On the summability of double Walsh–fourier series of functions of bounded generalized variation
The problem of convergence of the Cesàro means of negative order for double Walsh–Fourier series of functions of bounded generalized variation is investigated.
Saved in:
Date: | 2012 |
---|---|
Main Author: | Goginava, U. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/164171 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On the summability of double Walsh–fourier series of functions of bounded generalized variation / U. Goginava // Український математичний журнал. — 2012. — Т. 64, № 4. — С. 490-507. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Convergence of Multiple Fourier Series of Functions of Bounded Generalized Variation
by: Goginava, U., et al.
Published: (2015) -
Convergence of Multiple Fourier Series of Functions of Bounded Generalized Variation
by: U. Goginava, et al.
Published: (2015) -
On the maximal operator of (C, α)-means of Walsh–Kaczmarz–Fourier series
by: Goginava, U., et al.
Published: (2010) -
On the strong summability of the Fourier–Walsh series in the Besov space
by: A. Igenberlina, et al.
Published: (2024) -
Strong summability of two-dimensional Vilenkin – Fourier series
by: U. Goginava
Published: (2019)