Теоремы существования для уравнений с некоэрцитивными разрывными операторами
У гільбертовому просторі розглядаються рівняння з коерцитивним оператором, рівним сумі лінійного фредгольмова відображення нульового індексу га компактного оператора (взагалі кажучи, розривного). За допомогою регуляризації та теорії топологічного степеня встановлюється існування розв'язків, які...
Gespeichert in:
Datum: | 2002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут математики НАН України
2002
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/163967 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Теоремы существования для уравнений с некоэрцитивными разрывными операторами / В.В. Винокур, В.Н. Павленко // Український математичний журнал. — 2002. — Т. 54, № 3. — С. 349–364. — Бібліогр.: 27 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | У гільбертовому просторі розглядаються рівняння з коерцитивним оператором, рівним сумі лінійного фредгольмова відображення нульового індексу га компактного оператора (взагалі кажучи, розривного). За допомогою регуляризації та теорії топологічного степеня встановлюється існування розв'язків, які є точками неперервності оператора рівняння. Загальні результати застосовуються потім для доведення існування напівправильних розв'язків резонансних еліптичних крайових задач з розривними нелінійностями. |
---|