Thermodynamics of formation liquid interlayers in composite materials
Composite materials consisting of refractory particles and a low-melting binder have been studied. In a composite body the process of the liquid outflow from a capillary into the body bulk have been described in terms of thermodynamics. An equation for the variation of the Helmholtz free energy of a...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2019
|
Назва видання: | Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/159986 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Thermodynamics of formation liquid interlayers in composite materials / A.F. Lisovsky, S.A. Davidenko // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2019. — Вип. 22. — С. 377-383. — Бібліогр.: 9 назв. — англ. . |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-159986 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1599862019-10-20T01:26:28Z Thermodynamics of formation liquid interlayers in composite materials Lisovsky, A.F. Davidenko, S.A. Разработка и внедрение оборудования и инструмента, оснащенного твердыми сплавами, в различных отраслях промышленности Composite materials consisting of refractory particles and a low-melting binder have been studied. In a composite body the process of the liquid outflow from a capillary into the body bulk have been described in terms of thermodynamics. An equation for the variation of the Helmholtz free energy of a microdispersed system during this process has been derived and the conditions, under which the liquid interlayers are either stable or unstable in the bulk of a composite body, have been established. Изучены композиционные материалы, состоящие из тугоплавких частиц и легкоплавкой связки. Процесс обнажения жидкого капилляра путем миграции жидкости из капилляра в объем тела описан в терминах термодинамики. Получено выражение для изменения свободной энергии Гельмгольца микродисперсной системы при протекании этого процесса и определены условия, при которых жидкая прослойка является устойчивой или нестабильной в объеме композиционного тела. Вивчені композиційні матеріали, які складаються з тугоплавких частинок і легкоплавкої зв'язки. Процес оголення рідкого капіляра шляхом міграції рідини з капіляра в об’єм тіла описаний у термінах термодинаміки. Отримано вираз для зміни вільної енергії Гельмгольца мікродисперсної системи при протіканні цього процесу і визначені умови, при яких рідкий прошарок є стійким або нестабільним в об’ємі композиційного тіла. 2019 Article Thermodynamics of formation liquid interlayers in composite materials / A.F. Lisovsky, S.A. Davidenko // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2019. — Вип. 22. — С. 377-383. — Бібліогр.: 9 назв. — англ. . 2223-3938 DOI: 10.33839/2223-3938-2019-22-1-377-383 http://dspace.nbuv.gov.ua/handle/123456789/159986 620.22:669.018.25 en Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Разработка и внедрение оборудования и инструмента, оснащенного твердыми сплавами, в различных отраслях промышленности Разработка и внедрение оборудования и инструмента, оснащенного твердыми сплавами, в различных отраслях промышленности |
spellingShingle |
Разработка и внедрение оборудования и инструмента, оснащенного твердыми сплавами, в различных отраслях промышленности Разработка и внедрение оборудования и инструмента, оснащенного твердыми сплавами, в различных отраслях промышленности Lisovsky, A.F. Davidenko, S.A. Thermodynamics of formation liquid interlayers in composite materials Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения |
description |
Composite materials consisting of refractory particles and a low-melting binder have been studied. In a composite body the process of the liquid outflow from a capillary into the body bulk have been described in terms of thermodynamics. An equation for the variation of the Helmholtz free energy of a microdispersed system during this process has been derived and the conditions, under which the liquid interlayers are either stable or unstable in the bulk of a composite body, have been established. |
format |
Article |
author |
Lisovsky, A.F. Davidenko, S.A. |
author_facet |
Lisovsky, A.F. Davidenko, S.A. |
author_sort |
Lisovsky, A.F. |
title |
Thermodynamics of formation liquid interlayers in composite materials |
title_short |
Thermodynamics of formation liquid interlayers in composite materials |
title_full |
Thermodynamics of formation liquid interlayers in composite materials |
title_fullStr |
Thermodynamics of formation liquid interlayers in composite materials |
title_full_unstemmed |
Thermodynamics of formation liquid interlayers in composite materials |
title_sort |
thermodynamics of formation liquid interlayers in composite materials |
publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
publishDate |
2019 |
topic_facet |
Разработка и внедрение оборудования и инструмента, оснащенного твердыми сплавами, в различных отраслях промышленности |
url |
http://dspace.nbuv.gov.ua/handle/123456789/159986 |
citation_txt |
Thermodynamics of formation liquid interlayers in composite materials / A.F. Lisovsky, S.A. Davidenko // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2019. — Вип. 22. — С. 377-383. — Бібліогр.: 9 назв. — англ.
. |
series |
Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения |
work_keys_str_mv |
AT lisovskyaf thermodynamicsofformationliquidinterlayersincompositematerials AT davidenkosa thermodynamicsofformationliquidinterlayersincompositematerials |
first_indexed |
2025-07-14T12:34:02Z |
last_indexed |
2025-07-14T12:34:02Z |
_version_ |
1837625709843972096 |
fulltext |
РАЗДЕЛ 3. РАЗРАБОТКА И ВНЕДРЕНИЕ ОБОРУДОВАНИЯ И ИНСТРУМЕНТА, ОСНАЩЕННОГО
ТВЕРДЫМИ СПЛАВАМИ, В РАЗЛИЧНЫХ ОТРАСЛЯХ ПРОМЫШЛЕННОСТИ
377
Working Tools – Techniques and Technology of the Tool Production and Applications, 12,
– P. 431–437[in Ukrainian].
12. Prokopov, M. M, Kharchenko, O. V., Prokopov, N. M., Serdyuk, Yu. D. (2013). Patent
Patent of Ukraine 101722 [in Ukrainian].
УДК 620.22:669.018.25 DOI: 10.33839/2223-3938-2019-22-1-377-383
A. F. Lisovsky and S. A. Davidenko
V. N. Bakul Institute for Superhard Materials of National Academy of Sciences of Ukraine. 2,
Avtozavodskaia, Kyiv 04074, Ukraine, E-mail: lisovsky@ism.kiev.ua
THERMODYNAMICS of FORMATION LIQUID INTERLAYERS in COMPOSITE
MATERIALS
Composite materials consisting of refractory particles and a low-melting binder have been studied. In
a composite body the process of the liquid outflow from a capillary into the body bulk have been described in
terms of thermodynamics. An equation for the variation of the Helmholtz free energy of a microdispersed
system during this process has been derived and the conditions, under which the liquid interlayers are either
stable or unstable in the bulk of a composite body, have been established.
Key words: composite material, liquid interlayer, thermodynamics
1. Introduction
The object of the present investigation is composite materials consisting of refractory particles
and metallic binder. They include cemented carbides, composite ceramics [1], contact materials [2],
structural materials [3], etc. The structure of these materials forms during the liquid phase sintering,
after which they present solid–liquid structured dispersed systems. The stability of liquid interlayers
in such systems is of great importance for the development of advanced technologies like the capillary
welding, formation of mesostructures [4], reinforcing of composite materials with metallic fibers, etc.
For these processes to be effective, it is necessary to ensure stability of the liquid interlayer forming
in a composite body during the liquid phase sintering. The problem can best be dealt with by first
examining it from a thermodynamic standpoint and then explaining certain kinetic characteristics of
the formation and disappearance of liquid metallic interlayers within a sintered composite body.
2. Thermodynamic investigation
The Gibbs thermodynamics was used for the study of the stability of liquid interlayers in
composite materials [5]. The investigations were made on the model of a system containing a vapor
phase v, n particles of a solid phase s, and a liquid l. The system contains region I filled by particles and a
liquid (Fig. 1). Particles s formed a refractory skeleton that was saturated by the liquid l. In region I
there was a capillary filled with the liquid l (Fig. 1 a). Region II of the system was filled solely by a
vapor phase. In the final state of the system (Fig. 1 b) the liquid migrated from the capillary into the
bulk of a composite body, the capillary became empty and was filled with the vapor phase. During
the migration of the liquid, the particles in the refractory skeleton are regrouped, as a result of which
the particle contact surface area Ass decreases, the phase interface area Asl in the composite material
increases, and solid-vapor surface Asv appears in the capillary. The process of the capillary emptiness
proceeded at a constant temperature and volume of the system. Under these conditions the
characteristic function that describes the state of the system is the Helmholtz free energy F.
Выпуск 22. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА
И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ
http:/altis-ism.org.ua
378
Fig. 1. Model of dispersed solid–liquid–vapor system with liquid interlayer: a – initial; b –
final state
The following limitations are imposed on the system:
Ts = Tl = Tv = Tss = Tsl = Tsv =Tlv = T = const, (1a)
Vs + Vl + Vv = V = const (1b)
mi
(s) + mi
(l) + mi
(v) + mi
(ss) + mi
(sl) + mi
(sv) + mi
(lv) = mi = const, (1c)
μi
(s) = μi
(l) = μi
(v) = μi
(ss) = μi
(sl) = μi
(sv) = μi
(lv) = μi, (1d)
where T is the temperature, V is the volume, m is the amount of the i-th component, μ is the chemical
potential, i is the number of components, indices s, l, v, ss, lv, sv, lv indicate that the values they define
refer to the corresponding phase, contact surface, or interface.
Limitation (1 a) indicates that there are no temperature gradients in the system. The system
consists of independent components, which can pass from one phase into the other (1 c). Limitation
(1 d) indicates that there are no chemical gradients in the system. Moreover, we assume that the
system is a monodisperse one; the size of particles s remains constant, in the course of the liquid
migration a change of the particle shape is possible, while the capillary size and shape do not change.
A change in Helmholtz free energy F in passing of the system from the initial to the final
state may be represented as a sum of the variation of Helmholtz free energy Fm of the liquid
migration from capillary into the composite body and the variation of Helmholtz free energy Fc of
the capillary emptying F = Fm + Fc. The change in the free energy of the system, with allowance for
conditions (1a–1d), is described by the expression
sv
slsv
lv
lvslslssssvvllss cc
AAAAPVPVPVF , (2)
where P is the pressure, is the surface tension,
lv
c
A and
sv
c
A are the areas of the capillary surface
occupied by the liquid and solid phases, respectively.
To transform Eq. (2), we use the relationships
sssl AgA 2 , c
lv uAA
C
,
cc
AuAsv 1 ,
c
c
cc
d
V
kA , coslvslsv (3)
where Ac is the total surface area of the capillary; u is the fraction of the capillary surface occupied
by the liquid phase (according to a fundamental theorem of stereology, the fraction of a surface
occupied by a phase is equal to the volume fraction of this phase, and hence u is the volume fraction
of the liquid phase in the composite body); Vc is the volume of the capillary; dc is the size of the
capillary; kc is the coefficient allowing for the geometric shape of the capillary; θ is the angle of
contact; and g is the coefficient allowing for the change in the geometric shape of the particles.
РАЗДЕЛ 3. РАЗРАБОТКА И ВНЕДРЕНИЕ ОБОРУДОВАНИЯ И ИНСТРУМЕНТА, ОСНАЩЕННОГО
ТВЕРДЫМИ СПЛАВАМИ, В РАЗЛИЧНЫХ ОТРАСЛЯХ ПРОМЫШЛЕННОСТИ
379
As the volume of the composite body into which the liquid migrates is many times larger than
the volume of the capillary, it is possible, without significantly affecting subsequent derivations, to
ignore the effect of the geometric particle shape on the quantity Ass and use the relationship Asl =
2Ass.
In Eq. (2), Pl = 0 and Pv = 0, since the liquid and the vapor in the system possess the properties of
unbounded phases. The refractory particles are a typical example of a phase bounded by an interface, and for
them therefore Ps 0. When the liquid penetrates into the interparticle surface in the skeleton, the contact
surface becomes replaced by a solid-liquid phase interface. This changes the surface tension of the particles,
which brings about a change in their phase pressure. In [6] it is demonstrated that the change in the phase pressure
of an assembly of particles induced by their contact surface being replaced by a solid-liquid phase interface is
described by the expression
sssl
s
ss
s
V
A
P
2
3
2
,
from which we have
ssslssss APV 2
3
2
. (4)
Taking into account Eqs. (3) and (4), we obtain
1cos2
3
1
lv
c
c
cssslss
d
V
kAF , (5)
where 1 is the angle of contact of the surface containing portions of the solid and liquid phases, with
cos 1 = u + (1–u) cos .
In Eq. (5), the first term describes the energetic changes within the composite body brought about by
migration of the liquid phase, while the second term describes the energetic change in the capillary. According
to the conditions adopted, the liquid in the capillary is identical in composition to the liquid in the composite
body. This liquid wets well the capillary walls, so that cos 1 > 0, and the second term is always positive. At
ss < 2SL, the first term, too, is positive. This means that in Eq. (5) F > 0, and the capillary cannot be
denuded, i.e., the liquid interlayers are stable, and can be preserved within a sintered composite body. If in a
composite material ss > 2SL, the first term is negative, and the stability of the interlayers in the composite body
is determined by the relative magnitudes of the first and second terms of Eq. (5). In such a composite body, the
liquid interlayers will be stable when
ssslsslv
c
c
c A
d
V
k 2
3
1
cos 1 (6)
It is convenient to transform this expression bearing in mind that, when a liquid penetrates
into a composite body, the change in the contact surface Ass can be calculated, with an error 5 —
9%, using the expression [7]
l
s
ss V
u
u
d
K
A
3
1
1
(7)
where u is the volume fraction of the liquid phase in the composite body , ds is the particle size, K is the coefficient
allowing for the geometric shape of the particles and the voids formed by them; and Vl is the volume of the
liquid which has penetrated into the composite body (and, of course, Vl = Vc).
Выпуск 22. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА
И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ
http:/altis-ism.org.ua
380
Substituting Eq. (7) in Eq. (6) for composite materials having ss > 2SL, we find the condition of
stability of the liquid interlayers as a function of composition of the material and size of the refractory particles.
Allowing for what has been said above, we obtain
slss
lv
sc
u
u
dKd
2
cos
1
1
3
1
1 , (8)
where K1 = 3 kc / K.
Depending on the relative magnitude of the surface energies, two-phase composite materials may
be divided into two classes. Composite materials of the first class are characterized by ss > 2sl, and those
of the second class by ss 2sl . A characteristic feature of composite materials of the first class is that
the refractory particles in them form nonequilibrium dihedral angles [8]. The interphase surface forces
acting on the solid-liquid and solid-solid boundaries are unbalanced. Such composite materials have the
ability to imbibe liquid metals, and a migration pressure exists in them which has the physical meaning
of suction pressure [9]. Under the action of this pressure, the liquid migrates from the capillary into the
composite body. When the capillary pressure Pc in the capillary exceeds the migration pressure П, a liquid
interlayer is stable, while at П > Pc it is unstable. For each composite materials of the first class, there
exists a critical capillary size above which an interlayer is unstable, while below it is stable.
3. Experiment
In composite materials of the second class (ss 2sl), the refractory particles form equilibrium
dihedral angles, the liquid phase is in mechanical equilibrium with the solid, there is no migration
pressure (F > 0) and liquid interlayers are always stable. According to investigations [8], WC-Co,
WC-Ni, TiC-Co, TiC-Ni, and Cr3C2-Ni composite materials are of the first class, while WC-Cu,
Cr3C2-Cu, and Ni-Pb materials are of the second class. A study was made of the stability of liquid
interlayers in some of these materials. Specimens 5 x 5 x 35 mm in size were sintered from the
materials listed in Table.
Compositions and characteristics of specimens
Spes.
No.
Designation
of materials
Composition, mas. % Liquid
phase
cont. at
1370oC
vol.%
Particle
size,
ds, m
Critical
capillary
size, dcr
m
Co Ni Cu WC Cr3C2
1 WC-6Co
fine
5.90 0 0 94.10 0 13.8 2.5 5
2 WC-6Co 5.90 0 0 94.10 0 13.8 3.0 6
3 WC-6Co
coarse
5.90 0 0 94.10 0 13.8 4.5 10
4 WC-10Co 9.65 0 0 90.35 0 21.8 3.1 12
5 WC-15Co 14.3 0 0 85.70 0 31.1 3.4 15
6 WC-20Co 20.1 0 0 79.90 0 41.9 9.9 18
7 WC-6Ni 0 6.00 0 94.00 0 13.9 2.5 6
8 WC-15Ni 0 13.80 0 86.20 0 30.8 2.5 16
9 WC-20Ni 0 20.12 0 79.88 0 41.7 2.5 20
10 Cr3C2-20Ni 0 21.20 0 0 78.8 - 11.3 40
11 WC-12Cu 0 0 12.3 87.70 0 21.0 3.0 -
12 Cr3C2-25Cu 0 0 24.9 0 75.1 20.8 15.0 -
РАЗДЕЛ 3. РАЗРАБОТКА И ВНЕДРЕНИЕ ОБОРУДОВАНИЯ И ИНСТРУМЕНТА, ОСНАЩЕННОГО
ТВЕРДЫМИ СПЛАВАМИ, В РАЗЛИЧНЫХ ОТРАСЛЯХ ПРОМЫШЛЕННОСТИ
381
The face 5x35 mm of the specimens was ground to a level h = 1.0, 1.5, 2.0, 2.5, 3.0, 3.6, 4.4,
5.0, 5.6, 6.2, 7.0, 8.1, 9.2, 10.0, 12.0, 15.3, and 20.5 μm (h is the height of irregularities between upper
and lower points). When the ground faces were placed together, a capillary was formed whose
maximum size was 2h. By varying the height of the irregularities, capillaries were obtained ranging
in sizes from 2 to 41 μm. Specimens from composite materials of the first class (Nos. 1-10 in Table
1) were heated in a vacuum at a residual pressure
of 1.0-0.1 Pa to a temperature of 1370°C and held
at that temperature for between 1 and 60 min.
After cooling, on the faces 5x5 mm the capillaries
were examined by optical metallography
methods. A study was made of the structures of
capillaries of various sizes, and determinations
were made of the critical capillary size dcr , below
which liquid metallic interlayers formed
spontaneously (Figs. 2 and 3) and above which we
have the capillaries without the liquid, empty.
Fig. 3 a depicts the process of filling of a
capillary with molten nickel, while Fig. 3 b shows
the structure of the interlayer after annealing. After the liquid interlayer had formed spontaneously,
chromium carbide particles began to grow inside it. The process was particularly vigorous in WC-Ni
composites.
a b
Fig. 3. Microstructures of joint zones of Cr3C2-20Ni specimen s during filling of the capillary
(a) and after 60-min annealing (b)
For a WC–20Ni specimen, containing 20
mas. % Ni, it took 10 min to fill a 10 m size of the
interlayer (Fig. 2). In WC–6Co specimens ground
to levels h < 3 m, the capillaries filled up with
molten cobalt, while at h > 3.6 m the capillaries were
empty (Fig. 4).
4. Discussion
The analysis data of Table 1 shows that
for WC–6Co fine (1), WC–6Co (2), and WC–
6Co coarse (3) composites the dcr proved to be
directly proportional to particle size ds , while
for WC–6Co, WC–10Co, WC–15, and WC-
20Co composites and also for WC–6Ni, WC–
Fig. 2. Microstructure of WC–20Ni
composite with nickel interlayer
Fig.4. The empty capillary in joint zone of
WC–6Co specimens of 3.6 m surface roughness
Выпуск 22. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА
И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ
http:/altis-ism.org.ua
382
15Ni, and WC-20Ni composites, it was – in good accord with Eq. (8) – proportional to
3
1
1
u
u
. This
means that Eq.(8) can be employed for calculating the stable interlayers for various composite
materials.
A quantitative characteristic of the filling phenomenon may be provided by the rate of
displacement of the refractory particle front into a liquid interlayer. For WC-6Co, WC-10Co, and
WC-20Co composites, these rates were 1.0, 0.7, and 0.5 m/min, respectively. Similar results were
obtained for WC-Ni materials.
The filling of an interlayer with refractory particles takes place as follows. During the liquid
phase sintering of a composite material of the first class a structure with nonequilibrium refractory
particles forms in the material. During contact with an interlayer, refractory particles tend to assume
an equilibrium shape by recrystallization through the liquid phase, using an additional volume of the
liquid interlayer, as a result of which they grow into it layer by layer. The rate of filling of an interlayer
is determined by the rate of recrystallization of the particles and also by the degree of their initial
unequilibrium. As the volume fraction of the liquid phase grows in WC-6Co, WC-10Co, and WC-
20Co composites (Table 1), the tungsten carbide particles approach an equilibrium shape, and the rate
of filling of the void accordingly diminishes. Thus, in composite materials of the first class and under
conditions determined by expression (8), liquid interlayers at first appear spontaneously and then
become filled by growing refractory particles, as a result of which they vanish. This means that in
fact liquid interlayers in composite materials of the first class are metastable, so that, to preserve them,
it is necessary to take into account the rate at which they become filled by growing refractory particles.
In composite materials of the second class (WC-Cu and Cr3C2-Cu), stable liquid interlayers were
found to form. In addition, 40- to 200 m size of the interlayers were produced by electrodeposition;
these interlayers withstood 100 min. annealing in a hydrogen atmosphere at 1300°C. We have not
observed displacement of the refractory particles front into a liquid interlayer. In opinion of the author
of the article, it is caused by that in WC-Cu and Cr3C2-Cu composites refractory particles form
equilibrium dihedral angles, W, Cr, C are not dissolved in copper, therefore recrystallisation of
particles through a liquid phase do not occur.
5. Conclusions
For composite materials of the first class (ss > 2SL) there exists a critical liquid interlayer size
above which they do not form. They are unstable. At a capillary size smaller than the critical, liquid
interlayers at first form spontaneously by migration of liquid from within the composite body into the
capillary, and subsequently they become filled by growing refractory particles. In composite materials
of the second class (ss 2SL), liquid interlayers of all sizes are stable.
Изучены композиционные материалы, состоящие из тугоплавких частиц и легкоплавкой
связки. Процесс обнажения жидкого капилляра путем миграции жидкости из капилляра в объем тела
описан в терминах термодинамики. Получено выражение для изменения свободной энергии
Гельмгольца микродисперсной системы при протекании этого процесса и определены условия, при
которых жидкая прослойка является устойчивой или нестабильной в объеме композиционного тела.
Ключевые слова: композиционный материал, жидкая прослойка, термодинамика
А. Ф. Лісовський, д-р техн. наук; С. А. Давиденко
Інститут надтвердих матеріалів ім. В. M. Бакуля НАН України
Термодинаміка формування рідких прошарків в композиційних матеріалах
Вивчені композиційні матеріали, які складаються з тугоплавких частинок і легкоплавкої
зв'язки. Процес оголення рідкого капіляра шляхом міграції рідини з капіляра в об’єм тіла описаний у
термінах термодинаміки. Отримано вираз для зміни вільної енергії Гельмгольца мікродисперсної
РАЗДЕЛ 3. РАЗРАБОТКА И ВНЕДРЕНИЕ ОБОРУДОВАНИЯ И ИНСТРУМЕНТА, ОСНАЩЕННОГО
ТВЕРДЫМИ СПЛАВАМИ, В РАЗЛИЧНЫХ ОТРАСЛЯХ ПРОМЫШЛЕННОСТИ
383
системи при протіканні цього процесу і визначені умови, при яких рідкий прошарок є стійким або
нестабільним в об’ємі композиційного тіла.
Ключові слова: композиційний матеріал, рідкий прошарок, термодинаміка
Literatire
1. Formation and Properties of TiB2–Ni Composite Ceramics. / M. Vlasova, A. Bykov, M.
Kakazey et al. // Sci. Sintering. – 2016. –V. 48. – P. 137–146.
2. Chaurasia J., Ayyapan M., Patel P., Rajan R. A. A. Activated Sintering of Tungsten
Heavy Alloy // Sci. Sintering. – 2017. – V. 49. – P. 445–453.
3. Microstructure and Thermal Properties of Cu-SiC Composite Materials Depending on the
Sintering Technique / M. Chmielewski, K. Pietrzak, A. Strojny-Nędza, et al. // Sci.
Sintering. – 2017. – V. 49. – P. 11–22.
4. Lisovsky A. F. Formation of Mesostructure in WC–Co Cemented Carbides – A review //
Sci. Sintering. – 2011. – V. 43. – N 2. – P. 161–173.
5. Gibbs J. W. The Collected Works : 2 vols. N.Y.: Longmans, green and Co, 1928.
6. Lisovsky A. F. Migration of metal melts in sintered composite bodies. Kiev: Naukova
Dumka, 1984.
7. Lisovsky A. F. Termodinamics of Isotated Pores Filling with Liquid in Sintered Composite
materials // Metall. and Mater. Trans. A. – 1994. – V. 25A. – N 4. – P. 733–740.
8. Lisovsky A. F. Formation of nonequilibrium dihedral angles in composite materials // Int.
J. Powder Metallrgy. – 1990. – V. 26. – N 1, 45–49.
9. Lisovsky A. F. The migration of metal melts in sintered composite materials // Int. J. Heat
Mass Transfer. – 1990. – V.33. – N 8. – P. 1599–1603.
Received 17.04.19
References
1. Vlasova, M., Bykov, A., Kakazey, M., et al. (2016). Formation and Properties of TiB2–Ni
Composite Ceramics. Sci. Sintering., 48, 137–146.
2. Chaurasia, J., Ayyapan, M., Patel, P., & Rajan, R. A. A. (2017). Activated Sintering of
Tungsten Heavy Alloy. Sci. Sintering., 49, 445–453.
3. Chmielewski, M., Pietrzak, K., Strojny-Nędza, A., et al. (2017).Microstructure and
Thermal Properties of Cu-SiC Composite Materials Depending on the Sintering
Technique. Sci. Sintering., 49, 11–22.
4. Lisovsky A. F. (2011). Formation of Mesostructure in WC–Co Cemented Carbides – A
review. Sci. Sintering., 43, 2, 161–173.
5. Gibbs, J. W. (1928). The Collected Works : 2 vols. N.Y.: Longmans, green and Co.
6. Lisovsky A.F. (1984). Migration of metal melts in sintered composite bodies. Kiev:
Naukova Dumka.
7. Lisovsky A. F. (1994). Termodinamics of Isotated Pores Filling with Liquid in Sintered
Composite materials. Metall. and Mater. Trans. A., 25A, 4, 733–740.
8. Lisovsky A. F. (1990). Formation of nonequilibrium dihedral angles in composite
materials. Int. J. Powder Metallrgy., 26, 1, 45–49.
9. Lisovsky A. F. (1990). The migration of metal melts in sintered composite materials. Int.
J. Heat Mass Transfer., 33, 8, 1599–1603.
|