Проблеми керованості для рівняння струни

Получены необходимые и достаточные условия 0- и ε-управляемости для уравнения струны, управляемого краевыми условиями. Управления, решающие эти задачи, найдены в явном виде. Более того, с помощью тригонометрической проблемы моментов Маркова построены релейные управления, решающие задачу ε-управляемо...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Фардигола, Л.В., Халіна, К.С.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2007
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/164206
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Проблеми керованості для рівняння струни / Л.В. Фардигола, К.С. Халіна // Український математичний журнал. — 2007. — Т. 59, № 7. — С. 939–952. — Бібліогр.: 12 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164206
record_format dspace
spelling irk-123456789-1642062020-02-09T01:27:45Z Проблеми керованості для рівняння струни Фардигола, Л.В. Халіна, К.С. Статті Получены необходимые и достаточные условия 0- и ε-управляемости для уравнения струны, управляемого краевыми условиями. Управления, решающие эти задачи, найдены в явном виде. Более того, с помощью тригонометрической проблемы моментов Маркова построены релейные управления, решающие задачу ε-управляемости. Necessary and sufficient conditions of the null-controllability and approximate null-controllability are obtained for the string equation controlled by boundary conditions. Controls solving these problems are found explicitly. Moreover, bang-bang controls solving the approximate null-controllability problem are constructed with the use of the Markov trigonometric moment problem. 2007 Article Проблеми керованості для рівняння струни / Л.В. Фардигола, К.С. Халіна // Український математичний журнал. — 2007. — Т. 59, № 7. — С. 939–952. — Бібліогр.: 12 назв. — укр. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164206 517.9 uk Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Статті
Статті
spellingShingle Статті
Статті
Фардигола, Л.В.
Халіна, К.С.
Проблеми керованості для рівняння струни
Український математичний журнал
description Получены необходимые и достаточные условия 0- и ε-управляемости для уравнения струны, управляемого краевыми условиями. Управления, решающие эти задачи, найдены в явном виде. Более того, с помощью тригонометрической проблемы моментов Маркова построены релейные управления, решающие задачу ε-управляемости.
format Article
author Фардигола, Л.В.
Халіна, К.С.
author_facet Фардигола, Л.В.
Халіна, К.С.
author_sort Фардигола, Л.В.
title Проблеми керованості для рівняння струни
title_short Проблеми керованості для рівняння струни
title_full Проблеми керованості для рівняння струни
title_fullStr Проблеми керованості для рівняння струни
title_full_unstemmed Проблеми керованості для рівняння струни
title_sort проблеми керованості для рівняння струни
publisher Інститут математики НАН України
publishDate 2007
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164206
citation_txt Проблеми керованості для рівняння струни / Л.В. Фардигола, К.С. Халіна // Український математичний журнал. — 2007. — Т. 59, № 7. — С. 939–952. — Бібліогр.: 12 назв. — укр.
series Український математичний журнал
work_keys_str_mv AT fardigolalv problemikerovanostídlârívnânnâstruni
AT halínaks problemikerovanostídlârívnânnâstruni
first_indexed 2025-07-14T16:43:26Z
last_indexed 2025-07-14T16:43:26Z
_version_ 1837641401634914304
fulltext UDK 517.9 L. V. Fardyhola, K. S. Xalina (Fiz.-texn. in-t nyz\kyx temperatur, Xarkiv) PROBLEMY KEROVANOSTI DLQ RIVNQNNQ STRUNY Necessary and sufficient conditions of the null-controllability and approximate null-controllability are obtained for the string equation controlled by boundary conditions. Controls solving these problems are found explicitly. Moreover, bang-bang controls solving the approximate null-controllability problem are constructed with the use of the Markov trigonometric moment problem. Poluçen¥ neobxodym¥e y dostatoçn¥e uslovyq 0- y ε-upravlqemosty dlq uravnenyq strun¥, upravlqemoho kraev¥my uslovyqmy. Upravlenyq, reßagwye πty zadaçy, najden¥ v qvnom vyde. Bolee toho, s pomow\g tryhonometryçeskoj problem¥ momentov Markova postroen¥ relejn¥e upravlenyq, reßagwye zadaçu ε-upravlqemosty. 0. Vstup. Problemy kerovanosti dlq hiperboliçnyx rivnqn\ vyvçagt\sq zaraz bahat\ma matematykamy (dyv., napryklad, bibliohrafig v [1]). U cij roboti my doslidΩu[mo krajovu kerovanist\ xvyl\ovoho rivnqnnq na skinçennomu vidrizku za prostorovog zminnog za dopomohog obmeΩenyx napered zadanog konstantog keruvan\. Slid vidmityty, wo v bil\ßosti robit, v qkyx vyvçalosq take rivnqnnq, doslidΩu[t\sq L2 -kerovanist\, abo, qk uzahal\nennq, Lp -kerovanist\ ( 2 ≤ p ≤ ∞ ) [2 – 6]. Ale lyße L∞ -keruvannq moΩna praktyçno realizuvaty. Bil\ß toho, z praktyçnyx mirkuvan\ taki keruvannq magt\ buty obmeΩeni napered zadanog konstantog (qk v (0.3)). Okrim toho, pry zarodΩenni teori] keruvannq panuvaly taki pohlqdy, wo lyße keruvannq v formi peremyka- ça moΩna realizuvaty praktyçno. Poßuk takyx keruvan\ dlq rozv’qzannq prob- lem kerovanosti [ aktual\nog zadaçeg i zaraz. Same tomu v p. 2 budut\ pobudo- vani relejni keruvannq, qki rozv’qzugt\ problemu ε-kerovanosti dlq rivnqnnq, wo rozhlqda[t\sq. Problemy krajovo] kerovanosti dlq xvyl\ovoho rivnqnnq na pivosi z keruvan- nqmy, obmeΩenymy napered zadanog stalog, bulo vyvçeno v [9, 10]. Rozhlqnemo xvyl\ove rivnqnnq ∂ ∂ = ∂ ∂ 2 2 2 2 w t w x , x ∈ ( 0, π ), t ∈ ( 0, T ), (0.1) kerovane krajovymy umovamy w ( 0, t ) = u0 ( t ), w ( π, t ) = uπ ( t ), t ∈ ( 0, T ), (0.2) de T > 0. My vvaΩa[mo, wo keruvannq uj , j = 0, π, zadovol\nqgt\ umovu uj ∈ B ( 0, T ) = { v ∈ L∞ ( 0, T ) | | v ( t ) | ≤ 1 majΩe skriz\ na ( 0, T ) }. (0.3) Usi funkci], wo rozhlqdagt\sq v rivnqnni (0.1) ta krajovyx umovax (0.2), vyzna- çeni na skinçennomu vidrizku. Dali skriz\ budemo vvaΩaty, wo taki funkci] vyz- naçeni na R ta nabuvagt\ znaçennq 0 na dopovnenni v R svo[] oblasti vyzna- çennq. Rozhlqnemo funkcional\ni prostory, wo vykorystovugt\sq v roboti. Nexaj S — prostir Ívarca [7]: S = { ϕ ∈ C ∞ ( R ) : ∀m ∈ N0 ∀l ∈ N0 ∃ Cml > 0 ∀x ∈ R : | ϕ( m ) ( x ) ( 1 + | x | 2 ) l | ≤ Cml }, de N0 ∈ N ∪ 0, ta S ′ — prostir uzahal\nenyx funkcij nad S. Poslidovnist\ { } = ∞ϕn n 1 ⊂ S nazyva[t\sq zbiΩnog v S, qkwo dlq bud\-qkyx m ∈ N i l ∈ N © L. V. FARDYHOLA, K. S. XALINA, 2007 ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 939 940 L. V. FARDYHOLA, K. S. XALINA isnu[ Cml take, wo dlq bud\-qkoho n ∈ N x xl n mϕ( )( ) ≤ Cml ta x xl n mϕ( )( ) ⇒ 0 pry n → ∞ v R. Pid zbiΩnistg v S ′ rozumi[t\sq slabka zbiΩnist\. Nexaj takoΩ D ( a, b ) = { ϕ ∈ C ∞ ( R ) : supp ϕ ∈ ( a, b ) }, D ′ ( a, b ) — prostir uzahal\nenyx funkcij nad D ( a, b ) ta D ( – ∞, ∞ ) = D , D ′ ( – ∞, ∞ ) = D ′. Poslidovnist\ { } = ∞ϕn n 1 ⊂ D ( a, b ) nazyva[t\sq zbiΩnog v D ( a, b ), qkwo dlq bud\-qkoho n ∈ N supp ϕn ⊂ [ α, β ] ⊂ ( a, b ) ta dlq bud\- qkoho m ∈ N ϕn m x( )( ) ⇒ 0 pry n → ∞ v R. Pid zbiΩnistg v D ′ ( a, b ) rozu- mi[t\sq slabka zbiΩnist\. Poslidovnist\ { } = ∞δn n 1 ⊂ D nazyva[t\sq δ-poslidov- nistg, qkwo supp δn ⊂ [ 0, 1 / n ] ta δn x dx( ) − ∞ ∞ ∫ = 1. Nexaj f ∈ D ′ ( a, b ). Budemo hovoryty, wo f ( a + 0 ) = α ∈ R, qkwo dlq koΩno] δ-poslidovnosti { } = ∞δn n 1 ( f ( x ), δn ( x – a ) ) → α pry n → ∞, ta f ( b – 0 ) = β ∈ R, qkwo dlq koΩno] δ-pos- lidovnosti { } = ∞δn n 1 ( f ( x ), δn ( b – x ) ) → β pry n → ∞. Poznaçymo çerez Hl s nastupni prostory Soboleva [8], (hl. 1): Hl s = { ϕ ∈ S ′ : ( 1 + | x | 2 ) l / 2 ( 1 + | D | 2 ) s / 2 ϕ ∈ L2 ( R ) }, H a bl s( ), = { ϕ ∈ D ′ ( a, b ) ∩ Hl s : ∃ ϕ ( a + 0 ) ∈ R ∃ ϕ ( b – 0 ) ∈ R }, ϕ ϕl s l s x D x dx= +( ) +( ) ( )    − ∞ + ∞ ∫ 1 12 2 2 2 2 1 2 / / / , de D = – i d / dx. U prostori Hl s razom z wojno vvedenog normog budemo rozhlqdaty we j normu [] ϕ []l s = 1 12 2 2 2 2 1 2 +( ) +( ) ( )    − ∞ + ∞ ∫ D x x dx s l/ / / ϕ . Vidomo (dyv. [8], hl. 1), wo dlq bud\-qkyx s i l isnu[ stala Kl s > 0 taka, wo 1 Kl s l sϕ ≤ [] ϕ []l s ≤ Kl s l sϕ . (0.4) Nexaj F : S ′ → S ′ — operator peretvorennq Fur’[. Ma[mo ( F ϕ ) ( σ ) = 1 2π ( )− − ∞ + ∞ ∫ e x dxi xσ ϕ , ϕ ∈ S, ta ( F f, ϕ ) = ( f, F – 1 ϕ ), f ∈ S ′, ϕ ∈ S. Vidomo, wo F S = S, F S ′ = S ′. Okrim toho (dyv. [8], hl. 1), F Hl s = Hs l ta ϕ l s = = [] F ϕ []s l , ϕ ∈ Hl s . U cij roboti my zavΩdy budemo vvaΩaty l < – 1 / 2, s ≤ 0. Dali budemo vykorystovuvaty takoΩ prostory H̃l s = { ϕ ∈ Hl s × Hl s −1 : ϕ — neparna, 2π-periodyçna }, ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 PROBLEMY KEROVANOSTI DLQ RIVNQNNQ STRUNY 941 ˜ , , ,H a b H a b H a bl s l s l s( ) = ( ) × ( )−1 z normog ϕ ϕ ϕl s l s l s= ( ) + ( )( )− 0 2 1 1 2 1 2/ , ϕ = ϕ ϕ 0 1     , ta Ĥ H Hs l s l s l= × −1 z normog [][] ϕ [][]s l = [] []( ) + [] []( )( )−ϕ ϕ0 2 1 1 2 1 2 s l s l / , ϕ = ϕ ϕ 0 1     . U p. 1 oderΩano kryteri] 0- ta ε-kerovanosti systemy (0.1), (0.2) z obmeΩen- nqmy na keruvannq (0.3). Keruvannq, wo rozv’qzugt\ problemu 0-kerovanosti, znajdeno v qvnomu vyhlqdi, ale ci keruvannq moΩut\ buty dosyt\ skladnymy dlq praktyçno] realizaci]. Tomu holovnog metog p. 2 [ pobudova relejnyx ke- ruvan\, wo rozv’qzugt\ problemu ε-kerovanosti. Cg problemu zvedeno do sys- temy tryhonometryçnyx problem momentiv Markova. Okrim toho, otrymano ocinku toçnosti vluçennq dlq pobudovano] systemy relejnyx keruvan\, wo roz- v’qzugt\ problemu ε-kerovanosti. 1. Problemy kerovanosti. Rozhlqnemo kerovanu systemu (0.1), (0.2) z po- çatkovymy umovamy w ( x, 0 ) = w x0 0( ), x ∈ ( 0, π ), (1.1) ∂ ( ) ∂ w x t , 0 = w x1 0( ), de w0 = w w 0 0 1 0     ∈ ˜ ,Hs 0 0[ π]. Nexaj Ω : S ′ → S ′ — operator neparnoho prodovΩennq, tobto ( Ω f ) ( x ) = = f ( x ) – f ( – x ), f ∈ S ′, supp f ⊂ [ 0, + ∞ ). Rozhlqnemo neparni 2π-periodyçni pro- dovΩennq (po x ) funkcij, wo zv’qzani kerovanog systemog (0.1), (0.2), (1.1): W 0 = T 2 0 π ∈ ∑ k k wΩ Z , W ( ⋅, t ) = T 2π ∈ ∑ (⋅ ) ∂ (⋅ ) ∂      k k w t w t t Ω Z , , , t ∈ ( 0, T ), de Th — operator zsuvu: ( Th ϕ ) ( x ) = ϕ ( x + h ), ϕ ∈ S, ta ( Th f, ϕ ) = ( f, T– h ϕ ), f ∈ ∈ S ′, ϕ ∈ S. Oskil\ky dlq bud\-qkoho N ∈ N ( ) ≤ + − π( ) ≤ ( ) ∈ ∑c x Nk Cl N l k l N2 2 21 Z , x ∈ R, de cl N = (π ) −N Sl l2 1, Cl N = 3 2 2+ (π )N Sl l , Sl = k l k 2 1= ∞∑ , to c g g C gl N s Nk k l s l N s 0 0≤ ≤π ∈ ∑T Z , g ∈ H Hs s 0 0 1× − . (1.2) Okrim toho, Ω f s 0 ≤ 2 0f s , f ∈ Hs 0 , supp f ∈ [ 0, + ∞ ). Tomu W 0 ∈ H̃l s , W ( ⋅, t ) ∈ H̃l s , t ∈ ( 0, T ). Qk lehko baçyty, zadaçu (0.1), (0.2), (1.1) moΩna zvesty do zadaçi ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 942 L. V. FARDYHOLA, K. S. XALINA ∂ ∂ = ∂ ∂           W t x W 0 1 0 2 – 2 0 20u t x kk ( ) ′( + π )     ∈ ∑ δ Z + + 2 0 2 u t x kk π ∈ ( ) ′( − π + π )    ∑ δ Z , x ∈ R, t ∈ ( 0, T ), (1.3) W ( x, 0 ) = W 0 ( x ), x ∈ R, (1.4) de δ — funkciq Diraka. Nexaj wT = w w T T 0 1     ∈ ˜ ,Hs 0 0[ π], WT = T 2π∈∑ k T k wΩ Z . Rozhlqnemo dlq zadaçi (1.3), (1.4) umovy vluçennq W ( x, T ) = WT ( x ), x ∈ R. (1.5) Nexaj T > 0, w0 ∈ ˜ ,Hs 0 0[ π]. Poznaçymo çerez R T ( w0 ) mnoΩynu staniv wT ∈ ∈ ˜ ,Hs 0 0[ π], dlq qkyx isnu[ keruvannq u ∈ B ( 0, T ) take, wo zadaça (1.3) – (1.5) z Wβ = T 2π∈∑ kk wΩ β Z , β = 0, T, ma[ [dynyj rozv’qzok v H̃l s . Oznaçennq 1.1. Stan w0 ∈ ˜ ,Hs 0 0[ π] nazyva[t\sq 0-kerovanym za ças T, qkwo 0 naleΩyt\ R T ( w0 ), t a ε -kerovanym za ças T, qkwo 0 naleΩyt\ zamykanng R T ( w0 ) v ˜ ,Hs 0 0[ π]. Zastosuvavßy do (1.3) – (1.5) peretvorennq Fur’[ po x, oderΩymo d dt i e u t e u tk i i k v v= −     − π ( ) − ( )π − π ∈ ( )∑ 0 1 0 2 2 2 0σ σ σ σ π Z , σ ∈ R, t ∈ ( 0, T ), (1.6) v ( σ, 0 ) = v0 ( σ ), (1.7) v ( σ, T ) = vT ( σ ), (1.8) de v ( ⋅, t ) = F W ( ⋅, t ) ∈ Ĥs l , v0 = F W 0 ∈ Ĥs l , vT = F W T ∈ Ĥs l . OtΩe, vT ( σ ) = Σ Σ( ) ( ) − π ( − ) ( ) − ( )           π ∈ − π∑ ∫σ σ σ σσ σ π , ,T i e t u t e u t dtk i k i T v0 2 00 2 0 Z , de Σ ( σ, t ) = cos sin sin cos ( ) ( ) − ( ) ( )         σ σ σ σ σ σ t t t t . Tomu W T ( x ) = E ( x, T ) * W x u x u x u x u xk k 0 2 0 0 ( ) − ( )( ) − ( )( − π) ( ′ ) ( ) − ( ′ ) ( − π)          π ∈ π π ∑ ( ) ( )T Z Ω Ω Ω Ω , (1.9) de E ( x, T ) = 1 2 1 π ( )−F Σ σ, T = = 1 2 1 2 δ δ δ δ δ δ ( + ) + ( − ) ( + ) − ( − )( ) − ′( + ) + ′( − ) ( + ) + ( − )       x T x T x T x T x T x T x T x T sign sign . ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 PROBLEMY KEROVANOSTI DLQ RIVNQNNQ STRUNY 943 Tut i dali * oznaça[ zhortku po x. Dlq W 0 ∈ H̃l s poznaçymo RT ( W 0 ) =    E ( x, T ) * W x u x u x u x u xk k 0 2 0 0 ( ) − ( )( ) − ( )( − π) ( ′ ) ( ) − ( ′ ) ( − π)          π ∈ π π ∑ ( ) ( )T Z Ω Ω Ω Ω | u0 ∈ B ( 0, T ) ∧ uπ ∈ B ( 0, T )    . Todi oznaçennq 1.1 ekvivalentne nastupnomu oznaçenng. Oznaçennq 1.2. Stan W 0 ∈ H̃l s nazyva[t\sq 0-kerovanym za ças T , qkwo 0 naleΩyt\ RT ( W 0 ), t a ε -kerovanym za ças T, qkwo 0 naleΩyt\ zamykanng RT ( W 0 ) v H̃l s . Oçevydno, spravedlyvymy [ nastupni tverdΩennq. TverdΩennq 1.1. Stan w0 ∈ ˜ ,Hs 0 0[ π] [ 0-kerovanym za ças T todi i ly- ße todi, koly stan W0 = T 2 0 π∈∑ kk wΩ Z , wo naleΩyt\ H̃l s , [ 0 -kerovanym za ças T. TverdΩennq 1.2. Qkwo stan w0 ∈ ˜ ,Hs 0 0[ π] [ ε-kerovanym za ças T, to stan W 0 = T 2 0 π∈∑ kk wΩ Z , wo naleΩyt\ H̃l s , [ ε-kerovanym za ças T. Vyznaçymo K ∈ N take, wo π ( K – 1 ) < T ≤ π K, ta poznaçymo u tk α( ) = uα ( t ) ( H ( t – π ( k – 1 ) ) – H ( t – π k ) ), k = 1, K , α = 0, π, (1.10) de H — funkciq Xevisajda: H ( t ) = 1, qkwo t > 0, ta H ( t ) = 0, qkwo t ≤ 0. OtΩe, uα ( t ) = u tk k K α( ) = ∑ 1 , supp uk α ⊂ [ π ( k – 1 ), π k ], k = 1, K , α = 0, π. (1.11) Z (1.9) oderΩu[mo W T ( x ) = E ( x, T ) * T 2 0 0 1 0π ∈ ∑        ( ) ( )    k k w x w xZ Ω – – Ω Ξ (− ) π     + (− )    + π     + (− ) ( − π)      π     + (− )    − π     + (− ) ( + + π = + π ∑ 1 2 2 1 2 2 1 2 2 1 2 2 1 1 0 1 1 0 1 k k k k k k K k k k k u k x u k x u k x u k x −− π)          ′                    = ∑ k K 1 , (1.12) de Ξ : S ′ → S ′ — operator parnoho prodovΩennq: ( Ξ f ) ( x ) = f ( x ) + f ( – x ), f ∈ S ′, supp f ⊂ [ 0, + ∞ ). Poznaçymo H s 0 [− π π], = { ϕ ∈ Hs 0 : supp ϕ ∈ [ – π, π ] }. Qsno, wo H s 0 [− π π], — kompaktnyj pidprostir Hs 0 . Lema 1.1. Nexaj g ∈ H s 0 1− [− π π], [ neparnog. Todi isnu[ g̃ ∈ H s 0 [− π π], parna i taka, wo ˜ ′g = g. ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 944 L. V. FARDYHOLA, K. S. XALINA Dovedennq. Oskil\ky g ∈ S ′ ta [ finitnog ( supp g ⊂ [ – π, π ] ), to za uza- hal\nenog teoremog Peli – Vinera [11] (hl. 3) G = F g ∈ S ′ [ rehulqrnym funk- cionalom, G zrosta[ na R ne ßvydße, niΩ polinom, ta prodovΩu[t\sq do cilo] funkci] porqdku ≤ 1 ta typu ≤ π. Z neparnosti g vyplyva[ neparnist\ G. Tomu G ( 0 ) = 0 ta G s is ( ) [ cilog funkci[g porqdku ≤ 1 ta typu ≤ π , wo zros- ta[ na R ne ßvydße, niΩ polinom. OtΩe, za ti[g Ω teoremog g̃ = = F − ( )    1 G i σ σ ∈ S ′, supp g ⊂ [ – π, π ] ta ˜ ′g = g. Oçevydno, wo g̃ [ parnog. Ma[mo G ∈ Hs −1 0 . OtΩe,     G i ( )σ σ     s 0 = 1 2 2 1 2 +( ) ( )   − ∞ + ∞ ∫ σ σ σ σ s G i d / ≤ [] G [] −s 1 0 + 2 1 2 1 1 ( + ) ∈[− ] ′( )s G/ , sup σ σ . Tomu G i ( )σ σ ∈ Hs 0 , a g̃ ∈ H s 0 [− π π], . Lemu dovedeno. Poznaçymo çerez ∂ operator ∂ : H s 0 [− π π], → H s 0 1− [− π π], z oblastg vyzna- çennq D ( ∂ ) = { ϕ ∈ H s 0 [− π π], : ϕ — parna }. Todi Im ( ∂ ) = { ϕ ∈ H s 0 1− [− π π], : ϕ — neparna }. Ma[mo ∂ −g s 0 1 = i g sσF −1 0 ≤ Fg s 0 = g s 0 , g ∈ D ( ∂ ), otΩe, ∂ — linijnyj neperervnyj operator. Za lemog 1.1 cej operator ma[ obernenyj. Todi ∂– 1 : H s 0 1− [− π π], → H s 0 [− π π], , D ( ∂– 1 ) = Im ( ∂ ), Im ( ∂– 1 ) = D ( ∂ ). Za teoremog Banaxa pro obernenyj operator ∂– 1 [ linijnym ta neperervnym, otΩe, dlq koΩ- noho s ≤ 0 isnu[ Ms > 0 take, wo ∂ ≤− −1 0 0 1g M g s s s , g ∈ D ( ∂– 1 ). (1.13) Lehko baçyty, wo Ms ≥ 1. Lema 1.2. Nexaj g ∈ ˜ ,Hs 0[− π π]. Todi E T( ) ≤π ∈ ∑x t g C M g k k l s l s s, * 2 2 02 2Ω Z , t ∈ R, (1.14) de Cl 2 > 0 — stala z nerivnosti (1.2), a Ms ≥ 1 — stala z nerivnosti (1.13). Dovedennq. Vraxovugçy (1.2), ma[mo E T E( ) ≤ ( )π ∈ ∑x t g C x t g k k l s l s, * , *2 2 0Ω Ω Z , t ∈ R. (1.15) Poznaçagçy G = F Ω g, oderΩu[mo E( )x t g s, * Ω 0 = [][] Σ Ω( )σ, t gF [][]s 0 ≤ ≤         cos sin ( ) − ( )     ( ) σ σ σ t t G0         s 0 +         sin cos ( ) ( )     ( ) σ σ σ σ t t G1         s 0 ≤ ≤ 2 0 0 1 0 2 1 1 0 2 1 2 G G i Gs s s= ( )    + ( )   − σ σ / , t ∈ R. ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 PROBLEMY KEROVANOSTI DLQ RIVNQNNQ STRUNY 945 Oskil\ky G i s 1 0( )σ σ = ∂−1 1 0 Ωg s , to, vykorystovugçy (1.13), ma[mo E( ) ≤ + ( ) + ( )( )− − − x t g g M g gs s s s s, * / Ω 0 0 0 1 0 1 2 1 0 1 2 1 2 2 2 2 ≤ ≤ 2 2 0M gs s , t ∈ R. ProdovΩugçy ocinku (1.15), zvidsy oderΩu[mo (1.14). Lemu dovedeno. Lema 1.3. Nexaj g ∈ Ĥs l . Todi E( )x t g l s, * = [][] Σ( )σ, t gF [][]s l ≤ ≤ 4 62t + [][] F g [][]s l = 4 62t g l s+ , t ∈ R. (1.16) Dovedennq. Dlq koΩnoho t ∈ R ma[mo E( )x t g l s, * = [][] Σ( )σ, t gF [][]s l ≤ ≤         cos sin ( ) − ( )     σ σ t t gF 0         s l +         sin cos ( ) ( )     σ σ σ t t gF 1         s l ≤ ≤ 2 [] F g0 []s l +     ( )         + [] []( )     − sin / σ σ t g g s l s lF F1 2 1 1 2 1 2 . Vraxovugçy, wo 1 2 2 +( ) ( )σ σ σ sin t ≤ 2 12( + )t , oderΩu[mo (1.16). Lemu dovedeno. Teorema 1.1. Nexaj T > 0, w0 ∈ ˜ ,Hs 0 0[ π], K ∈ N — take çyslo, wo π ( K – – 1 ) < T ≤ π K, ta isnu[ µ ∈ R take, wo ∂ ( ) ± ( ) + π     ≤−1 1 0 0 0 2Ω Ωw x w x T K Kµ majΩe skriz\ na [ – π, π ] , (1.17) supp{ }( )∂ ( ) + ( )−H x w x w x1 1 0 0 0Ω ⊂ [ 0, T – π ( K – 1 ) ], (1.18) supp{ }( )∂ ( ) − ( )−H x w x w x1 1 0 0 0Ω ⊂ [ π K – T, π ]. (1.19) Todi stan w0 [ 0-kerovanym za ças T. Okrim toho, qkwo w̃ x w x H x T K H t H t T1 0 1 1 0( ) = ∂ ( ) ( ) + π     ( ) − ( − )− ( )Ω µ , u t K w t k w t kk 0 2 1 1 0 0 01 2 2 2+ ( ) = ( − π ) + ( − π )[ ]˜ , k = 0 1 2, /[ ]( − )K , u t K w k t w k tk 0 2 1 0 0 01 2 2 2( ) = ( π − ) − ( π − )[ ]˜ , k = 1 2, /[ ]K , u t K w k t w k tk π + ( ) = − ( π + π − ) − ( π + π − )[ ]2 1 1 0 0 01 2 2 2˜ , k = 0 1 2, /[ ]( − )K , u t K w k t w k tk π ( ) = − (− π + π + ) + (− π + π + )[ ]2 1 0 0 01 2 2 2˜ , k = 1 2, /[ ]K , to keruvannq ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 946 L. V. FARDYHOLA, K. S. XALINA uα ( t ) = u tk k K α( ) = ∑ 1 , α = 0, π, zadovol\nqgt\ umovy supp uα ⊂ [ 0, T ], α = 0, π, ta rozv’qzugt\ problemu 0- kerovanosti za ças T. Dovedennq. Z (1.17) vyplyva[, wo uα ∈ B ( 0, T ), α = 0, π. Za formulog (1.12) W T = 0, tobto stan W 0 [ ε-kerovanym za ças T (dyv. (1.18), (1.19)). Na pidstavi tverdΩennq 1.1 robymo vysnovok, wo stan w0 [ takoΩ 0-kerovanym za ças T. Teoremu dovedeno. Teorema 1.2. Nexaj T > 0, w0 ∈ ˜ ,Hs 0 0[ π], K ∈ N — take çyslo, wo π ( K – – 1 ) < T ≤ π K. Todi qkwo stan w0 [ 0-kerovanym za ças T, to umovy (1.17) – (1.19) vykonano. Dovedennq. Za tverdΩennqm 1.2 stan W 0 = Ωw k 0 ∈∑ Z [ ε-kerovanym za ças T . Tomu dlq koΩnoho n ∈ N isnu[ Wn ∈ RT ( W 0 ) take, wo W n l s < 1 n . OtΩe, isnugt\ un α ∈ B ( 0, T ), α = 0, π, taki, wo W n = E ( x, T ) * W x u x u x u x u xk k n n n n 0 2 0 0 ( ) − ( )( ) − ( )( − π) ( ′) ( ) − ( ′) ( − π)          π ∈ π π ∑ ( ) ( ) T Z Ω Ω Ω Ω . Zastosovugçy lemu 1.3 ta formuly (1.10) – (1.13), oderΩu[mo Ω{ }( ) − ( )w x u xn 0 0 0ˆ → 0 ta { }∂ ( ) − ( )−1 1 0 1Ω Ξw x u xnˆ → 0 pry n → ∞ (1.20) v H s 0 [− π π], , a otΩe, i v S ′. Tut ˆ , ,u t u k t u k tn k n k k n k k k K 0 1 0 1 0 1 2 2 1 2 2 1( ) = (− ) π     + (− )    + π     + (− ) ( − π)      + + π = ∑ , ˆ , ,u t u k t u k tn n k k n k k k K 1 0 1 0 2 2 1 2 2 1( ) = π     + (− )    − π     + (− ) ( − π)      + π = ∑ , u u H x p H x pn p n α α , = ( − π( − )) − ( − π )( )1 , p = 1, K , α = 0, π. Oskil\ky un α ∈ B ( 0, T ), α = 0, π, n ∈ N, to û xj n( ) ≤ 2K majΩe skriz\ na [ 0, π ], j = 0, 1. (1.21) Vykorystovugçy te, wo S [ wil\nym u L2 ( R ) ta supp û j n ⊂ [ 0, π ], n ∈ N, j = 0, 1, z (1.20) oderΩu[mo Ωû xn 0 ( ) → Ωw x0 0( ) ta Ξû xn 1 ( ) → ∂ ( )−1 1 0Ωw x pry n → ∞ v ( L2 ( – π, π ) ) ′. Za teoremog Rissa Ωw0 0 ∈ L2 ( – π, π ), ∂−1 1 0Ωw ∈ L2 ( – π, π ). OtΩe, z (1.20), (1.21) vyplyva[ (1.17) – (1.19). Teoremu dovedeno. Takym çynom, teoremy 1.1 ta 1.2 dagt\ nastupnyj kryterij 0- ta ε-kerova- nosti. Vysnovok 1.1. Nexaj T > 0, w0 ∈ ˜ ,Hs 0 0[ π] t a K ∈ N — take çyslo, wo π ( K – 1 ) < T ≤ π K. Todi nastupni tverdΩennq [ rivnosyl\nymy: i) stan w0 [ 0-kerovanym za ças T; ii) stan w0 [ ε-kerovanym za ças T; ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 PROBLEMY KEROVANOSTI DLQ RIVNQNNQ STRUNY 947 iii) vykonano try umovy: ∂ ( ) ± ( ) + π     ≤−1 1 0 0 0 2Ω Ωw x w x T K Kµ majΩe skriz\ na [ – π, π ] dlq deqkoho µ ∈ R, supp{ }( )∂ ( ) + ( )−H x w x w x1 1 0 0 0Ω ⊂ [ 0, T – π ( K – 1 ) ], supp{ }( )∂ ( ) − ( )−H x w x w x1 1 0 0 0Ω ⊂ [ π K – T, π ]. Proilgstru[mo cej kryterij prykladamy. Pryklad 1.1. Nexaj w x0 0( ) = 2 sin ( x ), w x1 0( ) = 2 sin ( 2x ) na [ 0, π ]. Todi dlq bud\-qkoho s ≤ 0 w0 ∈ ˜ ,Hs 0 0[ π]. Ma[mo ˜ sinw x H x w x H x w x dx x H x H x x 1 0 1 1 0 1 0 22( ) = ( )∂ ( ) = ( ) ( ) = ( ) ( ) − ( − π)− − ∞ ∫ [ ]Ω Ω . Oskil\ky sup ˜ : ,w x w x x1 0 0 0 0( ) ± ( ) ∈[ π]{ } = 4, to za teoremog 1.1 keruvannq u0 ( t ) = 1 2 2( + )sin sint t , uπ ( t ) = 1 2 2( )(π − ) + (π − )sin sint t , t ∈ [ 0, 2π ], rozv’qzu- gt\ problemu 0-kerovanosti systemy (0.1), (0.2), (1.1) za ças T = 2π. Oskil\ky supp ˜( )( ) + ( )w x w x1 0 0 0 = supp ˜( )( ) − ( )w x w x1 0 0 0 = [ 0, π ], to stan w0 ne [ 0-kerova- nym ( ε-kerovanym) za ças T < 2π. Pryklad 1.2. Nexaj w x0 0( ) = x H x H x( ) − − π       4 + π − π    − − π       4 4 3 4 H x H x + + (π − ) − π    − ( − π)    x H x H x3 4 , w x1 0( ) = H x H x H x H x( ) − − π    + − π    − ( − π)2 4 2 3 4 . Todi dlq bud\-qkoho s ≤ 0 w0 ∈ ˜ ,Hs 0 0[ π]. Ma[mo w̃ x H x w x H x w x dx x 1 0 1 1 0 1 0( ) = ( )∂ ( ) = ( ) ( )− − ∞ ∫Ω Ω = = x H x H x x H x H x( ) − − π        + π −    − π    − − π       4 2 4 3 4 + + ( − π) − π    − ( − π)    x H x H x3 4 . Oskil\ky sup ˜ : ,w x w x x1 0 0 0 0( ) ± ( ) ∈[ π]{ } = π 2 , to za teoremog 1.1 keruvannq u0 ( t ) = uπ ( t ) = t H t H t t H t H t( ) − − π        + π −    − π    − − π       4 1 2 3 4 4 3 4 rozv’qzugt\ problemu 0-kerovanosti systemy (0.1), (0.2), (1.1) za ças T = 3 4 π . Oskil\ky supp ˜( )( ) + ( )w x w x1 0 0 0 = 0 3 4 , π    , supp ˜( )( ) − ( )w x w x1 0 0 0 = π π   4 , , to stan w0 ne [ 0-kerovanym ( ε-kerovanym) za ças T < 3 4 π . ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 948 L. V. FARDYHOLA, K. S. XALINA 2. Relejni keruvannq ta tryhonometryçna problema momentiv Markova. Rozv’qzok problemy 0-kerovanosti (keruvannq), znajdenyj u p. 1, moΩe buty do- syt\ skladnym dlq praktyçnoho vykorystannq. U c\omu punkti my budu[mo re- lejni keruvannq, wo rozv’qzugt\ problemu ε-kerovanosti (relejnym nazyva[t\- sq keruvannq u ( t ), t ∈ ( 0, T ), take, wo | u ( t ) | = 1 majΩe skriz\ na ( 0, T ), u ( t ) = = 0 majΩe skriz\ na R \ ( 0, T ) ta çyslo toçok rozryvu [ skinçennym). Budemo rozhlqdaty systemu tryhonometryçnyx problem momentiv Markova, qki pobudo- vani za danymy kerovano] systemy, ta dovedemo, wo deqki ]xni rozv’qzky [ relej- nymy keruvannqmy, wo rozv’qzugt\ problemu ε-kerovanosti. Skriz\ u c\omu punkti budemo vvaΩaty, wo T > 0, w0 ∈ ˜ ,Hs 0 0[ π], K ∈ N — take çyslo, wo π ( K – 1 ) < T ≤ π K. Okrim toho, budemo vvaΩaty, wo umovu iii) vysnovku 1.1 vykonano, ta poznaçymo w̃ x H x w x T K H x1 0 1 1 0( ) = ( )∂ ( ) + π     ( )− (Ω µ – – H x T( − )), W 0 = T 2 0 π∈∑ kk wΩ Z , ˜ ˜W x w x kk1 0 2 1 0( ) = ( )π∈∑ T Z Ξ . Vykorystovugçy tverdΩennq 1.1 ta 1.2, my moΩemo zamist\ kerovano] sys- temy (0.1), (0.2), (1.1) rozhlqdaty kerovanu systemu (1.3) – (1.5), de W ( ⋅, t ) = = T 2π∈ (⋅ )∑ kk w tΩ , Z , t ∈ ( 0, T ), W T = T 2π∈∑ k T k wΩ Z . Rozhlqnemo zvuΩennq operatora neparnoho prodovΩennq Ω̃ : H s 0 [− π π], z oblastg vyznaçennq D( )Ω̃ = H s 0 0[ π], ∩ L2 ( 0, π ). Ma[mo Ω̃ f = Ω f, f ∈ D( )Ω̃ . Todi Im ( )Ω̃ = { ϕ ∈ Hs 0(− π π), ∩ L2 ( – π, π ) : ϕ — neparna }. Lehko pobaçyty, wo Ω̃ vza[mno odnoznaçno vidobraΩu[ D( )Ω̃ na Im ( )Ω̃ ta ( )( )−Ω̃ 1g x = g ( x ) H ( x ), g ∈ Im ( )Ω̃ . Vidmitymo, wo nemoΩlyvo dlq dvox dovil\nyx funkcij f1 i f2 , wo naleΩat\ Hs 0 , vyznaçyty f1 f2 (dobutok cyx dvox funkcij), ale v rozhlqduva- nomu vypadku odna z funkcij [ finitnog ta naleΩyt\ L2 ( R ), a inßa [ obmeΩe- nog, tomu naße oznaçennq Ω̃−1g [ korektnym dlq g ∈ D( )Ω̃ . Takym çynom, Ω̃ [ oborotnym linijnym operatorom, Ω̃−1 : H Hs s 0 0 0[− π π] → [ π], , , D( )−Ω̃ 1 = = Im ( )Ω̃ , Im ( )−Ω̃ 1 = D( )Ω̃ . Lema 2.1. Operator Ω̃−1 [ linijnym obmeΩenym, tobto dlq bud\-qkoho s ≤ ≤ 0 isnu[ Ps > 0 take, wo Ω̃− ≤1 0 0g P g s s s , g ∈ Im ( )Ω̃ = D( )−Ω̃ 1 . (2.1) Dovedennq. Zaznaçymo, wo oskil\ky Hs 0 [ banaxovym prostorom [8] (hl. 1), to H s 0 0[ π], ta H s 0 [− π π], takoΩ [ banaxovymy prostoramy. Dovedemo, wo D( )−Ω̃ 1 ta Im ˜( )Ω [ kompaktnymy linijnymy pidprostoramy H s 0 0[ π], ta H s 0 [− π π], vidpovidno. Nexaj [ a, b ] — sehment [ 0, π ] abo [ – π, π ]. Nexaj takoΩ { } = ∞gn n 0 ⊂ ⊂ H a bs 0 [ ], ∩ L2 [ a, b ] ta gn → g pry n → ∞ v H a bs 0 [ ], . PokaΩemo, wo g ∈ ∈ L2 [ a, b ]. Ma[mo gn → g pry n → ∞ v S ′. Oskil\ky S [ wil\nym v L2 ( R ), to gn → g pry n → ∞ v ( L2 ( R ) ) ′. Tomu za teoremog Rissa g ∈ L2 [ a, b ]. OtΩe, D( )Ω̃ [ kompaktnym linijnym pidprostorom H s 0 0[ π], . Qkwo dodatkovo prypus- tyty, wo u vypadku [ a, b ] = [ – π, π ] gn [ neparnog ( n ∈ N ), to g takoΩ [ ne- parnog. Tomu Im ( )Ω̃ [ kompaktnym linijnym pidprostorom H s 0 0[ π], . Ma[mo ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 PROBLEMY KEROVANOSTI DLQ RIVNQNNQ STRUNY 949 Ω̃g g s s 0 02≤ , g ∈ D( )Ω̃ . (2.2) Zastosovugçy teoremu Banaxa pro obernenyj operator, zvidsy oderΩu[mo ocin- ku (2.1). Lemu dovedeno. ZauvaΩennq 2.1. Zaznaçymo, wo z toho, wo supp f ⊂ [ 0, + ∞ ), vzahali kaΩu- çy, ne vyplyva[, wo supp ( 1 + | D | 2 ) s f ⊂ [ 0, + ∞ ). Tomu oderΩaty qvnu ocinku zverxu dlq stalo] Ps v (2.1) dosyt\ skladno. Skorystavßys\ lemog 2.1 ta vys- novkom 1.1, my moΩemo utoçnyty tverdΩennq 1.2. TverdΩennq 2.1. Stan w0 ∈ ˜ ,Hs 0 0( π) [ ε-kerovanym za ças T todi i ly- ße todi, koly stan W0 = T 2 0 π∈∑ kk wΩ Z , wo naleΩyt\ H̃l s , [ ε -kerovanym za ças T. Poznaçagçy ˆ ˜w x K W x W x H x H x K0 1 0 0 01 2 ( ) = ( ) + ( ) ( ) − ( − π )( )( ) , ˆ ˜w x K W x W x H x H x Kπ( ) = (π − ) − (π − ) ( ) − ( − π )( )( )1 2 1 0 0 0 ta zastosovugçy formulu (1.9), oderΩu[mo W T ( x ) = E ( x, T ) * T T2 0 2 1 2 0 0 1 π = − π ∈ ∑ ∑       ( ) − ( )( )m m K Kk k d dx w x u xΩ / ˆ Z + + T 2 1 π + π ∈ π π     ( ) − ( )    ∑ ( ) Kk k d dx w x u xΩ / ˆ Z . (2.3) Z formuly (1.2) vyplyva[, wo dlq bud\-qkoho g ∈ Hs 0 , supp g ⊂ [ 0, + ∞ ), ma[mo T 2 2 0 1 1 π ∈     ≤    ∑ Kk k l s l K s d dx g C d dx gΩ Ω / / Z ≤ ≤ 2 22 0 2 C g C c gl K s l K l K Kk k l s ≤ π ∈ ∑T Z . Zvidsy na pidstavi lem 1.3, 2.1 ta formul (1.2), (2.3) oderΩu[mo w P c W K P C c c w x u xT s s l T l s s l K l l K Kk k l s 0 2 2 2 2 0 010≤ ≤ π    ( ) − ( )π ∈ ∑ ( )T Z ˆ + + Tπ + π ∈ π π∑ ( )( ) − ( )   Kk k l s w x u x Z ˆ . (2.4) Rozhlqnemo rozvynennq funkcij Tπ∈∑ ( )( ) − ( ) Kkk w x u x Z ˆα α , α = 0, π, v rq- dy Fur’[ po e mx K−2 / . Ma[mo * ˆ ˆ /ωα α m i mx K K w x e dx= ( ) π ∫ 2 0 , m ∈ Z, α = 0, π, (2.5) να α m i mx K K u x e dx= ( ) π ∫ 2 0 / , m ∈ Z, α = 0, π. (2.6) ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 950 L. V. FARDYHOLA, K. S. XALINA Todi Tπ ∈ − ∈ ∑ ∑( )( ) − ( ) = π ( − ) Kk k m m i mx K m w x u x K e Z Z ˆ ˆ / α α α αω ν1 2 v Hs 0 , α = 0, π. (2.7) Oskil\ky uα ∈ B ( 0, T ), α = 0, π, a w0 zadovol\nq[ umovu iii) vysnovku 1.1, to ω̂α m ≤ 1, να m ≤ 1, m ∈ Z, α = 0, π. (2.8) Tomu dlq s < – 1 / 2 otrymu[mo Tπ ∈ ∑ ( )( ) − ( ) Kk k l s w x u x Z ˆα α ≤ C K m K l K s m m mπ +         − ∈ ∑ 1 2 2 2 ω̂ να α Z , α = 0, π. ProdovΩugçy (2.4), zvidsy znaxodymo w KP C C c c m K T s s l K l K l l K s m m m 0 2 2 2 0 0 2 10 1 2≤     +         − ∈ ∑ ω̂ ν Z + + 1 2 2 2 +         −    π π ∈ ∑ m K s m m m ω̂ ν Z . (2.9) Takym çynom, dovedeno nastupnu teoremu (dyv. (2.4), (2.7), (2.9)). Teorema 2.1. Nexaj T > 0, dlq w0 ∈ ˜ ,Hs 0 0[ π] vykonano umovu iii) vysnovku 1.1 ta ω̂α m vyznaçeno za formulog (2.5). Todi vykonugt\sq tverdΩennq: i) stan w0 [ 0-kerovanym za ças T todi i lyße todi, koly isnugt\ uα ∈ ∈ B ( 0, T ), α = 0, π, taki, wo ω̂α m = να m , m ∈ Z , α = 0, π, de να m vyznaça[t\- sq formulog (2.6); ii) stan w0 [ ε-kerovanym za ças T todi i lyße todi, koly dlq koΩnoho ε > 0 isnugt\ uα, ε ∈ B ( 0, T ), α = 0, π, taki, wo 1 2 2 2 +         − ∈ ∑ m K s m m m ˆ ,ω να α ε Z < ε2 , α = 0, π, (2.10) de να ε, m vyznaça[t\sq formulog (2.6) z zaminog uα n a uα , ε . Okrim toho, qkwo (2.10) vykonano, to w KP C C c c T s s l K l K l l K0 2 2 20≤ ε . Zafiksu[mo α = 0, π ta rozhlqnemo problemu poßuku takoho uα ∈ B ( 0, T ), wo u x e dxi mx K T α( )∫ 2 0 / = ω̂α m , m ∈ Z. (2.11) Taka problema nazyva[t\sq tryhonometryçnog problemog momentiv Markova dlq neskinçenno] poslidovnosti { } = − ∞ + ∞ω̂α m m . Za teoremog 2.1 uα ∈ B ( 0, T ), α = = 0, π, [ rozv’qzkamy problemy 0-kerovanosti za ças T dlq systemy (0.1), (0.2), (1.1) v tomu i lyße v tomu vypadku, koly uα , α = 0, π, [ rozv’qzkamy tryhono- metryçno] problemy momentiv Markova dlq neskinçenno] poslidovnosti { } = − ∞ + ∞ω̂α m m , vyznaçeno] formulamy (2.5). ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 PROBLEMY KEROVANOSTI DLQ RIVNQNNQ STRUNY 951 Rozhlqnemo dlq fiksovanoho α = 0, π , N ∈ N problemu poßuku uα ∈ B ( 0, T ) takoho, wo u x e dxi mx K T α( )∫ 2 0 / = ω̂α m , m = − N N, . (2.12) Taka problema nazyva[t\sq tryhonometryçnog problemog momentiv Markova dlq skinçenno] poslidovnosti { } = −ω̂α m m N N . Vyqvlq[t\sq, wo rozv’qzky takyx tryhonometryçnyx problem momentiv dlq riznyx N ∈ N dagt\ nam rozv’qzky problemy ε-kerovanosti za ças T systemy (0.1), (0.2), (1,1). Teorema 2.2. Nexaj T > 0, s < – 1 / 2, dlq w0 ∈ ˜ ,Hs 0 0[ π] vykonano umovu iii) vysnovku 1.1 i K ∈ N take, wo π ( K – 1 ) < T ≤ π K. Nexaj takoΩ { } = − ∞ + ∞ω̂α m m vyznaçeno formulog (2.5). Todi qkwo uN α ∈ B ( 0, T ), α = 0, π, [ rozv’qzkamy tryhonometryçnyx problem momentiv Markova (2.12) dlq deqkoho N ∈ N, to kincevyj stan wT kerovano] systemy (0.1), (0.2), (1.1) zadovol\nq[ umovu w P C C N c c K s T s s s l K l K s l l K s0 6 2 1 2 2 1 2 2 1 ≤ − − + + − / → 0 pry N → ∞. (2.13) Dovedennq. Vraxovugçy umovu iii) (vysnovok 1.1), te, wo uN α ∈ B ( 0, T ), α = = 0, π, ta (2.5), (2.6), (2.8), (2.9), odrazu oderΩu[mo (2.13). Teoremu dovedeno. Poznaçymo B N ( 0, T ) = { u ∈ B ( 0, T ) | ∃ T* ( 0, T ) ( | u ( t ) | = 1 majΩe skriz\ na ( 0, T* ) ) ∧ ( u ( t ) = 0 majΩe skriz\ na ( T* , T ) ) ∧ ( u ( t ) ma[ ne bil\ße niΩ 2N toçok rozryvu na ( 0, T* ) ) }. Vidomo [12] (hl. 7), wo qkwo skinçenna tryhonometryçna problema momentiv (2.12) [ rozv’qznog, to vona ma[ rozv’qzok, wo naleΩyt\ B N ( 0, T ). Na pidstavi teoremy 2.2 robymo vysnovok, wo za umov ci[] teoremy moΩna znajty rozv’qzky uN α ∈ B ( 0, T ), α = 0, π , problemy momentiv (2.12), i ci rozv’qzky dagt\ nam re- lejni keruvannq, wo rozv’qzugt\ problemu ε-kerovanosti, a formula (2.13) vyz- naça[ ocinku toçnosti vluçennq v 0. OtΩe, my moΩemo sformulgvaty takyj vysnovok. Vysnovok 2.1. Nexaj T > 0, s < – 1 / 2, dlq w0 ∈ ˜ ,Hs 0 0[ π] vykonano umovu iii) vysnovku 1.1 i K ∈ N take, wo π ( K – 1 ) < T ≤ π K . Nexaj takoΩ { } = − ∞ + ∞ω̂α m m vyznaçeno formulog (2.5). Todi dlq koΩnoho N ∈ N isnugt\ uN α ∈ B N ( 0, T ), α = 0, π, — rozv’qzky tryhonometryçnyx problem momentiv Markova (2.12) dlq c\oho N, ta dlq koΩnoho ε > 0 isnu[ N ∈ N take, wo kincevyj stan w T kerovano] systemy (0.1), (0.2), (1.1) zadovol\nq[ umovu wT s 0 ≤ ε, pryçomu N vyznaça[t\sq umovog 2 2 1 6 2 1 2 2 1 s s l K l K s l l K s P C C N c c K s + + − − − / < ε. U teoremi 2.2 ta vysnovku 2.1 dovedeno, wo pobudovani relejni keruvannq zabezpeçugt\ zbiΩnist\ do nulq kincevoho stanu wT v Hs 0 × Hs 0 1− lyße za umo- vy s < – 1 / 2. PokaΩemo na prykladi, wo cq umova [ istotnog. ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7 952 L. V. FARDYHOLA, K. S. XALINA Pryklad 2.1. Nexaj T ∈ ( 0, π ], w0 0 = 1 2 na ( 0, π ), w x1 0( ) ∈ Hs 0 1 0− ( π), , n ∈ ∈ N, uα ∈ BN ( 0, T ), α = 0, π. Z formul (1.2), (1.9) ta lemy 1.3 oderΩu[mo c w x u x u xl s2 0 0 0 0 Ω( )( ) − ( ) − (π − )π ≤ ≤ T 2 0 0 0 1 0 0 π ∈ π π ∑ ( ) ( ( )) ( ) − ( ) − (π − ) ( ) − ( ) − (π − ) ′    k k l s w x u x u x w x u x u xZ Ω Ω Ξ ≤ ≤ E( − ) ≤ π + ≤ π +x T W C wl s T l s l T s , 4 6 4 62 2 2 0 Ω . OtΩe, zvidsy na pidstavi lemy 2.1 ma[mo w c P C w x u x u xT s l s l s 0 2 2 2 0 0 0 08 12 ≥ π + ( ) − ( ) − (π − )π . Dlq s = 0 w x u x u x0 0 0 0 0 2 ( ) − ( ) − (π − ) ≥ π π , tomu w c P C T l s l 0 0 2 2 22 8 12 ≥ π π + = ε0 . (2.14) Takym çynom, dlq zadanyx T, w0 u vypadku s = 0 ≥ – 1 / 2 isnu[ ε0 > 0 take, wo dlq bud\-qkoho N ∈ N ta bud\-qkyx uα ∈ B N ( 0, T ), α = 0, π, kincevyj stan wT kerovano] systemy (0.1), (0.2), (1.1) zadovol\nq[ ocinku (2.14). 1. Lasiecka I., Triggiani R. Control theory for partial differential equations: continuous and approximation theories. 2. Abstract hyperbolic-like systems over a finite time horizon. – Cambridge Univ. Press, 2000. 2. Krabs W., Leugering G. On boundary controllability of one-dimension vibrating systems by W p 0 1, -controls for p ∈ [0, ∞) // Math. Meth. Appl. Sci. – 1994. – 17. – P. 77 – 93. 3. Gugat M., Leugering G. Solutions of L p -norm-minimal control problems for the wave equation // Comput. Appl. Math. – 2002. – 21, # 1. – P. 227 – 244. 4. Negreanu M., Zuazua E. Convergence of multigrid method for the controllability of a 1-d wave equation // C. r. math. Acad. sci. – 2004. – 338, # 5. – P. 413 – 418. 5. Gugat M. Analytic solution of L ∞ -optimal control problems for the wave equation // J. Optimiz. Theory and Appl. – 2002. – 114. – P. 151 – 192. 6. Fattorini H. O. Infinite dimensional optimization and control theory. – Cambridge Univ. Press, 1999. 7. Schwartz L. Théorie des distributions, I, II. – Paris: Hermann, 1950 – 1951. 8. Volevyç L. R., Hyndykyn S. H. Obobwenn¥e funkcyy y uravnenyq v svertkax. – M.: Fyzmat- hyz, 1994. – 336 s. 9. Sklyar G. M., Fardigola L. V. The Markov power moment problem in problems of controllability and frequency extinguishing for the wave equation on a half-axis // J. Math. Anal. and Appl. – 2002. – 276, # 1. – P. 109 – 134. 10. Sklyar G. M., Fardigola L. V. The Markov trigonometric moment problem in controllability problems for the wave equation on a half-axis // Mat. Fizika, Analiz, Geometriya. – 2002. – 9, # 2. – P. 233 – 242. 11. Hel\fand Y. M., Íylov H. E. Obobwenn¥e funkcyy. – M.: Fyzmathyz, 1958. – V¥p. 3. – 308Rs. 12. Krejn M. H., Nudel\man A. A. Problema momentov Markova y πkstremal\n¥e zadaçy. – M.: Nauka, 1973. – 552 s. OderΩano 24.01.2005, pislq doopracgvannq — 02.02.2006 ISSN 1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 7