The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose

The aim of the work is to identify the influence of the chemical composition of steels and special-purpose alloys on the formation of their physicochemical and structural-sensitive properties. This problem is solved by mathematical modeling of the inseparable chain «composition - structure – propert...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Snihura, I.R., Togobitskaya, D.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут чорної металургії ім. З.І. Некрасова НАН України 2018
Назва видання:Фундаментальные и прикладные проблемы черной металлургии
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/160037
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose / I.R. Snihura, D.N. Togobitskaya // Фундаментальные и прикладные проблемы черной металлургии: Сб. научн. тр. — Дніпро.: ІЧМ НАН України, 2018. — Вип. 32. — С. 361-370. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-160037
record_format dspace
spelling irk-123456789-1600372019-10-21T01:25:53Z The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose Snihura, I.R. Togobitskaya, D.N. Металловедение и материаловедение The aim of the work is to identify the influence of the chemical composition of steels and special-purpose alloys on the formation of their physicochemical and structural-sensitive properties. This problem is solved by mathematical modeling of the inseparable chain «composition - structure – property» taking into account the parameters of interatomic interaction in the melt based on the concept of a directed chemical bond. Целью работы является выявление влияния химического состава сталей и сплавов специального назначения на формирование их физико-химических и структурно-чувствительных свойств. Эта задача решается путем математического моделирования неразделимой цепочки «состав - структура - свойство» с учетом параметров межатомного взаимодействия в расплаве на основе концепции направленной химической связи. Метою роботи є виявлення впливу хімічного складу сталей і сплавів спеціального призначення на формування їх фізико-хімічних і структурно-чутливих властивостей. Це завдання вирішується шляхом математичного моделювання нероздільного ланцюжка «склад - структура - властивість» з урахуванням параметрів міжатомної взаємодії в розплаві на основі концепції спрямованої хімічного зв'язку. 2018 Article The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose / I.R. Snihura, D.N. Togobitskaya // Фундаментальные и прикладные проблемы черной металлургии: Сб. научн. тр. — Дніпро.: ІЧМ НАН України, 2018. — Вип. 32. — С. 361-370. — Бібліогр.: 18 назв. — англ. 2522-9117 http://dspace.nbuv.gov.ua/handle/123456789/160037 669.02/09:669.15*24*26-194. en Фундаментальные и прикладные проблемы черной металлургии Інститут чорної металургії ім. З.І. Некрасова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Металловедение и материаловедение
Металловедение и материаловедение
spellingShingle Металловедение и материаловедение
Металловедение и материаловедение
Snihura, I.R.
Togobitskaya, D.N.
The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose
Фундаментальные и прикладные проблемы черной металлургии
description The aim of the work is to identify the influence of the chemical composition of steels and special-purpose alloys on the formation of their physicochemical and structural-sensitive properties. This problem is solved by mathematical modeling of the inseparable chain «composition - structure – property» taking into account the parameters of interatomic interaction in the melt based on the concept of a directed chemical bond.
format Article
author Snihura, I.R.
Togobitskaya, D.N.
author_facet Snihura, I.R.
Togobitskaya, D.N.
author_sort Snihura, I.R.
title The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose
title_short The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose
title_full The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose
title_fullStr The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose
title_full_unstemmed The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose
title_sort role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose
publisher Інститут чорної металургії ім. З.І. Некрасова НАН України
publishDate 2018
topic_facet Металловедение и материаловедение
url http://dspace.nbuv.gov.ua/handle/123456789/160037
citation_txt The role of taking into account the interatomic interaction in predicting the complex of structurally-sensitive properties of steels and alloys for special purpose / I.R. Snihura, D.N. Togobitskaya // Фундаментальные и прикладные проблемы черной металлургии: Сб. научн. тр. — Дніпро.: ІЧМ НАН України, 2018. — Вип. 32. — С. 361-370. — Бібліогр.: 18 назв. — англ.
series Фундаментальные и прикладные проблемы черной металлургии
work_keys_str_mv AT snihurair theroleoftakingintoaccounttheinteratomicinteractioninpredictingthecomplexofstructurallysensitivepropertiesofsteelsandalloysforspecialpurpose
AT togobitskayadn theroleoftakingintoaccounttheinteratomicinteractioninpredictingthecomplexofstructurallysensitivepropertiesofsteelsandalloysforspecialpurpose
AT snihurair roleoftakingintoaccounttheinteratomicinteractioninpredictingthecomplexofstructurallysensitivepropertiesofsteelsandalloysforspecialpurpose
AT togobitskayadn roleoftakingintoaccounttheinteratomicinteractioninpredictingthecomplexofstructurallysensitivepropertiesofsteelsandalloysforspecialpurpose
first_indexed 2025-07-14T12:39:44Z
last_indexed 2025-07-14T12:39:44Z
_version_ 1837626081643855872
fulltext 361 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 UDC 669.02/09:669.15*24*26-194. I. R. Snihura, D. N. Togobitskaya THE ROLE OF TAKING INTO ACCOUNT THE INTERATOMIC INTERACTION IN PREDICTING THE COMPLEX OF STRUCTURALLY- SENSITIVE PROPERTIES OF STEELS AND ALLOYS FOR SPECIAL PURPOSE Z.I. Nekrasov Iron and Steel Institute, National Academy of Sciences of Ukraine The aim of the work is to identify the influence of the chemical composition of steels and special-purpose alloys on the formation of their physicochemical and structural-sensitive properties. This problem is solved by mathematical modeling of the inseparable chain «composition - structure – property» taking into account the parameters of interatomic interaction in the melt based on the concept of a directed chemical bond. A steel melt is considered as a chemically homogeneous system, and the state of the melts is expressed through a set of integral parameters, the main of which are: Zy - system charge state parameter (e); r - statistically average internuclear distance (10-1nm); tgα is a constant for each element, which characterizes the change in the radius of the ion as its charge changes. On the basis of experimental information on properties and using the parameters of interatomic interaction, computational models are proposed for predicting the properties of steels and alloys. The forecast models took into account the parameters of micro-inhomogeneity of steel, which ensured a high accuracy of the operational forecast. A comparative analysis of the results of steel melting with the corresponding calculations based on the JMatPro software package confirmed the effectiveness of using the interatomic interaction parameters as models. The proposed models for determining the melting of chromium-nickel steels are recommended for use with the content of basic elements Cr, Ni from 0 to 30%. The research results are recommended for use in industrial environments through the integration of the developed models in the process control system of steelmaking, which will contribute to the directed formation of the composition and properties of smelting products, as well as reducing energy costs. Keywords: special steels, interatomic interaction parameters, physicochemical properties, micro-inhomogeneity, predictive models The state of the problem. In recent years, the tendency to increase the demand for high-quality metal products has become more pronounced. The depletion and deterioration of the quality of mineral resources, both in the world market and within our country, puts on the agenda a search for new approaches and the improvement of the adopted technological solutions aimed at improving the quality of special-purpose steels and alloys, which is associated with physical and chemical modelling of metal melts and their interactions in the «metal-slag» system. This will provide a theoretical basis for a scientifically-based choice of rational modes of melting special-purpose steels, as well as the efficient use of raw materials and energy resources. Prediction of a complex of physicochemical (melting and crystallization temperature, density, micro-inhomogeneity, viscosity, surface tension, 362 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 electrical conductivity and other properties) of the mechanical and operational properties of steels and alloys of special value, will allow you to quickly manage the process of refining the steel in the ladle, as well as the processes during casting and crystallization, and improve the technical and economic indicators of smelting. Despite the growing amount of research on these issues, there are still difficulties in predicting the structure-sensitive properties of metallic multicomponent melts, which is largely due to the lack of the formulated fundamental positions of the liquid state of metallic systems that would serve as the basis for the formation of the generally accepted structure. Currently, the most actively developed and used to explain the physicochemical and structural features of liquid metal systems are ideas about their microheterogeneous structure, which are partially reflected in the works [1–5]. Segregation of clusters in steel violates the homogeneous state of the melt, as the most important indicator of quality [6], viscosity increases and may cause the formation of non-metallic inclusions and, as a result, defects in the finished metal product, thereby reducing the performance and service life of the product. Differences in the forces of interatomic interaction, describing the physicochemical relationship between the individual components of the melt manifest themselves in their clustering ability (Fig.1). Figure 1 – Dependence of the temperature of existence of a cluster of one-component metal melts on the parameter of the directed charge density (ρl) according to [7] The most stable clusters are formed with the strongest inter-atomic bonds between the components of the melt. From the data in Figure 1 to such should be attributed Re, Ta, W, while the most easily destroyed are K, Na, Li. Proper consideration of the temperature of the existence of clusters and their destruction is one of the effective technological methods, which will ensure the uniformity of the structure of the metal melt and optimize the temperature of melting. 363 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 Purpose of the work – identifying the influence of the chemical composition of target steels on the formation of their structurally sensitive properties based on the interatomic interaction parameters in their melts in order to simulate processes in the metal-slag system when solving problems of a scientifically-based choice of effective alloying additives. The main research material. According to many years of experience in predicting the physicochemical properties of metal and slag melts in Z.I. Nekrasov Iron and Steel Institute of NAS of Ukraine, this problem is solved by mathematical modelling of an inseparable «composition – structure – property» chain, taking into account the interatomic interaction parameters in the melt, based on the concept of a directed chemical bond developed by Prikhodko E.V. and which considers the melt as a chemically uniform system [8]. Chemical individuality, reactivity, chemical and structural state of the investigated melts is expressed through a combination of integral parameters, the main of which are: Z y – system charge state parameter; d – statistically average internuclear distance, 10 -1 nm; tgα – constant for each element characterizing the change in the radius of an ion when its charge changes. Additional introduction of the directional charge density parameter (ρl, e/nm) allows you to indirectly take into account the microheterogeneity of the melt (clusters, microcrystallites, sibotaxis, swarms). Entering the listed parameters reduces the parametricity of the models and increases their physicality. The efficiency and effectiveness of this method was confirmed by us in the development of models for predicting the temperatures of melting and crystallization of chromium-nickel steels. [9], iron carbon steels (constructional, instrumental, rail) [10], high-temperature nickel alloys (HTNA) [11], aluminium and magnesium alloys [12] with high forecast accuracy (Table 1). Thus for heat resisting nickel alloys, refractory elements (Mo, W, Re, Ta) allocated in a separate subsystem. Table 1. Accuracy of predicted models of melting temperatures and crystallization of steels and alloys for special purposes Metallic melts Model Accuracy Chromium-Nickel steel TL, TS = f (Zy, d, tgα) R2 ≥ 0.93 Iron carbon steels TL, TS = f (Zy, ρlобщ) R2 ≥ 0.95 High-temperature nickel alloys TL, TS = f (ρlобщ, tgαγ) R2 ≥ 0.88 Aluminium alloys TL, TS = f (ρlобщ) R2 ≥ 0.92 Magnesium alloys TL , TS = f (ρlобщ) R2 ≥ 0.97 Here: tgαγ – weighted average parameter of the micro-doping subsystem constants γ- solid solution hardeners (Mo, W, Re, Ta). The proposed models for determining the fusibility of chromium-nickel steels are recommended for use with the content of basic elements Cr, Ni from 364 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 0 to 30%. Developed regression models for iron-carbon steels and alloys are recommended for use when the iron content in the melt matrix (to 97%) and the total alloying component (to 20%). Aluminium and magnesium alloys have a similar model structure, which is due to their location in one area in a micro- inhomogeneous structure (Fig. 1.) and is expressed by the parameter of the directed charge density (ρl, е/нм). All the developed models were additionally tested on independent data that were not included in the initial samples, which confirmed their adequacy and the ability to recommend the results obtained for use in the ASNI system and the process control system. The developed models were also tested by comparing with the well-known foreign specialized computer complex JMatPro with the assistance of scientists from the Paderborn University (Germany) [13], which confirmed their adequacy for making decisions on controlling the temperature of melting. Comparative analysis of calculated and experimental data for liquidus and solidus temperatures of iron-carbon steels, aluminium and magnesium alloys agree well with each other in both cases (both when using the concept of directed chemical bonding (DCB) and the JMatPro complex) and are highly predictable. It should be noted that for sampling these melting points and crystallization of high-temperature nickel alloys there is a significant inconsistency in calculations using the JMatPro program (Fig.2, Table 2). Table 2. Estimation of the accuracy of the prediction of the crystallization temperature of high-temperature nickel alloys Alloy grade TS exp. °C TS by DCB °C TS by JMatPro °C CMSX-10 1394 1396.06 1322 ЖС32 1345 1343 1242 ЖС6К 1265 1281.76 1256 ЖС6У 1275 1272.63 1206 Rene N5 1336 1343.42 1195 Rene N6 1365 1363.79 1174 CM186LC 1337 1345.52 1160 CM247LC 1313 1299.52 1120 PWA 1480 1350 1318.72 1116 CMSX-4 1339 1343.84 1154 CMSX-11B 1287 1284.88 1136 CMSX-11C 1275 1286.86 1156 Forecast error, % 0.66 10.30 In [13], researchers also noted a significant discrepancy when calculating the solidus temperature using the JMatPro software for nickel alloys in particular for CW6MC and N3M alloys is 112 and 177, respectively, which is 365 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 probably due to the fact that the content of of alloys for which software was developed based on a modified Shile approximation Figure 2. Comparison of experimental and calculated values of solidus temperature of high-temperature nickel alloys according to [14] As chromium-nickel steels (Table 3), are among the most popular on the domestic and foreign markets steel-smelting production, in this paper the emphasis is on the basic technological properties - their density in liquid and solid state (Figure 3). Table 3. Fragment of a sample of data on the chemical composition of the investigated steels Thus, the model for predicting the density of chromium-nickel steels is: ρL, ρS = f (tgα). According to a similar method for 19 compositions of high-temperature nickel alloys, their most informative parameters were identified - the average internuclear distance dобщ and Z y общ – charge state of the general system of the corresponding alloy. Since for high-temperature nickel alloys it is especially 366 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 important to maintain long-term high-temperature operation of products, which is ensured by alloying with refractory elements, the effect of tgαγ – of the weighted average parameter of the micro-doping subsystem constants γ – solid solution hardeners (Mo, W, Re, Ta, Ru). With this approach to density modeing, it is described by the equation (1): ρ = -47,26+18,54dобщ+13,75tgαγ+1,09Z y общ R 2 ≥ 0.75 (1) Figure 3. The dependence of the density of chromium-nickel steels during melting and crystallization of the weighted average parameter tgα The developed model for predicting the density of heat-resistant nickel melts was additionally examined on independent data. [15, 16, 17], which confirmed its performance. Along with the above physicochemical properties of special-purpose steels and alloys, we studied the possibility of predicting an important structural-sensitive characteristic of alloyed chromium-containing steels in the temperature range 1600-1750 °C - viscosity (Table 4). Table 4. The parameters of interatomic interaction of the studied steels Steel Zy, е d, 10-1nm tg α ρl, e/ nm Х9С2 1.536939 2.7334 0.086388 3.711785 2Х13 1.586772 2.7588 0.085499 3.721357 Х6С 1.399612 2.7535 0.087248 3.631676 50С2 1.28208 2.7031 0.088718 3.627713 Х18Н25 1.903133 2.7515 0.088927 3.642391 Х18Н12 1.826277 2.7919 0.086539 3.66897 Х18Н9 1.80275 2.7887 0.086025 3.689942 2Х18Н9 1.776506 2.783 0.085543 3.713191 Х17Н2 1.692633 2.7863 0.084424 3.744633 Р18 1.561596 2.7347 0.086102 3.770002 Р9 1.444351 2.7178 0.087228 3.714686 7Х3 1.332615 2.6946 0.088322 3.671608 367 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 Knowledge of the viscosity characteristics of metal melts allows us to scientifically-based approach to the choice of injected alloying additives in steel, as well as to regulate ion-exchange and heat-mass transfer processes in the metal-slag-additive system. Analysis of the relationship between the parameters of interatomic interaction with the kinematic viscosity of steels made it possible to establish that taking into account the directional charge density allows linearization of the dependences, which is due to the influence of micro-inhomogeneous regions, in particular clusters of refractory elements - tungsten and chromium (Fig.4.a). On the picture - Fig.4.b is shown a comparative analysis of the calculated and experimental data of the kinematic viscosity of alloyed steels of the target value. Taking into account the temperature factor, the operational predictive model is (2):          310 )692,34832,20647,12( T tgl f   R 2 ≥ 0.6 (2) а) b) Figure 4. Dependence of kinematic viscosity on the directional charge density of alloyed steels at 1600°C; b - comparative analysis of calculated and experimental values of kinematic viscosity in the temperature range 1600-1750°C [18] Conclusions. In this paper, analytical dependencies are proposed for calculating the melting point, density, and viscosity of metal melts, based on the concept of directed chemical bonding and physico-chemical modelling of melts as a chemically unified system at the level of interatomic interaction. Accounting for the interatomic interaction parameters (Z y ; d; tgα) and the microinhomogeneity parameter - ρl made it possible to improve the accuracy of predictive models. High agreement of the calculated with experimental data, as well as comparative analysis with calculations for the widely used foreign software package based on the basics of classical thermodynamics - JMatPro confirmed 368 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 the adequacy of the obtained models, which allows us to recommend them for use in automated research system and automated process control systems of technological processes of steelmaking. 1. Naydek V. L., Melnik S. G., Verkhovlyuk A. M. Clusters - structural components of metal melts // Metal and Casting of Ukraine .- 2015. - № 7.- P. 21-24. 2. Skrebtsov A.M. Liquid metals. Their properties and structure. Textbook for universities. Mariupol, Perm State Technical University, 2010. - 252. 3. Proceedings of the XIII Russian Conference "The structure and properties of metallic and slag melts". T.1. Ekaterinburg: Ural Branch of RAS, 2011. - 218 p. 4. Hansen J.P., MacDonald I.R., Theory of Simple Liquids, Academic Press, London, 1986. 5. The structure of metallic liquids: Tutorial. L.A. Zhukov. Ekaterinburg: USTU-UPI, 2002. 46 p. 6. Vikhlevshchuk V.A., Kharakhulakh V.S., Brodsky S.S. Ladle steel finishing: - Dnepropetrovsk: System technologies, 2000 - 190 p. 7. Ladyanov V. I., Novokhatsky I. A., S. V. Logunov. Estimation of the lifetime of clusters in liquid metals. Izv. Academy of Sciences of the USSR. Metals. 1995. № 2. From 13-22. 8. Prikhodko E. V. Efficiency of complex alloying of steels and alloys. - K .: Naukova Dumka, 1995. - 292s. 9. Snihura I.R., Togobitskaya D.N. Prediction of melting and crystallization temperatures of nickel-chrome steels. - Modern problems and metals. Наукові вісті. No. 21, Vol. 1, 2018 - p. 67 - 72. 10. Togobitskaya D.N., Snihura I.R. Prediction of liquidus temperatures and solidus of metal melts based on the concept of targeted chemical bonding. International scientific and technical journal "Automated technologies and production" Magnitogorsk. - № 3, 2016. - p. 64 - 69. 11. Togobitskaya D.N., Golovko L.A., Snihura I.R. Investigation of the microinhomogeneity of one-component metal melts in the region of the above- likvidusnyh temperatures based on the interatomic interaction parameters. - VII International Scientific and Practical Conference "Science in the modern world." - Kiev, March 19, 2016 - p. 37 – 44 12. Togobitskaya D.N., Snihura I.R., Stepanenko D.A. Prediction of liquidus temperatures in aluminum and magnesium alloys based on the concept of a directed chemical bond. - Materials of the XVth All-Ukrainian Competitive Scientific Practical Conference of the Special Metalurgy: Vchora, CGN, Tomorrow. - 2017, p. 1139 - 1148.37 - 44 13. Computer simulation of the melting and crystallization temperatures of special- purpose alloys. / D.N. Togobitskaya, M. Shaper, O. Gridin, I.R. Snihura. - Steel. № 6. 2018 - p. 11 - 15. 14. Gaiduk S.V., Kononov V.V., Kurenkova V.V. Obtaining predictive mathematical models for calculating the thermodynamic parameters of casting high-temperature nickel alloys // SEM-2015. - № 5. - p. 31-37. 369 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 15. Petrushin N.V., Svetlov I.L. Physico-chemical and structural characteristics of high- temperature nickel alloys // Metals. 2001. No. 2. C 63 - 73. 16. Kablov, E.N., Golubovsky, E.R. Heat resistance of nickel alloys. M .: Mashinostroenie, 1998. 464 p. 17. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Heat-resistant nickel alloys for advanced aviation GTE // Light alloy technology. 2007. № 2. P. 6 - 16. 18. K. D. Carlson & C. Beckermann (2012) Determination of solid fraction– temperature relation and latent heat using full scale casting experiments: application to corrosion resistant steels and nickel based alloys, International Journal of Cast Metals Research, 25:2, 75-92, DOI: 10.1179/1743133611Y.0000000023 И. Р. Снигура, Д. Н. Тогобицкая Роль учета межатомного взаимодействия при прогнозировании комплекса структурно-чувствительных свойств сталей и сплавов специального назначения Целью работы является выявление влияния химического состава сталей и сплавов специального назначения на формирование их физико-химических и структурно-чувствительных свойств. Эта задача решается путем математического моделирования неразделимой цепочки «состав - структура - свойство» с учетом параметров межатомного взаимодействия в расплаве на основе концепции направленной химической связи. Расплав стали рассматривается как химически однородная система, а состояние расплавов выражается через совокупность интегральных параметров, основными из которых являются: Zy - параметр состояния заряда системы (е); г - статистически среднее межъядерное расстояние (10-1нм); tgα - постоянная для каждого элемента, характеризующая изменение радиуса иона при изменении его заряда. На базе экспериментальной информации о свойствах и с использованием параметров межатомного взаимодействия предложены расчетные модели для прогнозирования свойств сталей и сплавов. В прогнозних моделях учтены параметры микронеоднородности стали, что обеспечило высокую точность оперативного прогноза. Сравнительный анализ полученных результатов расплавляемости стали с соответствующими расчетами на основе программного комплекса JMatPro подтвердил эффективность использования параметров межатомного взаимодействия в качестве модельних. Предлагаемые модели для определения расплавляемости хромоникелевых сталей рекомендованы к применению с содержанием основных элементов Cr, Ni от 0 до 30%. Результаты исследований рекомендуются к использованию в промышленных условиях посредством интеграции разработанных моделей в АСУТП сталеплавильного производства, что будет способствовать направленному формированию состава и свойств продуктов плавки, а также снижению энергетических затрат. Ключевые слова: специальные стали, параметры межатомного взаимодействия, физико-химические свойства, микронеоднородность, прогнозные модели 370 «Фундаментальные и прикладные проблемы черной металлургии», Сборник научных трудов ИЧМ. – 2018. - Вып.32 І. Р. Снігура, Д. М. Тогобицька, Роль врахування міжатомної взаємодії при прогнозуванні комплексу структурно-чуттєвих властивостей сталей та сплавів спеціального призначення Метою роботи є виявлення впливу хімічного складу сталей і сплавів спеціального призначення на формування їх фізико-хімічних і структурно- чутливих властивостей. Це завдання вирішується шляхом математичного моделювання нероздільного ланцюжка «склад - структура - властивість» з урахуванням параметрів міжатомної взаємодії в розплаві на основі концепції спрямованої хімічного зв'язку. Розплав стали розглядається як хімічно однорідна система, а стан розплавів виражається через сукупність інтегральних параметрів, основними з яких є: Zy - параметр стану заряду системи (е); г - статистично середня меж'ядерна відстань (10-1нм); tgα - постійна для кожного елемента, що характеризує зміну радіуса іона при зміні його заряду. На базі експериментальної інформації про властивості та з використанням параметрів міжатомної взаємодії запропоновано розрахункові моделі для прогнозування властивостей сталей і сплавів. У прогнозних моделях враховано параметри мікронеоднорідності сталі, що забезпечило високу точність оперативного прогнозу. Порівняльний аналіз отриманих результатів расплавляемості стали з відповідними розрахунками на основі програмного комплексу JMatPro підтвердив ефективність використання параметрів міжатомної взаємодії в якості модельних. Пропоновані моделі для визначення расплавляемості хромонікелевих сталей рекомендовано до застосування з вмістом основних елементів Cr, Ni від 0 до 30%. Результати досліджень рекомендуються до використання в промислових умовах за допомогою інтеграції розроблених моделей в АСУТП сталеплавильного виробництва, що сприятиме спрямованому формуванню складу і властивостей продуктів плавки, а також зниження енергетичних витрат. Ключові слова: спеціальні стали, параметри міжатомної взаємодії, фізико-хімічні властивості, мікронеоднорідність, прогнозні моделі The article was submitted to the editorial board of the collection on November 1, 2018; internal and external reviewing took place (Minutes of the meeting of the editorial board of collection No. 1 of December 26, 2018) Статья поступила в редакцию сборника 01.11.2018 года, прошла внутреннее и внешнее рецензирование (Протокол заседания редакционной коллегии сборника №1 от 26 декабря 2018 года) Рецензенты: д.т.н., проф. Л.В.Камкина, д.т.н. А.С.Вергун