Про нерозкладні та транзитивні системи підпросторів
Доказано, что из неразложимости системы подпространств конечномерного гильбертового пространства следует транзитивность этой системы при условии линейной связности соответствующей системы ортопроекторов....
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164184 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Про нерозкладні та транзитивні системи підпросторів / Д.Ю. Якименко // Український математичний журнал. — 2007. — Т. 59, № 5. — С. 717–720. — Бібліогр.: 5 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-164184 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1641842020-02-09T01:26:51Z Про нерозкладні та транзитивні системи підпросторів Якименко, Д.Ю. Статті Доказано, что из неразложимости системы подпространств конечномерного гильбертового пространства следует транзитивность этой системы при условии линейной связности соответствующей системы ортопроекторов. We prove that the indecomposability of a system of subspaces of finite-dimensional Hilbert space implies the transitivity of this system under the condition of the linear coherence of corresponding system of orthogonal projectors. 2007 Article Про нерозкладні та транзитивні системи підпросторів / Д.Ю. Якименко // Український математичний журнал. — 2007. — Т. 59, № 5. — С. 717–720. — Бібліогр.: 5 назв. — укр. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164184 513.88 uk Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Ukrainian |
topic |
Статті Статті |
spellingShingle |
Статті Статті Якименко, Д.Ю. Про нерозкладні та транзитивні системи підпросторів Український математичний журнал |
description |
Доказано, что из неразложимости системы подпространств конечномерного гильбертового пространства следует транзитивность этой системы при условии линейной связности соответствующей системы ортопроекторов. |
format |
Article |
author |
Якименко, Д.Ю. |
author_facet |
Якименко, Д.Ю. |
author_sort |
Якименко, Д.Ю. |
title |
Про нерозкладні та транзитивні системи підпросторів |
title_short |
Про нерозкладні та транзитивні системи підпросторів |
title_full |
Про нерозкладні та транзитивні системи підпросторів |
title_fullStr |
Про нерозкладні та транзитивні системи підпросторів |
title_full_unstemmed |
Про нерозкладні та транзитивні системи підпросторів |
title_sort |
про нерозкладні та транзитивні системи підпросторів |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/164184 |
citation_txt |
Про нерозкладні та транзитивні системи підпросторів / Д.Ю. Якименко // Український математичний журнал. — 2007. — Т. 59, № 5. — С. 717–720. — Бібліогр.: 5 назв. — укр. |
series |
Український математичний журнал |
work_keys_str_mv |
AT âkimenkodû pronerozkladnítatranzitivnísistemipídprostorív |
first_indexed |
2025-07-14T16:42:22Z |
last_indexed |
2025-07-14T16:42:22Z |
_version_ |
1837641334023782400 |
fulltext |
UDK 513.88
D. G. Qkymenko (Ky]v. nac. un-t im. T. Íevçenka)
PRO NEROZKLADNI TA TRANZYTYVNI
SYSTEMY PIDPROSTORIV
We prove that the indecomposability of a system of subspaces of finite-dimensional Hilbert space
implies the transitivity of this system under the condition of the linear coherence of corresponding
system of orthogonal projectors.
Dokazano, çto yz nerazloΩymosty system¥ podprostranstv koneçnomernoho hyl\bertovoho
prostranstva sleduet tranzytyvnost\ πtoj system¥ pry uslovyy lynejnoj svqznosty
sootvetstvugwej system¥ ortoproektorov.
1. Vstup. Systemy pidprostoriv linijnoho çy hil\bertovoho prostoru zavΩdy
vyklykaly interes qk sami po sobi, tak i v zv’qzku z ]x zastosuvannqmy [1 – 5].
Opys tranzytyvnyx ta nerozkladnyx system vaΩlyvyj tomu, wo taki systemy
[ najprostißymy, z qkyx moΩna namahatysq buduvaty bud\-qki systemy pidpros-
toriv. U cij statti dovodyt\sq, wo tranzytyvnist\ ta nerozkladnist\ systemy
pidprostoriv skinçennovymirnoho hil\bertovoho prostoru ekvivalentni za umovy
linijno] zv’qznosti vidpovidno] systemy ortoproektoriv.
2. Oznaçennq ta osnovni vlastyvosti. Nexaj H — skinçennovymirnyj
hil\bertiv prostir, H1, H2, … , Hn — pidprostory H, S = ( H1; H1, H2, … , Hn )
— systema pidprostoriv u H, S = ( ); , , ,H H H Hn1 2 … — systema pidprostoriv u
H . Linijne vidobraΩennq R H H: → budemo nazyvaty homomorfizmom syste-
my S v S , qkwo R H Hi i( ) ⊂ , i n= 1, .
Poznaçymo çerez Hom( ),S S mnoΩynu homomorfizmiv z S v S , End ( S ) : =
: = Hom ( S, S ), tobto
End ( S ) = R B H R H H i ni i∈ ⊂ ={ }( ) ( ) , ,1 .
Systema S nazyva[t\sq tranzytyvnog, qkwo Idem ( S ) = C IH .
Dali, poznaçymo
Idem ( S ) = R B H R H H i n R Ri i∈ ⊂ = ={ }( ) ( ) , , ,1 2 .
Systema S nazyva[t\sq nerozkladnog, qkwo Idem ( S ) = { 0, IH } . Bezposered-
n\o z oznaçen\ vyplyva[, wo tranzytyvna systema [ obov’qzkovo nerozkladnog.
ZauvaΩymo, wo vlastyvosti tranzytyvnosti ta nerozkladnosti systemy S,
oçevydno, ne zaleΩat\ vid struktury skalqrnoho dobutku v H, tobto ci ponqt-
tq moΩna rozhlqdaty i qk vlastyvosti system pidprostoriv linijnoho prostoru.
Ma[ misce nastupne tverdΩennq (dyv., napryklad, [5]):
S nerozkladna ⇐⇒ ∃ ∈U W H, : U W∩ = 0 , U W H+ =
ta
H U H W Hi i i= +∩ ∩ .
Qkwo my ma[mo pidprostory U U U Hn1 2, , ,… ∈ , to çerez U U Un1 2
˙ ˙ ˙+ + … +
budemo poznaçaty U U Un1 2+ + … + u vypadku, koly U U Ui i∩ ( 1 1+ … + − +
+ U Ui n+ + … +1 ) = 0, i = 1, n . Inßymy slovamy, U U Un1 2
˙ ˙ ˙+ + … + — prqma
suma u H, qkwo H rozumity qk linijnyj prostir.
Z koΩnog systemog S moΩna zv’qzaty systemu ortoproektoriv p1 , p2 , …
… , pn , de pi — operator ortohonal\noho proektuvannq na Hi , i = 1, n .
© D. G. QKYMENKO, 2007
ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 5 717
718 D. G. QKYMENKO
Systemu ortoproektoriv p1 , p2 , … , pn budemo nazyvaty linijno zv’qznog, qkwo
isnugt\ αi > 0 , i = 1, n , taki, wo αi ii
n
p I=∑ =
1
, de I — totoΩnyj operator.
3. Osnovna teorema.
Teorema. Nexaj H — hil\bertiv prostir, dim H < ∞ , S H E E= ( ; , ,1 2 …
… , En ) — systema pidprostoriv u H , p1 , p2 , … , pn — ortoproektory, wo
vidpovidagt\ E 1 , E2 , … , En . Nexaj vykonu[t\sq αi ii
n
p I=∑ =
1
dlq deqkyx
αi > 0 , i = 1, n . Todi qkwo S nerozkladna, to S [ tranzytyvnog.
Dovedennq. Prypustymo protyleΩne, tobto S [ nerozkladnog ta ne tran-
zytyvnog. Todi isnu[ x B H∈ ( ), x I≠ λ , take, wo x E Ei i( ) ⊂ , i = 1, n .
Lema*1. Operator x ma[ lyße odne vlasne çyslo.
Dovedennq. Nexaj λ 1 , λ2 , … , λk — rizni vlasni çysla operatora x . Todi
H = H H H k( ) ˙ ( ) ˙ ˙ ( )λ λ λ1 2+ + … + , de H i( )λ = { }( )v v∈ ∃ ∈ − =H l N x i
lλ 0 .
Prypustymo, wo my ma[mo deqkyj pidprostir E H⊂ takyj, wo x E E( ) ⊂ .
Rozhlqnemo x qk operator z E v E . Vlasni çysla x qk operatora z B E( ) na-
leΩat\ mnoΩyni vsix vlasnyx çysel x . Analohiçno moΩemo rozklasty E =
= E E E k( ) ˙ ( ) ˙ ˙ ( )λ λ λ1 2+ + … + , E i( )λ = 0 , qkwo λi ne [ vlasnym çyslom
x B E∈ ( ) , E i( )λ = { }( )v v∈ ∃ ∈ − =E l N x i
lλ 0 v inßomu vypadku. Zrozumilo,
wo E Hi i( ) ( )λ λ⊂ .
Takym çynom, bud\-qkyj Ei , i = 1, n , moΩna rozklasty v sumu Ei =
Ei( )λ1 +̇ +̇ E Ei i k( ) ˙ ˙ ( )λ λ2 + … + , de E Hi j j( ) ( )λ λ⊂ . OtΩe, qkwo x ma[ bil\ße
odnoho vlasnoho çysla, to ma[mo rozkladnist\ S, wo i dovodyt\ lemuG1.
Nexaj λ — [dyne vlasne çyslo x . Todi x – λ [ nil\potentnym ta x – λ ∈
∈ End( )S . Nexaj k ∈ N — najmenße take, wo ( )x k− =λ 0. Poznaçymo y =
= ( )x k− −λ 1
∈ B ( H ) . Oçevydno, wo y S∈End( ), y2 0= . Ale y ne dorivng[ 0,
oskil\ky x , za prypuwennqm, ne kratnyj odynyçnomu ( , )x I x≠ ≠λ 0 .
Takym çynom, my otrymaly takyj naslidok.
Naslidok. Qkwo S [ nerozkladnog ta ne tranzytyvnog, to isnu[
y S∈End( ), y2 0= , take, wo y ≠ 0 .
Vvedemo nastupni poznaçennq: H y0 = Ker , H H1 0= ⊥ , H y H01 1= ( ). Zrozu-
milo, wo H y01 = Im . H H01 0⊂ , oskil\ky y2 0= ; H H H00 1 01= ⊥( )� . OtΩe,
ma[mo rozklad H = H H1 0� = H H H1 01 00� �( ). Pry c\omu zrozumilo ta-
koΩ, wo dim H1 = dim H01.
Nexaj ma[mo deqkyj pidprostir ′ ⊂E H takyj, wo y E E( )′ ⊂ ′ . Analohiçno
moΩemo rozklasty ′E = ′ ′E E1 0� =
′ ′ ′E E E1 01 00� �( ), de ′ = ′E E H0 0∩ , ′E1 =
= ′ ′ ⊥E E∩ ( )0 , ′ = ′E y E01 1( ), ′ = ′ ′ ′ ⊥E E E E00 1 01∩ ( )� . NevaΩko perekonatysq, wo
′ ⊂E H0 0 , ′ ⊂E H01 01,
′ ⊂ ′ ′E E E0 01 00� , dim dim′ = ′E E1 01. ZauvaΩymo, wo, vzahali
kaΩuçy, ′ /⊆E H1 1.
Rozklademo koΩnyj Ei , i = 1, n , z systemy S opysanym vywe sposobom:
Ei =
E Ei i, ,1 0� =
E E Ei i i, , ,( )1 01 00� � .
Qkwo my dovedemo, wo E Hi,1 1⊂ , i = 1, n , to otryma[mo rozkladnist\ S (bo
todi Ei =
E Ei i, ,1 0� = E H E Hi i∩ ∩1 0� , i = 1, n ), a otΩe, pryjdemo do ßu-
kano] supereçnosti.
Lema*2. αi ii
n
Edim ,11=∑ ≥ dim H1, pryçomu rivnist\ moΩlyva lyße za
umovy E Hi,1 1⊂ , i = 1, n .
ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 5
PRO NEROZKLADNI TA TRANZYTYVNI SYSTEMY PIDPROSTORIV 719
Dovedennq. Poznaçymo çerez pr[ ]′E , de ′E — pidprostir H, operator
ortohonal\noho proektuvannq na ′E , S1 = αi ii
n
Epr[ ],11=∑ , S0 =
= αi ii
n
Epr[ ],01=∑ . Za umovog teoremy S0 + S1 = I. Nexaj m = dim H, l =
= dim H1 , { v1, … , vl } — ortonormovanyj bazys H1, { w1, … , wm – l } —
ortonormovanyj bazys H0 . Rozhlqnemo matryci operatoriv S0 ta S1 u bazysi
{ v1, … , vl, w1, … , wm – l } . Po-perße, oskil\ky α > 0, to S0 ta S1 — nevid’[m-
ni operatory, a otΩe, na diahonalqx matryc\ roztaßovani nevid’[mni çysla. Os-
kil\ky E Hi,0 0⊂ , to S H0 1 0( ) = . OtΩe,
S0 =
d
d
dl
1
2
1 0 0
0 1 0
0 0 1
∗ ∗
∗ ∗
∗
∗ ∗
∗
…
…
� � � �
…
…
…
� � � �
…
,
de ai ≥ 0 , i m l= −1, . Ale S0 + S1 = I, tomu
S1 =
1 0 0
0 1 0
0 0 1
1
2
…
…
� � � �
…
…
…
� � � �
…
∗
∗ ∗
∗ ∗
∗
∗ ∗
−
b
b
bm l
,
de bi ≥ 0, a bi i+ = 1, i m l= −1, .
Todi tr ( )S l b b b lm l1 1 2= + + + … + ≥− , tobto αi ii
n
Etr pr( [ ]),11=∑ ≥ dim H1
çy αi ii
n
Edim ,11=∑ ≥ dim H1. Rivnist\ bude lyße za umovy b1 = b2 = … = bm l− =
= 0. Zvidsy ( ( ), )S w wi i1 0= , i m l= −1, , a otΩe, ( =∑ α j j ij
n
E wpr[ ]( ),,11
wi ) = 0 , i m l= −1, . Tomu pr[ ]( ),E wj i1 0= , i m l= −1, , j n= 1, , zvidky
H Ej0 1⊂ ⊥( ), , j n= 1, , tobto E Hj,1 1⊂ , j n= 1, .
Lema*3. αi ii
n
Edim ,011=∑ ≤ dim H01.
Dovedennq. Poznaçymo S Ei ii
n
01 011
= =∑ α pr[ ], ,
S E Ei i ii
n
2 1 001
= =∑ α pr[ ], ,� ,
S S I01 2+ = . Nexaj { , , }′ … ′v v1 l — ortonormovanyj bazys H01, { , , }, ′ … ′ −w wm l1 —
ortonormovanyj bazys ( )H01
⊥
. Rozhlqnemo matryci operatoriv S01 ta S2 u ba-
zysi { , , , , }′ … ′ ′ … ′ −v v ,1 1l m lw w . Znovu S01 ta S2 [ nevid’[mnymy, otΩe, na dia-
honalqx matryc\ roztaßovani nevid’[mni çysla. Oskil\ky E Hi,01 01⊂ , to
S H01 01 0( )( )⊥ = . Zvidsy
ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 5
720 D. G. QKYMENKO
S01 =
c
c
cl
1
2
0 0 0
0 0 0
0 0 0
∗ ∗
∗ ∗ ∗
∗ ∗
∗
…
…
� � � �
…
…
…
� � � �
…
,
de ci ≥ 0 , i l= 1, . Ale S S I01 2+ = , otΩe,
S2 =
d
d
dl
1
2
1 0 0
0 1 0
0 0 1
∗ ∗
∗ ∗ ∗
∗ ∗
∗
…
…
� � � �
…
…
…
� � � �
…
,
de di ≥ 0, ci + di = 1, i = 1, l .
Ma[mo tr ( )S01 = c c cl1 2+ + … + = l dii
l− =∑ 1
≤ l, zvidky αi ii
n
Etr pr( )[ ],011=∑ ≤
≤ dim H01
, tobto αi ii
n
Edim ,011=∑ ≤ dim H01
. Oskil\ky dim H1 = dim H01 ta
dim Ei, 1 = dim Ei, 01
, i = 1, n , to z lemG2 ta 3 otrymu[mo, wo ma[ buty rivnist\
αi ii
n
Edim ,11=∑ = dim H1
, a otΩe, z lemyG2 vyplyva[, wo Ei, 1 ⊂ H1
, i = 1, n .
Teoremu dovedeno.
Oskil\ky tranzytyvnist\ ta nerozkladnist\ systemy pidprostoriv ne zale-
Ωat\ vid struktury skalqrnoho dobutku v H, to osnovnyj rezul\tat roboty
moΩna pereformulgvaty takym çynom:
nerozkladnist\ systemy pidprostoriv skinçennovymirnoho linijnoho prosto-
ru V ekvivalentna tranzytyvnosti, qkwo u V moΩna vvesty takyj skalqr-
nyj dobutok, wo vidpovidna systema ortoproektoriv vyqvyt\sq linijno zv’qz-
nog.
ZauvaΩennq. Pislq podannq statti do druku vyjßla robota S. A. Kruhlq-
ka, L. O. Nazarovo] ta
A V Rojtera. . „Ortoskalqrn¥e predstavlenyq kolçanov
v katehoryy hyl\bertov¥x prostranstv” („Zapysky nauçn¥x semynarov POMY”,
2006, tom 338, s.G180 – 201), v qkij dlq nezvidnyx ortoskalqrnyx zobraΩen\ kol-
çaniv dovedeno ]x ßurovist\ v katehori] linijnyx prostoriv.
Avtor vyslovlg[ hlyboku podqku G. S. Samojlenku za postanovku zadaçi ta
cinni zauvaΩennq i porady.
1. Gelfand I. M., Ponomarev V. A. Problems of linear algebra and classification of quadruples of
subspaces in finite-dimensional vector space // Coll. Math. Spc. Bolyai. – 1970. – 5. – P. 163 – 237.
2. Brenner S. Endomorphism algebras of vector spaces with distinguished sets of subspaces // J.
Algebra. – 1967. – 6. – P. 100 – 114.
3. Nazarova L. A. Representations of a quadruple // Izv. AN SSSR. – 1967. – 31, # 6. –
P. 1361 – 1377.
4. Kruhlqk S. A., Rabanovyç V. Y., Samojlenko G. S. O summax proektorov // Funkcyon.
analyz y pryl. – 2002. – 36, v¥p. 3. – S.G30 – 35.
5. Enomoto M., Watatani Ya. Relative position of four subspaces in a Hilbert space // ArXive:(2004).
OderΩano 20.02.2006
ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 5
|