of the brain «circadian clock» [33]. Recently it has been suggested that lithi- um could interact with NO regulatory pathway, which has a key role in the nervous system [16]. It was also shown that lithium could interfere with ino- sitol phosphatases, i.e. could inhibit inositol monophosphatase [14]. Further consider that the Li+ ions interact with the transmembrane transport of univa- 8 Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 Fig. 3. Three different classes of membrane potential oscillations. Delayed generation of lithium-oscillations in the direction of membrane potential depolarisation triggered off by the exchange of SR for the LiCl solution of shocking concentration (10 mM). Symbols are the same as in Fig. 2 a b c lent and bivalent cations in nerve cells due to its similarity with Na+, K+ and Mg2+ (Tab. 3) [19]. Results obtained in the studies of oscillatory bioelectric signals (local impulses, isolated single AP, sequence of local and single impulses and typical oscillation of the membrane potential) are presented in this paper. These results are only a smaller part of our long-term studies on total membrane potential oscillations, and indirectly on oscillatory transport of ions (K+, Na+, Ca2+, Li+ and Cl–) across excitable cell membrane [9, 21, 29, 31, 32]. This is especially true for lithium-MPO of the membrane potential which is very spe- cific and as such gives the possibility to analyze a number questions to which answers are not yet known in details. 9 MECHANISMS OF LITHIUM ACTION ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 Fig. 4. Instantaneous generation of lithium-oscillations in the direction of membrane potential repolarisation triggered off by the exchange of SR for the LiCl solution of the shocking concen- tration of 10 mM. Symbols are the same as in Fig. 2. Fig. 5. Instantaneous generation of lithium oscillations with the unaltered level of the equilibrium membrane potential prior to and after oscillating triggered off by the exchange of SR for the LiCl solution of the shocking concentration of 10 mM. Symbols are the same as in Fig. 2. TABLE 3. Physical and chemical characteristics of Li, K, Na and Mg [19] Characteristics Li K Na Mg Atomic radius () 1.33 2.03 1.57 1.36 Ionic radius () 0.60 1.33 0.95 0.65 Hydrated radius () 3.40 2.32 2.76 4.67 Polarizing power (z/r2) 2.80 0.56 1.12 2.05 Electronegativity 1.0 0.80 0.9 1.0 Some parameters of lithium-MPO have already been studied [2, 9, 21, 22] and the following note that their use provides an opportunity to estab- lish some correlation between oscillations in physical and biological systems [8, 30]. These parameters are: basic level of the membrane potential oscil- lations, impulse AP (the level up to which a membrane is depolarised du- ring generation single or successive AP and the oscillation), amplitude of single or successive impulses generated during the membrane potential oscil- lation. The relationship of the amplitude of one AP with the amplitude of the following or previous AP in the selected MPO, impulse interval (the duration between two successive impulses) and other standard parameters are given in Tab. 4 [2]. Special attention should be paid to the kinetics of single AP and the kinetics of the oscillation of the membrane potential. The important issues are not only a character of occurrence and behaviour of rhythms of bioelectric sig- nals [13, 28, 29] but also effects of selected ions on generating membrane potential oscillations [31, 32]. Above mentioned issues and parameters of MPO are directly dependent on transport processes occurring across the very excitable cell membrane [23]. Furthermore different types of movements of lipids, proteins, pigments and other complex-bound structures contribute to the mechanisms of the transport processes across the cell membrane [23]. These types of movements within the membrane can be as follows: lateral movement (typical for lipids and proteins), rotational movement (typical for proteins specialised for the ion transport) and so-called flip-flop movement (typical for lipids and proteins that regulate the ion transport from one side of excitable cell membrane to other). When the degree of sensitivity to excitability of the cell membrane is high then the variable types of movements of active molecules (lipids, proteins and other molecules) are more significant in their intensity, dynamics and diversity, which affects the total ion transport processes [8, 23] especially lithium trans- port processes [1, 2, 5, 25]. As it is known transport of ions (including lithium) across the strongly excitable cell membrane is characterised by passive and active ion transport processes. Diffusion is considered as a dominant bearer of passive transport processes in the very excitable membrane. It is expressed as a simple, limited and facilitated diffusion. It is clear that there are at least three promoters of the passive ion transport: concentration gradient, electrochemical potential gradient and electric potential gradient (electrochemical potential includes electric potential and concentration potential) Results presented in this paper indicate that lithium-oscillations in the direction of membrane potential depolarisation occur under particular condi- tions (Fig. 2, Tab. 1). Moreover delayed generation of lithium-oscillations in 10 Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 TABLE 4. Standard parameters of membrane potential oscillations induced by effects of standard concentrations of Li, Na and K on the membrane of the Nitella cell [2] Ions Oscillation duration (min) Number of impulses Impulse amplitude (mV) Frequency (imp/min) Damping factor Li+ 11.7 13 39±14 1.44±0.6 1.195 K+ 1.9 6 39±19 3.62±1.4 2.153 Na+ 24.1 24 54±16 1.04±0.5 1.081 the direction of membrane potential depolarisation occurs (Fig. 3, Tab. 2). Generation of lithium-oscillations in the direction of membrane potential repolarisation also occurs (Fig. 4). It is interesting to mention that generation of lithium oscillations with the unaltered level of the membrane potential before and after oscillating also occurs (Fig. 5). Based on the gained results and the discussion as well as on our overall information on oscillatory processes induced by Li+, K+, Na+, NH4 + and Ca2+, we present the following hypothesis: 1). Lithium-oscillations (local and single impulses and other classes of oscillations) in the membrane potential occur when the cell membrane is strongly excited. Such membrane state as a rule is accompanied by the activ- ities of ions K+, Na +, Li+ and Cl– that are not constant under such condi- tions in subcellular components (vacuole, cytoplasm and cell wall). 2). The usual ion transport processes are disturbed under effects of lithi- um: first of all diffusion (concentration gradient is altered), electrodiffusion (electrochemical potential gradient is changed), biocurrents (electric potential gradient is altered) and fluid flow (hydrostatic pressure gradient is modified). The mentioned dynamic states determine the degree of excitability of the strongly excitable cell membrane. Therefore when the cell membrane is strong- ly excited local, single and complete membrane potential oscillations inevitably occur. These oscillations occur in the form of certain classes but sometimes they can appear in the form of different irregularities (chaos). At the same time and under such conditions oscillating of active proteins starts in the cell mem- brane, and they rhythmically, regularly, irregularly (state of chaos) induce the transport of ions Na+, K+ and Li+ across the strongly excitable membrane which takes an oscillatory regime. In such state transport processes of ions K+, Na+ and Li+ adopt a co-operative character which induce conformational changes of active ion channels that stretch and contract within the oscillatory regime and thereby rhythmically modify transport ability of the excitable cell membrane for ions of K+, Na+ and Li+. 3). Under such conditions, oscillatory changes occur in cell supplying and thereby in supplying the very excitable membrane with energy: electric, osmo- tic and chemical. 4). Moreover, the bonds between membrane transport processes and metabolism are disturbed i.e. weakened. This is particularly related to weake- ning of the self-regulation of the matter within each cell. 5). Rhythmic process in excitable cell depends on relation between slow depolarisation and repolarisation processes after single action potential propa- gation. Slow depolarisation connected with activation of Na- and Ca-mem- brane potential depends on Na-pump activation. In Li case, possible all this mechanisms play famous role. For example, when slow membrane depolarisa- tion increases the frequency of rhythmic membrane potential oscillation increases, but when slow membrane repolarisation increases — frequency decreases. Authors devote this paper to a memory and long remembrance of pre- maturely deceased L.N. Vorobiev, Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia. 1. Воробьев Л.Н., Раденович Ч., Хитров Я.А., Яглова Л.Г. Исследование скачков биопотен- циалов при введении микроэлектрода в вакуоль клеток Nitella // Биофизика. — 1967. — 12, № 6. — P. 1016—1021. 11 MECHANISMS OF LITHIUM ACTION ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 2. Воробьев Л.Н., Су-Юнь Л., Раденович Ч. Регулирование ионного состава и биоэлектри- ческих потенциалов клеток при изменении их внешней и внутренней среды // Физи- ко-химические основы авторегуляции в клетках, 1968. — М.: Наука, 1968. — C. 143— 154. 3. Кольс О.Р., Максимов Г.В., Раденович Ч. Н. Биофизика ритмического возбуждения. — M.: Изд-во Моск. ун-та им. Ломоносова, 1993. — 206 c. 4. Раденович Ч. Ритмические электрические сигналы у растений // Физиология и био- химия культ. растений. — 1985. — 7, № 6. — C. 523—529. 5. Раденович Ч., Карева Л.А., Синюхин А.М. О различной природе ритмических колебаний мембранного потенциала // Биофизика. — 1968. — 13. — С. 270—281. 6. Baldessarini R.J., Tondo L., Davis P. et al. Decreased risk of suicides and attempts during long-term lithium treatment: A meta-analytic review // Bipolar Disord. — 2006. — 8. — P. 625—639. 7. Chassard-Bouchaud C., Galle P., Escaig F., Miyawaki M. Bioaccumulation of lithium by marine organisms in European, American and Asian coastal zones: microanalytic study using secon- dary ion emission // C. R. Acad. Sci. — 1984. — 299. — P. 719—724. 8. Crichton R. (2008): Some Facts about Lithium. ENC Labs. — 1984. http://www.enclabs.com/ lithium.html. Retrieved 2010-10-15. 9. Damjanović Z., Radenović Č. Some implications of ringing bioelectrical response in Nitella cels // Membranes, Transport. — Viena: Verlag der Wiener Medizinischen Academie, 1971. — P. 441—445. 10. Einat H., Kofman O., Itkin O. et al. Augmentation of lithium's behavioral effect by inositol uptake inhibitors // J. Neural Transm. — 1998. — 105, N 1. — P. 31—38. 11. Ebensperger A., Maxwell P., Moscoso C. The lithium industry: Its recent evolution and future prospects // Resour. Policy. — 30, N 3. — 2005. — P. 218—231. 12. Ghasemi M., Raza M., Dehpour A.R. NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test // J. Psychopharmacol. — 2010. — 24, N 4. — P. 585—594. 13. Ghasemi M., Sadeghipour H., Mosleh A. Nitric oxide involvement in the antidepressant-like effects of acute lithium administration in the mouse forced swimming test // Europ. Neuropsychopharmacol. — 2008. — 18, N 5. — P. 323—332. 14. Ghasemi M., Sadeghipour H., Poorheidari G., Dehpour A.R. A role for nitrergic system in the antidepressant-like effects of chronic lithium treatment in the mouse forced swimming test // Behav. Brain Res. — 2009. — 200, N 1. — P. 76—82. 15. Klein P.S., Melton D.A. A molecular mechanism for the effect of lithium on development // Proc. Natl. Acad. Sci. USA. — 1996. — 93, N 16. — P. 8455—8459. 16. Lassalles J.P., Hartmann A., Thellier M. Oscillation of the electric potential of frog skin under the effect of Li+: experimental approach // J. Memb. Biol. — 1980. — 56, N 2. — P. 107— 119. 17. Radenović Č. Bioelektrične pojave biljnih sistema. — Beograd: Nolit, 1974. — 161 p. 18. Radenović Č. Some models of bioelectric response (changes in membrane potential, membrane oscillations and individual impulses) caused by lithium concentrations in the membrane of the living plant cells // Book of Abstracts, VII Yugoslav Symposium on Biophysics, November 11- 13, 1976, Bled, Slovenia, Yugoslavia. — 1976. — P. 23—24. 19. Radenović Č. Ritmični bioelektrični signali kod biljaka // U: Multidisciplinarne nauke i nji- hova uloga u naučnotehničkom progresu. — Beograd: Centar za multidisciplinarne studije, 1982. — P. 89—103. 20. Radenović Č. Karakteristike nekih klasa oscilacija membranskog potencijala // Zb. rad. IX Jugoslovenskog simpozijuma o elektrohemiji. — Dubrovnik, Jugoslavija. — 1985. — P. 78— 81. 21. Radenović Č. Transportni procesi kroz membranu // Savremena biofizika. — Beograd: Velarta, 1998. — P. 3—90. 22. Radenović Č. The mechanism of oscillatory ion transport and biopotential across the excited cell membrane // Proc. Nat. Sci. Matica Srpska — 2001. — 100. — P. 91—104. 23. Radenović Č.N., Beljanski M.V., Maksmov G.V. et al. The mechanism of the NH4 + ion oscil- latory transport across the excitable cell membrane // Proc. Nat. Sci. Matica Srpska. — 2005. — 109. — P. 5—19. 24. Radenović Č., Beljanski M., Maksimova N., Maksimov G.V. Characteristics of lithium oscilla- tory transport through excited biomembrane // Book of Proceedings of Physical Chemistry Belgrade. — 2006. — P. 276—278. 25. Radenović Č.N., Penčić M. Oscillations bioelectriques dans des membranes de Nitella // Physiol. Plant. — 1970. — 23. — P. 697—703. 26. Radenović Č., Vučinić Ž. Simultaneous measurement of the cell wall and the vacuoles during the oscilltory response to the Nitella cell // Ibid. — 1976. — 37. — P. 207—212. 12 Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 27. Radenović Č., Vučinić Ž. Oscillations of the membrane potential // Period. Biol. — 1985. — 87, N 2. — P. 161—165. 28. Radenović Č., Vučinić Ž., Damjanović Z. Oscillations of the bioelectric potential across the membranes of Nitella triggered by monovalent cations // Electrical phenomena at the Biological Membrane Level, ed. By E. Roux. — Amsterdam: Elsevier Pub. Co., 1977. — P. 25—32. 29. Vučinić Ž., Radenović Č., Damjanović Z. Oscillations of the vacuolar potential in Nitella // Physiol. Plant. — 1987. — 44. — P. 181—186. 30. Vuksanovic V., Radenović Č., Beleslin B. Oscillatory phenomena, processes and mechanisms — physical and biological analogy // Yugoslav. Physiol. Pharmacol. Acta. — 1998. — 34. — P. 247—258. 31. Vuletić M., Radenović Č., Vučinić Ž. The role of calcium in the generation of membrane poten- tial oscillations in Nitella cells // Gen. Physiol. Biophys. — 1987. — 6. — P. 203—207. 32. Vuletić M., Vucinic Z., Radenović Č. Electrogenic proton pump in Nitella and the effect of cal- cium // Ibid. — 1985. — 4. — P. 195—200. 33. Yin L., Wang J., Klein P.S., Lazar M.A. Nuclear receptor Rev-erbalpha is a critical lithium- sensitive component of the circadian clock // Science. — 2006. — 311, N 5763. — P. 1002— 1005. 34. Zarse K., Terao T., Tian J. et al. Low-dose lithium uptake promotes longevity in humans and metazoans // Eur. J. Nutr. — 2011. — 50, N 5. — P. 387—389. Received 14.07.14 МЕХАНИЗМЫ ВЛИЯНИЯ ЛИТИЯ НА ГЕНЕРАЦИЮ КОЛЕБАНИЙ МЕМБРАННОГО ПОТЕНЦИАЛА В КЛЕТКАХ НИТЕЛЛЫ Ч.Н. Раденович1,2, Г.В. Максимов3, Д.М. Гродзинский4 1Научно-исследовательский институт кукурузы, Земун Поле, Белград, Сербия 2Белградский университет, Сербия 3Московский государственный университет им. М.В. Ломоносова, Россия 4Институт клеточной биологии и генетической инженерии Национальной академии наук Украины, Киев, Украина Изложены результаты исследования воздействия лития на осцилляции мембранного по- тенциала (МП) в клетках нителлы. Показано, что под влиянием высокой концентрации хлорида лития (10 мМ) возникает несколько классов осцилляций МП, включая единичные и локальные импульсы в случае сильного возбуждения клетки. Предполагается, что осцил- ляции МП, индуцируемые литием, обусловлены колебательным характером процессов транспорта Li+, K+, Na+, Cl– через клеточную мембрану. Предложена гипотеза, объясняю- щая механизмы колебательных процессов транспорта ионов (Li+, Na+, K+ и Cl–) и нали- чие различных классов колебаний, а также возникновения единичных и локальных им- пульсов МП в возбудимой мембране клетки Nitella. МЕХАНIЗМИ ВПЛИВУ ЛIТIЮ НА ГЕНЕРАЦІЮ ОСЦИЛЯЦIЙ МЕМБРАННОГО ПОТЕНЦIАЛУ В КЛIТИНАХ НIТЕЛИ Ч.Н. Раденович1,2, Г.В. Максимов3, Д.М. Гродзинський4 1Науково-дослідний інститут кукурудзи, Земун Поле, Белград, Сербія 2Белградський університет, Сербія 3Московський державний університет ім. М.В. Ломоносова, Росія 4Iнститут клітинної біології та генетичної інженерії Національної академії наук України, Київ, Україна Викладено результати дослідження дії літію на осциляції мембранного потенціалу (МП) в клітинах нітели. Показано, що під впливом високої концентрації хлориду літію 13 MECHANISMS OF LITHIUM ACTION ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1 (10 мМ) виникає кілька класів осциляцій МП, включно з поодинокими й локальними імпульсами в разі сильного збудження клітини. Припускається, що осциляції МП, індуковані літієм, зумовлені коливальним характером процесів транспорту Li+, K+, Na+ і Cl– через клітинну мембрану. Запропоновано гіпотезу, що пояснює механізми коливальних процесів транспорту іонів (Li+, K+, Na+, Cl–) і наявність різних класів коливань, а також виникнення одиничних і локальних імпульсів МП у збудливій мембрані клітини Nitella. Ключові слова: Nitella mucronata (A. Braun) F. Miquel, літій, збудлива мембрана, мембран- ний потенціал, параметри осциляцій, осциляційний транспорт іонів. 14 Č.N. RADENOVIĆ, G.V. MAKSIMOV, D.M. GRODZINSKIJ ISSN 2308-7099. Физиология растений и генетика. 2015. Т. 47. № 1