On n-widths of bounded periodic holomorphic functions
The even-dimensional Kolmogorov widths d2n, Gel'fand widths d²ⁿ, and linear widths δ2n ofà inL q andC are determined exactly. We show that all threen-widths are equal and give a characterization of the widths in terms of Blaschke products.
Saved in:
Date: | 1995 |
---|---|
Main Author: | Wilderotter, K. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
1995
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/163858 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On n-widths of bounded periodic holomorphic functions / K. Wilderotter // Український математичний журнал. — 1995. — Т. 47, № 9. — С. 1170–1175. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Bounds for holomorphic functionals on Teichmuller spaces and univalent functions
by: S. L. Krushkal
Published: (2013) -
Majorants of remainders of Taylor series of bounded holomorphic functions
by: Yu. Meremelia, et al.
Published: (2014) -
On Fundamental Theorems for Holomorphic Curves on the Annuli
by: Phuong, H.T., et al.
Published: (2015) -
Extension of holomorphic mappings for several moving hypersurfaces
by: Si Duc Quang
Published: (2012) -
The Pompéiu-Landau-Szasz extremal problem for bounded holomorphic functions in bidisk
by: Yu. Meremelia
Published: (2015)