The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose
The aim of the work is to identify the influence of the chemical composition of steels and special-purpose alloys on the formation of their physicochemical and structural-sensitive properties. This problem is solved by mathematical modeling of the inseparable chain «composition - structure – propert...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут чорної металургії ім. З.І. Некрасова НАН України
2018
|
Назва видання: | Фундаментальные и прикладные проблемы черной металлургии |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/160037 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose / I.R. Snihura, D.N. Togobitskaya // Фундаментальные и прикладные проблемы черной металлургии: Сб. научн. тр. — Дніпро.: ІЧМ НАН України, 2018. — Вип. 32. — С. 361-370. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-160037 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1600372019-10-21T01:25:53Z The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose Snihura, I.R. Togobitskaya, D.N. Металловедение и материаловедение The aim of the work is to identify the influence of the chemical composition of steels and special-purpose alloys on the formation of their physicochemical and structural-sensitive properties. This problem is solved by mathematical modeling of the inseparable chain «composition - structure – property» taking into account the parameters of interatomic interaction in the melt based on the concept of a directed chemical bond. Целью работы является выявление влияния химического состава сталей и сплавов специального назначения на формирование их физико-химических и структурно-чувствительных свойств. Эта задача решается путем математического моделирования неразделимой цепочки «состав - структура - свойство» с учетом параметров межатомного взаимодействия в расплаве на основе концепции направленной химической связи. Метою роботи є виявлення впливу хімічного складу сталей і сплавів спеціального призначення на формування їх фізико-хімічних і структурно-чутливих властивостей. Це завдання вирішується шляхом математичного моделювання нероздільного ланцюжка «склад - структура - властивість» з урахуванням параметрів міжатомної взаємодії в розплаві на основі концепції спрямованої хімічного зв'язку. 2018 Article The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose / I.R. Snihura, D.N. Togobitskaya // Фундаментальные и прикладные проблемы черной металлургии: Сб. научн. тр. — Дніпро.: ІЧМ НАН України, 2018. — Вип. 32. — С. 361-370. — Бібліогр.: 18 назв. — англ. 2522-9117 http://dspace.nbuv.gov.ua/handle/123456789/160037 669.02/09:669.15*24*26-194. en Фундаментальные и прикладные проблемы черной металлургии Інститут чорної металургії ім. З.І. Некрасова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Металловедение и материаловедение Металловедение и материаловедение |
spellingShingle |
Металловедение и материаловедение Металловедение и материаловедение Snihura, I.R. Togobitskaya, D.N. The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose Фундаментальные и прикладные проблемы черной металлургии |
description |
The aim of the work is to identify the influence of the chemical composition of steels and special-purpose alloys on the formation of their physicochemical and structural-sensitive properties. This problem is solved by mathematical modeling of the inseparable chain «composition - structure – property» taking into account the parameters of interatomic interaction in the melt based on the concept of a directed chemical bond. |
format |
Article |
author |
Snihura, I.R. Togobitskaya, D.N. |
author_facet |
Snihura, I.R. Togobitskaya, D.N. |
author_sort |
Snihura, I.R. |
title |
The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose |
title_short |
The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose |
title_full |
The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose |
title_fullStr |
The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose |
title_full_unstemmed |
The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose |
title_sort |
role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose |
publisher |
Інститут чорної металургії ім. З.І. Некрасова НАН України |
publishDate |
2018 |
topic_facet |
Металловедение и материаловедение |
url |
http://dspace.nbuv.gov.ua/handle/123456789/160037 |
citation_txt |
The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose / I.R. Snihura, D.N. Togobitskaya // Фундаментальные и прикладные проблемы черной металлургии: Сб. научн. тр. — Дніпро.: ІЧМ НАН України, 2018. — Вип. 32. — С. 361-370. — Бібліогр.: 18 назв. — англ. |
series |
Фундаментальные и прикладные проблемы черной металлургии |
work_keys_str_mv |
AT snihurair theroleoftakingintoaccounttheinteratomicinteractioninpredictingthecomplexofstructurallysensitivepropertiesofsteelsandalloysforspecialpurpose AT togobitskayadn theroleoftakingintoaccounttheinteratomicinteractioninpredictingthecomplexofstructurallysensitivepropertiesofsteelsandalloysforspecialpurpose AT snihurair roleoftakingintoaccounttheinteratomicinteractioninpredictingthecomplexofstructurallysensitivepropertiesofsteelsandalloysforspecialpurpose AT togobitskayadn roleoftakingintoaccounttheinteratomicinteractioninpredictingthecomplexofstructurallysensitivepropertiesofsteelsandalloysforspecialpurpose |
first_indexed |
2025-07-14T12:39:44Z |
last_indexed |
2025-07-14T12:39:44Z |
_version_ |
1837626081643855872 |
fulltext |
361
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
UDC 669.02/09:669.15*24*26-194.
I. R. Snihura, D. N. Togobitskaya
THE ROLE OF TAKING INTO ACCOUNT THE INTERATOMIC
INTERACTION IN PREDICTING THE COMPLEX OF STRUCTURALLY-
SENSITIVE PROPERTIES OF STEELS AND ALLOYS FOR SPECIAL
PURPOSE
Z.I. Nekrasov Iron and Steel Institute, National Academy of Sciences of Ukraine
The aim of the work is to identify the influence of the chemical composition of
steels and special-purpose alloys on the formation of their physicochemical and
structural-sensitive properties. This problem is solved by mathematical modeling of the
inseparable chain «composition - structure – property» taking into account the
parameters of interatomic interaction in the melt based on the concept of a directed
chemical bond. A steel melt is considered as a chemically homogeneous system, and the
state of the melts is expressed through a set of integral parameters, the main of which
are: Zy - system charge state parameter (e); r - statistically average internuclear distance
(10-1nm); tgα is a constant for each element, which characterizes the change in the
radius of the ion as its charge changes. On the basis of experimental information on
properties and using the parameters of interatomic interaction, computational models are
proposed for predicting the properties of steels and alloys. The forecast models took into
account the parameters of micro-inhomogeneity of steel, which ensured a high accuracy
of the operational forecast. A comparative analysis of the results of steel melting with
the corresponding calculations based on the JMatPro software package confirmed the
effectiveness of using the interatomic interaction parameters as models. The proposed
models for determining the melting of chromium-nickel steels are recommended for use
with the content of basic elements Cr, Ni from 0 to 30%. The research results are
recommended for use in industrial environments through the integration of the
developed models in the process control system of steelmaking, which will contribute to
the directed formation of the composition and properties of smelting products, as well as
reducing energy costs.
Keywords: special steels, interatomic interaction parameters, physicochemical
properties, micro-inhomogeneity, predictive models
The state of the problem. In recent years, the tendency to increase the
demand for high-quality metal products has become more pronounced. The
depletion and deterioration of the quality of mineral resources, both in the
world market and within our country, puts on the agenda a search for new
approaches and the improvement of the adopted technological solutions aimed
at improving the quality of special-purpose steels and alloys, which is
associated with physical and chemical modelling of metal melts and their
interactions in the «metal-slag» system. This will provide a theoretical basis for
a scientifically-based choice of rational modes of melting special-purpose
steels, as well as the efficient use of raw materials and energy resources.
Prediction of a complex of physicochemical (melting and crystallization
temperature, density, micro-inhomogeneity, viscosity, surface tension,
362
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
electrical conductivity and other properties) of the mechanical and operational
properties of steels and alloys of special value, will allow you to quickly
manage the process of refining the steel in the ladle, as well as the processes
during casting and crystallization, and improve the technical and economic
indicators of smelting.
Despite the growing amount of research on these issues, there are still
difficulties in predicting the structure-sensitive properties of metallic
multicomponent melts, which is largely due to the lack of the formulated
fundamental positions of the liquid state of metallic systems that would serve as
the basis for the formation of the generally accepted structure.
Currently, the most actively developed and used to explain the
physicochemical and structural features of liquid metal systems are ideas about
their microheterogeneous structure, which are partially reflected in the works
[1–5]. Segregation of clusters in steel violates the homogeneous state of the
melt, as the most important indicator of quality [6], viscosity increases and may
cause the formation of non-metallic inclusions and, as a result, defects in the
finished metal product, thereby reducing the performance and service life of the
product.
Differences in the forces of interatomic interaction, describing the
physicochemical relationship between the individual components of the melt
manifest themselves in their clustering ability (Fig.1).
Figure 1 – Dependence of
the temperature of
existence of a cluster of
one-component metal
melts on the parameter of
the directed charge
density (ρl) according to
[7]
The most stable clusters are formed with the strongest inter-atomic bonds
between the components of the melt. From the data in Figure 1 to such should
be attributed Re, Ta, W, while the most easily destroyed are K, Na, Li.
Proper consideration of the temperature of the existence of clusters and
their destruction is one of the effective technological methods, which will
ensure the uniformity of the structure of the metal melt and optimize the
temperature of melting.
363
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
Purpose of the work – identifying the influence of the chemical
composition of target steels on the formation of their structurally sensitive
properties based on the interatomic interaction parameters in their melts in
order to simulate processes in the metal-slag system when solving problems of
a scientifically-based choice of effective alloying additives.
The main research material.
According to many years of experience in predicting the physicochemical
properties of metal and slag melts in Z.I. Nekrasov Iron and Steel Institute of
NAS of Ukraine, this problem is solved by mathematical modelling of an
inseparable «composition – structure – property» chain, taking into account the
interatomic interaction parameters in the melt, based on the concept of a
directed chemical bond developed by Prikhodko E.V. and which considers the
melt as a chemically uniform system [8].
Chemical individuality, reactivity, chemical and structural state of the
investigated melts is expressed through a combination of integral parameters,
the main of which are: Z
y
– system charge state parameter; d – statistically
average internuclear distance, 10
-1
nm; tgα – constant for each element
characterizing the change in the radius of an ion when its charge changes.
Additional introduction of the directional charge density parameter (ρl,
e/nm) allows you to indirectly take into account the microheterogeneity of the
melt (clusters, microcrystallites, sibotaxis, swarms). Entering the listed
parameters reduces the parametricity of the models and increases their
physicality.
The efficiency and effectiveness of this method was confirmed by us in the
development of models for predicting the temperatures of melting and
crystallization of chromium-nickel steels. [9], iron carbon steels
(constructional, instrumental, rail) [10], high-temperature nickel alloys (HTNA)
[11], aluminium and magnesium alloys [12] with high forecast accuracy (Table
1). Thus for heat resisting nickel alloys, refractory elements (Mo, W, Re, Ta)
allocated in a separate subsystem.
Table 1. Accuracy of predicted models of melting temperatures and crystallization of
steels and alloys for special purposes
Metallic melts Model Accuracy
Chromium-Nickel steel TL, TS = f (Zy, d, tgα) R2 ≥ 0.93
Iron carbon steels TL, TS = f (Zy, ρlобщ) R2 ≥ 0.95
High-temperature nickel alloys TL, TS = f (ρlобщ, tgαγ) R2 ≥ 0.88
Aluminium alloys TL, TS = f (ρlобщ) R2 ≥ 0.92
Magnesium alloys TL , TS = f (ρlобщ) R2 ≥ 0.97
Here: tgαγ – weighted average parameter of the micro-doping subsystem constants γ-
solid solution hardeners (Mo, W, Re, Ta).
The proposed models for determining the fusibility of chromium-nickel
steels are recommended for use with the content of basic elements Cr, Ni from
364
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
0 to 30%. Developed regression models for iron-carbon steels and alloys are
recommended for use when the iron content in the melt matrix (to 97%) and the
total alloying component (to 20%). Aluminium and magnesium alloys have a
similar model structure, which is due to their location in one area in a micro-
inhomogeneous structure (Fig. 1.) and is expressed by the parameter of the
directed charge density (ρl, е/нм).
All the developed models were additionally tested on independent data that
were not included in the initial samples, which confirmed their adequacy and
the ability to recommend the results obtained for use in the ASNI system and
the process control system.
The developed models were also tested by comparing with the well-known
foreign specialized computer complex JMatPro with the assistance of scientists
from the Paderborn University (Germany) [13], which confirmed their
adequacy for making decisions on controlling the temperature of melting.
Comparative analysis of calculated and experimental data for liquidus and
solidus temperatures of iron-carbon steels, aluminium and magnesium alloys
agree well with each other in both cases (both when using the concept of
directed chemical bonding (DCB) and the JMatPro complex) and are highly
predictable.
It should be noted that for sampling these melting points and crystallization
of high-temperature nickel alloys there is a significant inconsistency in
calculations using the JMatPro program (Fig.2, Table 2).
Table 2. Estimation of the accuracy of the prediction of the crystallization temperature
of high-temperature nickel alloys
Alloy grade TS exp. °C TS by DCB °C TS by JMatPro °C
CMSX-10 1394 1396.06 1322
ЖС32 1345 1343 1242
ЖС6К 1265 1281.76 1256
ЖС6У 1275 1272.63 1206
Rene N5 1336 1343.42 1195
Rene N6 1365 1363.79 1174
CM186LC 1337 1345.52 1160
CM247LC 1313 1299.52 1120
PWA 1480 1350 1318.72 1116
CMSX-4 1339 1343.84 1154
CMSX-11B 1287 1284.88 1136
CMSX-11C 1275 1286.86 1156
Forecast error, % 0.66 10.30
In [13], researchers also noted a significant discrepancy when calculating
the solidus temperature using the JMatPro software for nickel alloys in
particular for CW6MC and N3M alloys is 112 and 177, respectively, which is
365
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
probably due to the fact that the content of of alloys for which software was
developed based on a modified Shile approximation
Figure 2. Comparison
of experimental and
calculated values of
solidus temperature of
high-temperature
nickel alloys according
to [14]
As chromium-nickel steels (Table 3), are among the most popular on the
domestic and foreign markets steel-smelting production, in this paper the
emphasis is on the basic technological properties - their density in liquid and
solid state (Figure 3).
Table 3. Fragment of a sample of data on the chemical composition of the investigated
steels
Thus, the model for predicting the density of chromium-nickel steels is: ρL,
ρS = f (tgα).
According to a similar method for 19 compositions of high-temperature
nickel alloys, their most informative parameters were identified - the average
internuclear distance dобщ and Z
y
общ – charge state of the general system of the
corresponding alloy. Since for high-temperature nickel alloys it is especially
366
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
important to maintain long-term high-temperature operation of products, which
is ensured by alloying with refractory elements, the effect of tgαγ – of the
weighted average parameter of the micro-doping subsystem constants γ – solid
solution hardeners (Mo, W, Re, Ta, Ru). With this approach to density
modeing, it is described by the equation (1):
ρ = -47,26+18,54dобщ+13,75tgαγ+1,09Z
y
общ R
2
≥ 0.75 (1)
Figure 3. The dependence of the density of chromium-nickel steels during melting and
crystallization of the weighted average parameter tgα
The developed model for predicting the density of heat-resistant nickel
melts was additionally examined on independent data. [15, 16, 17], which
confirmed its performance. Along with the above physicochemical properties
of special-purpose steels and alloys, we studied the possibility of predicting an
important structural-sensitive characteristic of alloyed chromium-containing
steels in the temperature range 1600-1750 °C - viscosity (Table 4).
Table 4. The parameters of interatomic interaction of the studied steels
Steel Zy, е d, 10-1nm tg α ρl, e/ nm
Х9С2 1.536939 2.7334 0.086388 3.711785
2Х13 1.586772 2.7588 0.085499 3.721357
Х6С 1.399612 2.7535 0.087248 3.631676
50С2 1.28208 2.7031 0.088718 3.627713
Х18Н25 1.903133 2.7515 0.088927 3.642391
Х18Н12 1.826277 2.7919 0.086539 3.66897
Х18Н9 1.80275 2.7887 0.086025 3.689942
2Х18Н9 1.776506 2.783 0.085543 3.713191
Х17Н2 1.692633 2.7863 0.084424 3.744633
Р18 1.561596 2.7347 0.086102 3.770002
Р9 1.444351 2.7178 0.087228 3.714686
7Х3 1.332615 2.6946 0.088322 3.671608
367
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
Knowledge of the viscosity characteristics of metal melts allows us to
scientifically-based approach to the choice of injected alloying additives in
steel, as well as to regulate ion-exchange and heat-mass transfer processes in
the metal-slag-additive system.
Analysis of the relationship between the parameters of interatomic
interaction with the kinematic viscosity of steels made it possible to establish
that taking into account the directional charge density allows linearization of
the dependences, which is due to the influence of micro-inhomogeneous
regions, in particular clusters of refractory elements - tungsten and chromium
(Fig.4.a). On the picture - Fig.4.b is shown a comparative analysis of the
calculated and experimental data of the kinematic viscosity of alloyed steels of
the target value.
Taking into account the temperature factor, the operational predictive
model is (2):
310
)692,34832,20647,12(
T
tgl
f
R
2
≥ 0.6 (2)
а) b)
Figure 4. Dependence of kinematic viscosity on the directional charge density of alloyed
steels at 1600°C; b - comparative analysis of calculated and experimental values of
kinematic viscosity in the temperature range 1600-1750°C [18]
Conclusions.
In this paper, analytical dependencies are proposed for calculating the
melting point, density, and viscosity of metal melts, based on the concept of
directed chemical bonding and physico-chemical modelling of melts as a
chemically unified system at the level of interatomic interaction.
Accounting for the interatomic interaction parameters (Z
y
; d; tgα) and the
microinhomogeneity parameter - ρl made it possible to improve the accuracy of
predictive models.
High agreement of the calculated with experimental data, as well as
comparative analysis with calculations for the widely used foreign software
package based on the basics of classical thermodynamics - JMatPro confirmed
368
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
the adequacy of the obtained models, which allows us to recommend them for
use in automated research system and automated process control systems of
technological processes of steelmaking.
1. Naydek V. L., Melnik S. G., Verkhovlyuk A. M. Clusters - structural components of
metal melts // Metal and Casting of Ukraine .- 2015. - № 7.- P. 21-24.
2. Skrebtsov A.M. Liquid metals. Their properties and structure. Textbook for
universities. Mariupol, Perm State Technical University, 2010. - 252.
3. Proceedings of the XIII Russian Conference "The structure and properties of
metallic and slag melts". T.1. Ekaterinburg: Ural Branch of RAS, 2011. - 218 p.
4. Hansen J.P., MacDonald I.R., Theory of Simple Liquids, Academic Press, London,
1986.
5. The structure of metallic liquids: Tutorial. L.A. Zhukov. Ekaterinburg: USTU-UPI,
2002. 46 p.
6. Vikhlevshchuk V.A., Kharakhulakh V.S., Brodsky S.S. Ladle steel finishing: -
Dnepropetrovsk: System technologies, 2000 - 190 p.
7. Ladyanov V. I., Novokhatsky I. A., S. V. Logunov. Estimation of the lifetime of
clusters in liquid metals. Izv. Academy of Sciences of the USSR. Metals. 1995. №
2. From 13-22.
8. Prikhodko E. V. Efficiency of complex alloying of steels and alloys. - K .: Naukova
Dumka, 1995. - 292s.
9. Snihura I.R., Togobitskaya D.N. Prediction of melting and crystallization
temperatures of nickel-chrome steels. - Modern problems and metals. Наукові
вісті. No. 21, Vol. 1, 2018 - p. 67 - 72.
10. Togobitskaya D.N., Snihura I.R. Prediction of liquidus temperatures and solidus of
metal melts based on the concept of targeted chemical bonding. International
scientific and technical journal "Automated technologies and production"
Magnitogorsk. - № 3, 2016. - p. 64 - 69.
11. Togobitskaya D.N., Golovko L.A., Snihura I.R. Investigation of the
microinhomogeneity of one-component metal melts in the region of the above-
likvidusnyh temperatures based on the interatomic interaction parameters. - VII
International Scientific and Practical Conference "Science in the modern world." -
Kiev, March 19, 2016 - p. 37 – 44
12. Togobitskaya D.N., Snihura I.R., Stepanenko D.A. Prediction of liquidus
temperatures in aluminum and magnesium alloys based on the concept of a directed
chemical bond. - Materials of the XVth All-Ukrainian Competitive Scientific
Practical Conference of the Special Metalurgy: Vchora, CGN, Tomorrow. - 2017,
p. 1139 - 1148.37 - 44
13. Computer simulation of the melting and crystallization temperatures of special-
purpose alloys. / D.N. Togobitskaya, M. Shaper, O. Gridin, I.R. Snihura. - Steel. №
6. 2018 - p. 11 - 15.
14. Gaiduk S.V., Kononov V.V., Kurenkova V.V. Obtaining predictive mathematical
models for calculating the thermodynamic parameters of casting high-temperature
nickel alloys // SEM-2015. - № 5. - p. 31-37.
369
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
15. Petrushin N.V., Svetlov I.L. Physico-chemical and structural characteristics of high-
temperature nickel alloys // Metals. 2001. No. 2. C 63 - 73.
16. Kablov, E.N., Golubovsky, E.R. Heat resistance of nickel alloys. M .:
Mashinostroenie, 1998. 464 p.
17. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Heat-resistant nickel alloys
for advanced aviation GTE // Light alloy technology. 2007. № 2. P. 6 - 16.
18. K. D. Carlson & C. Beckermann (2012) Determination of solid fraction–
temperature relation and latent heat using full scale casting experiments: application
to corrosion resistant steels and nickel based alloys, International Journal of Cast
Metals Research, 25:2, 75-92, DOI: 10.1179/1743133611Y.0000000023
И. Р. Снигура, Д. Н. Тогобицкая
Роль учета межатомного взаимодействия при прогнозировании
комплекса структурно-чувствительных свойств сталей и сплавов
специального назначения
Целью работы является выявление влияния химического состава сталей и
сплавов специального назначения на формирование их физико-химических и
структурно-чувствительных свойств. Эта задача решается путем математического
моделирования неразделимой цепочки «состав - структура - свойство» с учетом
параметров межатомного взаимодействия в расплаве на основе концепции
направленной химической связи. Расплав стали рассматривается как химически
однородная система, а состояние расплавов выражается через совокупность
интегральных параметров, основными из которых являются: Zy - параметр
состояния заряда системы (е); г - статистически среднее межъядерное расстояние
(10-1нм); tgα - постоянная для каждого элемента, характеризующая изменение
радиуса иона при изменении его заряда. На базе экспериментальной информации
о свойствах и с использованием параметров межатомного взаимодействия
предложены расчетные модели для прогнозирования свойств сталей и сплавов. В
прогнозних моделях учтены параметры микронеоднородности стали, что
обеспечило высокую точность оперативного прогноза. Сравнительный анализ
полученных результатов расплавляемости стали с соответствующими расчетами
на основе программного комплекса JMatPro подтвердил эффективность
использования параметров межатомного взаимодействия в качестве модельних.
Предлагаемые модели для определения расплавляемости хромоникелевых сталей
рекомендованы к применению с содержанием основных элементов Cr, Ni от 0 до
30%. Результаты исследований рекомендуются к использованию в промышленных
условиях посредством интеграции разработанных моделей в АСУТП
сталеплавильного производства, что будет способствовать направленному
формированию состава и свойств продуктов плавки, а также снижению
энергетических затрат.
Ключевые слова: специальные стали, параметры межатомного
взаимодействия, физико-химические свойства, микронеоднородность,
прогнозные модели
370
«Фундаментальные и прикладные проблемы черной металлургии»,
Сборник научных трудов ИЧМ. – 2018. - Вып.32
І. Р. Снігура, Д. М. Тогобицька,
Роль врахування міжатомної взаємодії при прогнозуванні комплексу
структурно-чуттєвих властивостей сталей та сплавів спеціального
призначення
Метою роботи є виявлення впливу хімічного складу сталей і сплавів
спеціального призначення на формування їх фізико-хімічних і структурно-
чутливих властивостей. Це завдання вирішується шляхом математичного
моделювання нероздільного ланцюжка «склад - структура - властивість» з
урахуванням параметрів міжатомної взаємодії в розплаві на основі концепції
спрямованої хімічного зв'язку. Розплав стали розглядається як хімічно однорідна
система, а стан розплавів виражається через сукупність інтегральних параметрів,
основними з яких є: Zy - параметр стану заряду системи (е); г - статистично
середня меж'ядерна відстань (10-1нм); tgα - постійна для кожного елемента, що
характеризує зміну радіуса іона при зміні його заряду. На базі експериментальної
інформації про властивості та з використанням параметрів міжатомної взаємодії
запропоновано розрахункові моделі для прогнозування властивостей сталей і
сплавів. У прогнозних моделях враховано параметри мікронеоднорідності сталі,
що забезпечило високу точність оперативного прогнозу. Порівняльний аналіз
отриманих результатів расплавляемості стали з відповідними розрахунками на
основі програмного комплексу JMatPro підтвердив ефективність використання
параметрів міжатомної взаємодії в якості модельних. Пропоновані моделі для
визначення расплавляемості хромонікелевих сталей рекомендовано до
застосування з вмістом основних елементів Cr, Ni від 0 до 30%. Результати
досліджень рекомендуються до використання в промислових умовах за
допомогою інтеграції розроблених моделей в АСУТП сталеплавильного
виробництва, що сприятиме спрямованому формуванню складу і властивостей
продуктів плавки, а також зниження енергетичних витрат.
Ключові слова: спеціальні стали, параметри міжатомної взаємодії,
фізико-хімічні властивості, мікронеоднорідність, прогнозні моделі
The article was submitted to the editorial board of the collection on November
1, 2018; internal and external reviewing took place (Minutes of the meeting of
the editorial board of collection No. 1 of December 26, 2018)
Статья поступила в редакцию сборника 01.11.2018 года,
прошла внутреннее и внешнее рецензирование (Протокол заседания
редакционной коллегии сборника №1 от 26 декабря 2018 года)
Рецензенты: д.т.н., проф. Л.В.Камкина, д.т.н. А.С.Вергун
|