Method of iterative single-channel blind separation for qpsk signals

A method for single-channel blind separation of two QPSK (quadrature phase shift keying) signals is proposed. The method is based on the iterative maximization of a posteriori probability for mixture's components. The relations for a posteriori probabilities are derived and on its basis the ite...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Semenov, V.Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2018
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/162205
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Method of iterative single-channel blind separation for qpsk signals / V.Yu. Semenov // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 17. — С. 108-116. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-162205
record_format dspace
spelling irk-123456789-1622052020-01-05T01:25:35Z Method of iterative single-channel blind separation for qpsk signals Semenov, V.Yu. A method for single-channel blind separation of two QPSK (quadrature phase shift keying) signals is proposed. The method is based on the iterative maximization of a posteriori probability for mixture's components. The relations for a posteriori probabilities are derived and on its basis the iterative algorithm for the estimation of mixture's components is developed. The algorithm for the estimation of channel parameters (amplitudes, phases, time delays) is also developed. The effectiveness of method is demonstrated for various noise levels and time diversities between channels. The proposed parameters’ estimation procedure provides significant reduction of bit error rate (BER) over the case of unknown parameters. Запропоновано метод одноканального сліпого розділення двох сигналів з квадратурно-фазовою маніпуляцією (QPSK). Метод базується на ітеративному оцінюванні компонентів суміші за принципом максимізації апостеріорної ймовірності. Отримані формули для відповідних апостеріорних ймовірностей та на їх основі розроблено алгоритм оцінювання компонентів суміші. Також розроблено алгоритм оцінювання параметрів каналу (амплітуд, фаз і часових затримок). Ефективність методу перевірена при різних рівнях шуму та часового рознесення між каналами. Розроблена процедура оцінювання параметрів забезпечує суттєве скорочення бітової похибки (BER) у порівнянні з випадком невідомих параметрів. 2018 Article Method of iterative single-channel blind separation for qpsk signals / V.Yu. Semenov // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 17. — С. 108-116. — Бібліогр.: 6 назв. — англ. 2308-5878 http://dspace.nbuv.gov.ua/handle/123456789/162205 654.165 en Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A method for single-channel blind separation of two QPSK (quadrature phase shift keying) signals is proposed. The method is based on the iterative maximization of a posteriori probability for mixture's components. The relations for a posteriori probabilities are derived and on its basis the iterative algorithm for the estimation of mixture's components is developed. The algorithm for the estimation of channel parameters (amplitudes, phases, time delays) is also developed. The effectiveness of method is demonstrated for various noise levels and time diversities between channels. The proposed parameters’ estimation procedure provides significant reduction of bit error rate (BER) over the case of unknown parameters.
format Article
author Semenov, V.Yu.
spellingShingle Semenov, V.Yu.
Method of iterative single-channel blind separation for qpsk signals
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
author_facet Semenov, V.Yu.
author_sort Semenov, V.Yu.
title Method of iterative single-channel blind separation for qpsk signals
title_short Method of iterative single-channel blind separation for qpsk signals
title_full Method of iterative single-channel blind separation for qpsk signals
title_fullStr Method of iterative single-channel blind separation for qpsk signals
title_full_unstemmed Method of iterative single-channel blind separation for qpsk signals
title_sort method of iterative single-channel blind separation for qpsk signals
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/162205
citation_txt Method of iterative single-channel blind separation for qpsk signals / V.Yu. Semenov // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 17. — С. 108-116. — Бібліогр.: 6 назв. — англ.
series Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
work_keys_str_mv AT semenovvyu methodofiterativesinglechannelblindseparationforqpsksignals
first_indexed 2025-07-14T14:44:04Z
last_indexed 2025-07-14T14:44:04Z
_version_ 1837633891114942464
fulltext Математичне та комп’ютерне моделювання 108 UDC 654.165 V. Yu. Semenov, Ph. D. Scientific and Production Enterprise «Delta SPE», Kiev METHOD OF ITERATIVE SINGLE-CHANNEL BLIND SEPARATION FOR QPSK SIGNALS A method for single-channel blind separation of two QPSK (quad- rature phase shift keying) signals is proposed. The method is based on the iterative maximization of a posteriori probability for mixture's components. The relations for a posteriori probabilities are derived and on its basis the iterative algorithm for the estimation of mixture's com- ponents is developed. The algorithm for the estimation of channel pa- rameters (amplitudes, phases, time delays) is also developed. The ef- fectiveness of method is demonstrated for various noise levels and time diversities between channels. The proposed parameters’ estimation procedure provides significant reduction of bit error rate (BER) over the case of unknown parameters. Key words: Blind Source Separation, BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying). Introduction. Blind Source Separation is rapidly evolving since 1990s and comprises wide field of problems in telecommunications. There are a lot of existing approaches for the solution of blind source separation problem (see, e.g. [1–6]). A general statement of blind separation problem is shown at Fig. 1. There are p sources which are mixed by some vector-function at additive noise background. Having m sensors, separation algorithm has to estimate the source signals. Most of methods imply that the number of sensors is not less than the number of sources. However, the more frequently found case is of one sensor and several sources (underdetermined blind separation problem). When there are less sensors than sources, the problem is known to be underdetermined and turns out to be quite challenging. To remove the indeterminacy, we need to exploit any a priori knowledge induced by the system. Fig. 1. General statement of blind source separation problem © V. Yu. Semenov, 2018 Серія: Фізико-математичні науки. Випуск 17 109 Fig. 2. Statement of considered underdetermined BSS problem So, consider the problem from radio communications presented at Fig. 2. We have two discrete sequences 1( )s n , 2 ( )s n which are both QPSK, i.e. possess values 1 j  . They are passed through two independ- ent communication channels. Their mixture ( )x t is the observation signal. The goal is to restore original sequences 1( )s n , 2 ( )s n . In this paper the Bayesian approach proposed in [2] for the case of BPSK signals is further developed. We expand this approach for the case of QPSK signals and, besides, add channel parameters estimation proce- dure, while in work [2] the channel parameters were assumed to be known. Higher order modulations can be handled as well, though computational expenses grow exponentially with the modulation order. The organization of the paper is as follows. First, the structure of the proposed receiver is described. Then the idea of Bayesian approach to the estimation of original QPSK sequences as well as iterative separation algo- rithm is explained. The following sections include estimation of channel parameters and the experimental results. Preliminaries. As is known, in the data communication system, the transmitted QPSK sequences of symbols must be bandlimited using a pulse shaping filter ( )g t before transmitting. The received mixture of two digitally modulated signals received by one antenna in single channel can be expressed as: 1 2( ) ( ) ( ) ( )x t x t x t w t   , where ( ), 1,2ux t u  are the signals from two sources: ( ) ( ) ( ), 1,2uj u u u s u n x t a e s n g t nT u        and ( ); 1,2us n u  are original QPSK sequences to be estimated; sT is a symbol period; ua are the amplitudes; u are the phases; u are the time shifts. ( )g t is a total channel response (assumed to be raised square-root cosine with known roll-off), ( )w t is background noise with variance 2 . Математичне та комп’ютерне моделювання 110 The structure of proposed receiver. In this section we derive the separation algorithm, described in [2], but we do not limit ourselves to BPSK modulation and show that this approach can be applied to any kind of modulation. Structure of proposed receiver is presented at Fig. 3. The idea is to produce two discrete sequences: 1( )y n synchronous with the first source and 2 ( )y n synchronous with second source. The mixture is passed through filter ( )g t . Introducing notation ( ) ( ) ( )h t g t g t  for the «normal» raised cosine filter with the same roll- off and taking into account that ( ) ( ) ( ), 1, 2,u ug t g t h t u      we have the following output of matched filter: 1 2 1 1 1 2 2 2( ) ( ) ( ) ( ) ( ).j j s s n n y t a e s n h t nT a e s n h t nT              (1) Sampling of the signal (1) at times 1( )snT  and 2( )snT  respec- tively, produces two sequences: ' ' ' 1 2( ) ( ) ( ) ( ) ( ), 1,2,u uj j u u u u u u n y n a e s n a e s n h t w n u            where ' 3u u  denotes the channel index, opposite to u . Fig. 3. The structure of the receiver Let us assume that the impulse response ( )h t is essentially non-zero only for (2 1)l  symbols (a common example is 2l  ). Using this as- sumption, the model of observations transforms to: 1 2 2 1 1 1 1 2 2, 2 1 2 2 2 1 1, 1 2 ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ), j j T j j T y n a e s n a e h s n w n y n a e s n a e h s n w n               (2) where , '{ ( ), ... , ( ) { ( )}, ... . u s u u u u h h kT k l l s n s n k k l l            Серія: Фізико-математичні науки. Випуск 17 111 So, as can be seen from observation model (2), the observed signals 1( )y n and 2 ( )y n include first signal plus weighted tail of the second and second signal plus weighted tail of the first. We assume that the observa- tion noises 1 2,w w possess the same variance 2 . So, having observations 1( )y n and 2 ( )y n , our goal is to find estimates of 1( )s n and 2 ( )s n . Bayesian estimation of original QPSK sequences. The main idea of proposed approach is to maximize maximum a posteriori probability of transmitted symbols for each time instant 1,...,n N : 1..4 max ( ( ) / ( )), 1,2; { 1 }.u m u mm P s n S y n u S j       Similarly to technique, implemented in [2], one can show that a posteriori probability for u -th signal is connected with that of the opposite signal: ' ' ( ( ) / ( )) ( ( ) / ( ), ( ) ) ( ( ) ). l u m u u m u u u s S P s n S y n P s n S y n s n s P s n s        (3) Assuming that the observation noise is Gaussian, 2 2 ' , ,( ( ) / ( ), ( ) ) exp( 0.5 ( ))u m u u u m sP s n S y n s n s d n     (we dropped the denominator of Gaussian density for simplicity), where a priori discrepancy is given by , , ' ' ',( ) ( ) ( exp( ) exp( ) )T u m s u m u u u u ud n y n S a j a j h s    and ' ' 1 ... ( ( ) ) ( ( ) )u u k l k l l P s n s P s n k s        . Thus, formula (3) turns to 2 , , ' 1 ... ( ( ) / ( )) exp( 0.5 ) ( ( ) ). l u m u u m s u k l s S k l l P s n S y n d P s n k s            (4) As can be seen, relation (4) describes interdependence of a posteriori probabilities for the opposite signals. This gives a hint to construct itera- tive algorithm: ( ) 2 , , ',, 1 ... ( ) exp( 0.5 ) ( ) l m u m u iu i k l l p n d p n k        s s S , where i is a number of iteration. So, the iterative algorithm for the estimation of sequences 1( )s n and 2 ( )s n is as shown at Fig. 4. The iterations stop when average probabilities on adjacent iterations do not differ too much. Математичне та комп’ютерне моделювання 112 Fig. 4. The algorithm for the restoration of original QPSK sequences Channel parameters estimation. There is a common practice to in- sert predefined symbols (unique words) into the transmitted sequences. In our modeling, we use 32-symbol (64-bit) sequences denoted by U . The position of the unique word can be identified by its cross-correlation with received signal (see Fig. 5). Once we have detected the position of the unique word, we analyze its peak value max ( )u iR ( 1, 2u  ). Then the ampli- tude, phase and time delay can be estimated approximately as follows: max 2( )ˆ / ,u u ia R U , max ( )ˆ arg u u iR  , max max max max max ( ) ( ) 1 1 ( ) ( ) ( ) 1 1 ˆ 2 u u i i u u u u i i i R R R R R          Серія: Фізико-математичні науки. Випуск 17 113 The last formula for the delay comes from the parabolic interpolation of correlation function (see Fig. 6). Fig. 5. Detection of unique words in the mixture of two signals Fig. 6. Determination of channel parameters from cross-correlation peak value Experimental results. In this section the performance of proposed algo- rithm at different signal-to-noise ratios is analyzed. We take in these experi- ments the following values of parameters: 1 2 1a a  , 1 2 0.35   . The value of time diversity 1 2| |    was allowed to take different values and we examined algorithm's performance for different  . Fig. 7 shows the performance of proposed algorithm when the channel parameters are assumed known and Fig. 8 shows the performance of proposed algorithm when the channel parameters are estimated as was discussed above. Математичне та комп’ютерне моделювання 114 In both cases 15 iterations of the algorithm were used. It can be seen that the case of known parameters has a slight advantage in terms of BER over the case when parameters are estimated by proposed procedure. Fig. 7. Performance of proposed algorithm when the channel parameters are assumed known Fig. 8. Performance of proposed algorithm when the channel parameters are estimated by proposed method As can be seen from the figures 7 and 8, the higher time diversity  leads to better separation performance of the algorithm. For example, with 0  we have no diversity and the components of the mixture cannot be separated. On the opposite, the best performance is achieved when time diversity takes its maximum value 0.5 sT . This shows that the algorithm may properly exploit the diversity induced by the delay between channels. To understand better the effect of parameters estimation procedure, we consider the case 1/ 3 sT  . Fig. 9 shows the comparison of BER for several cases: Серія: Фізико-математичні науки. Випуск 17 115 1. Amplitudes 1 2,a a are assumed to be known, but the phases 1 2,  and the delays 1 2,  take random values from their area of definition («partially-known» case). Fig. 9. Performance of proposed parameters’ estimation method for the case 1 / 3 sT  2. All channel parameters are assumed unknown and they are estimated by the proposed procedure. 3. All channel parameters are assumed known beforehand («ideally- known» case). From the Fig. 9 it can be seen that the proposed estimation procedure crucially improves the BER of the algorithm providing improvement over the case 1 («partially-known» parameters) from 1.3 times for 0/ 0bE N  dB to 112 times for 15SNR  dB. At the same time, the ratio between proposed method estimation method and case of ideally known parameters is not large: the obtained BERs are always of the same order, the maximum ratio between them is from 1.02 times for 0SNR  dB to 2.7 times for 15SNR  dB. The similar conclusions are confirmed for other values of  . Conclusions. In this paper the new method for the single-channel separation of two QPSK signals based on iterative maximization of a pos- teriori probability for transmitted symbols is presented. The best perfor- mance of the method is achieved when time diversity between channels takes its maximum value, namely half of a symbol period. The essential advantage over the previously proposed approach is due to proposed pro- cedure of channel parameters’ estimation. For the case 1/ 3 sT  it was shown that the BER is improved from 1.3 to 112 times (for different 0/bE N ) in comparison with the case of partially known parameters. At the same time, the BER values for the proposed estimation procedure are of the same order as for the case of ideally known parameters. Математичне та комп’ютерне моделювання 116 References: 1. Wu C. Single-Channel Blind Source Separation of Co-Frequency Overlapped GMSK Signals Under Constant-Modulus Constraints / C. Wu, Z. Liu, X. Wang, W. Jiang, X. Ru // IEEE Communications Letters. — March 2016. — Vol. 20. — № 3. — P. 486–489. 2. Gouldieff V. MISO Estimation of Asynchronously Mixed BPSK Sources / V. Gouldieff, J. Palicot // Proc. IEEE Conf. EUSIPCO. — 2015. — P. 369–373. 3. Arulampalam M. S. Particle-Filtering-Based Approach to Undetermined Blind Separation / M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp // Advances in information Sciences and Service Sciences. — 2012. —Vol. 4. — P. 305–313. 4. Pan B. Blind Separation of Two QPSK Signals Based on Lattice Reduction / B. Pan and S. Tu // 2017 International Conference on Information Science and Control Engineering (ICISCE). — Changsha, 2017. —P. 1437–1440. 5. Warner E. Single-channel blind signal separation of filtered MPSK signals / E. S. Warner, I. K. Proudler // IEE Proceedings — Radar, Sonar and Naviga- tion. — 2003. — Vol. 150. — № 6. — P. 396–402. 6. Shilong T. Single-channel blind separation of Two QPSK signals using per- survivor processing / Tu Shilong, Zheng Hui, Gu Na // Pro APCCAS. — 2008. — Macao. — P. 473–476. МЕТОД ІТЕРАТИВНОГО ОДНОКАНАЛЬНОГО СЛІПОГО РОЗДІЛЕННЯ QPSK-СИГНАЛІВ Запропоновано метод одноканального сліпого розділення двох си- гналів з квадратурно-фазовою маніпуляцією (QPSK). Метод базується на ітеративному оцінюванні компонентів суміші за принципом мак- симізації апостеріорної ймовірності. Отримані формули для відповід- них апостеріорних ймовірностей та на їх основі розроблено алгоритм оцінювання компонентів суміші. Також розроблено алгоритм оціню- вання параметрів каналу (амплітуд, фаз і часових затримок). Ефекти- вність методу перевірена при різних рівнях шуму та часового розне- сення між каналами. Розроблена процедура оцінювання параметрів забезпечує суттєве скорочення бітової похибки (BER) у порівнянні з випадком невідомих параметрів. Ключові слова: сліпе розділення, BPSK (двійкова фазова маніпу- ляція), QPSK (квадратурна фазова маніпуляція). Отримано: 24.05.2018