О порядке роста решений алгебраических дифференциальных уравнений

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Мохонько, А.З., Мохонько, В.Д.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 1999
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164284
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О порядке роста решений алгебраических дифференциальных уравнений / А.З. Мохонько, В.Д. Мохонько // Український математичний журнал. — 1999. — Т. 51, № 1. — С. 69–77. — Бібліогр.: 9 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164284
record_format dspace
spelling irk-123456789-1642842020-02-10T01:28:08Z О порядке роста решений алгебраических дифференциальных уравнений Мохонько, А.З. Мохонько, В.Д. Статті 1999 Article О порядке роста решений алгебраических дифференциальных уравнений / А.З. Мохонько, В.Д. Мохонько // Український математичний журнал. — 1999. — Т. 51, № 1. — С. 69–77. — Бібліогр.: 9 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164284 517.925.7 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Мохонько, А.З.
Мохонько, В.Д.
О порядке роста решений алгебраических дифференциальных уравнений
Український математичний журнал
format Article
author Мохонько, А.З.
Мохонько, В.Д.
author_facet Мохонько, А.З.
Мохонько, В.Д.
author_sort Мохонько, А.З.
title О порядке роста решений алгебраических дифференциальных уравнений
title_short О порядке роста решений алгебраических дифференциальных уравнений
title_full О порядке роста решений алгебраических дифференциальных уравнений
title_fullStr О порядке роста решений алгебраических дифференциальных уравнений
title_full_unstemmed О порядке роста решений алгебраических дифференциальных уравнений
title_sort о порядке роста решений алгебраических дифференциальных уравнений
publisher Інститут математики НАН України
publishDate 1999
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164284
citation_txt О порядке роста решений алгебраических дифференциальных уравнений / А.З. Мохонько, В.Д. Мохонько // Український математичний журнал. — 1999. — Т. 51, № 1. — С. 69–77. — Бібліогр.: 9 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT mohonʹkoaz oporâdkerostarešenijalgebraičeskihdifferencialʹnyhuravnenij
AT mohonʹkovd oporâdkerostarešenijalgebraičeskihdifferencialʹnyhuravnenij
first_indexed 2025-07-14T16:52:05Z
last_indexed 2025-07-14T16:52:05Z
_version_ 1837641947196424192
fulltext Ys 517.925.7 A. 3. MOXOHbKO, B. ~ . MOXOHbKO (YII-T ,,J]bt~OB. nom4TexnHKa") O IIOPYI~KE POCTA PEIIIEI-IHI~ AJIFEBPAI4-qECKHX ~[H(I)| YPABHEHHI~ Assume that f is an integer transcendental solution of the differential equation P,, ( z , f , f ' ) = Pn-t (z, f , f " . . . . , f (P)) ,Pn, Pn-i are polynomials in all the variables, the order of Pn with respect to f and f ' is equal to n, and the order of Pn-l with respect to f , f ' , . . . . y4p) is at most n - 1. We prove that the order p of growth of f satisfies the relation 1/2 < p <oo. We also prove that if p = 1/2, then, for some real 11, in the domain {z : "q < argz < 11 + 2 ~ } \ E., where E, is some set of disks with the finite sum of radii, the estimate lnf(z) = z l /2(~ + o( 1 )), ~ ~ C, is true (here, z = r ei~, r > > r ( t p ) > 0, andi f z = re i*, r > r(tp) > 0) and, on aray {z : argz = 11}, the relation In [f(rei~)[ = o(r l /2 ) , r---> + ~ , r > 0 , r ~ A, holds, where A is some seton the semiaxis r > 0 with rues A < ~. Hexatl f - - tti~Htt Tpanct~eH~tetrrmitl poan'aaOK ~HqbepeHttia, nbHOrO piaHanHa Pn ( z, f , f" ) = P, -I ( z, f , . f . . . . , f(PJ), Pn, P~-t - - Muoroq~eHu hilt ycix aMitlmtx; cTeniub Pn Bi/~ocno f i f ' ]1opimt~ae n, ereninb Pn-t ni/lllocno f, f ' , . . . . f(P) He nepenatUyr n - I. ~oBelleno, ttto nopmlog p apo- c~rallna f aa/IonoJibllae nepinHocTi 1/2 < p <'0. J;lKmO p = 1/2, TO ~tJIa/leaKoro/tiiacHoro 11 a 06- naeri {z : 11 < argz < 11 + 2 n } \ E . cnpane/t~n~ oUiHKa lnf(z) = zl/2(~l + o(1 )), z -~ **, 13 C, l~'.na z = re i~, r > r ( 9 ) > O, 12e E , ~ /leaKa Mno~mm Kpyrin i3 cKitlqelltlOIO cyMOIO pa/liycia, a Ha npOMeHi { Z : arg Z = 11 } nHKonyeaa, ca In I f ( r e ~ ) [ = o (r I/2), r --> +**, r > 0, r "~ A, lie A--/ teaKaMuo~Hnauaninoci r > 0 a mesa < **. Hcno~bayeM o6oaHaqemIJ~ Teopml MepOMopdpHraX qbyHKttn~ [1]. K a r y c T a n o a n ~ Ba~tnpoa [2, c. 224] , c y ~ e c T a y ~ T a~re6panqecKHe/t~tqbqbepem~rla~bHue ypaBHenna (n.y.) Tpea~ero nopa~Ka, aMe~atuae t temae TpanctteH~aemmue petuermJ~, nopa~OK po- e r a ~OTOpUX p = 0. YIoa~Hee B. B. 3 H M o r z a a [3] noKaaa~, ~rro ~t.y. a T o p o r o nopa~t- Ka He HMeeT t l e ~ x TpanctteH/IeHTHbIX pemeHn~ Hy~qeBoro nopa~Ka p o e r a . HaBeCT- HO [4, C. 70], qrO ~a.y. nepaoro nopa/Ira P ( z , f , f ' ) = 0 , (1) r ~ e P ~ MHOFOqJIeH no BCeM nepeMennhlM, He ltMeeT 11e:Iux TpaHc~eH/IeHTrIUX pe- III~HI4~I nopa/ IKa p < 1 / 2 . PaCCMOTpnM 6 o ~ e e o6u~ee no cpaBHeHmO C (1) ~.y. ( f l J ) = f j , j = 1 . . . . . p ) (I + o(1))asz%fkf: = Z bK(z)fk~ p' (2) k+s=n IK[<n g = . . . . . k , ) , I g l = k0 + kl + . . . + kp, IIKII = + 2k2 + . . . + pke; bK(Z ) = O ( z X r ) , Z ~ O = . { Z : I z l >- h } , (3) Iz [ --> 0% k, s ~ Z , k, s > 0 , ~s ,x t r R , a s ~ C. l ' l pe~noaoacn~ , wro Bee Koaclaclammerrna n.Y. (2) ~ a n a m r m a e c r , ne B D qbymcu~n, Hanpm~ep, b i t ( z ) = s i n ( l / z ) , z ~ D . MeTo~a B a v a r i a - B a m t p o n a n o a n o a ~ e T oxapaxTepHaosaTb CBOitCTBa t~e.noro pe- tUeHnJ~ a ~ r e 6 p a a q e c K o r o ~.y. OnHUIeM acnMrrroTa~ecr, He CBOiWTBa nes~oro p e m e - rma ~.y. (2) na npOnaBOZ~HOM ~ e {Z : arg Z = qu } H B y r ~ o a u x o 6 ~ a c T a x , qTO6U �9 A. 3. MOXOHbKO. B. ~. MOXOHbKO, 1999 I$$N 0041-6053. Yrp. 7~am. ~'ypn.. 1999. m. 51, N ~- 1 69 70 A. 3. MOXOHIaKO, B. s MOXOHbKO cqbopMy~tapOBaT~ COOTBeTCTBylOIIBIfl peayamTaT, rloHaRo6,qTCJt HeCKo.rlbKO onpei~e- ~IeHHII. 17ycT~ f(z) - - ttenoe pemeHme ~.y. (2) B D. O60aHaqaM m = { max s : k + s = = n, a s ~ 0 ; k, sa Z, k , s>O} . P a a ~ e n ~ M o 6 e ~ a c T a ( 2 ) n a f n z X ' - m ' , n o c n e npocToro npeo6paaoBamia no~yqHM ECJqH o6oarlaqIr (1 + o(1))(xaZ "cs-s-'~'n+m ( zfl(z) ) ~ $ = 0 = X bK(z)zm-%n (fl/f)kt ...(fp/f)kp IKl~n-I fn-IIr !7 s - - S - - I; m + m - - d $ , (4) zf~ (z__.__) = L(z) , (5) f ( z ) to(z) = Z bK(z) zm-x" (f l / f)kt ...(ap/ IKI ~ v- I fn-lKI TO a.Y. (4) Momno 3alIHCaTb B Brl/Ie m Y~ 0 + o(X))a,z", (L(z))" = to(z), ,=0 I z l - ~ , d~=0, ~m~0. 17o neBoa qacTa (7) nocTp0HM xapaxTepacTnqecKoe ypaaHenae m Zd s Z as LS =O. $ = 0 ~ r o ypaaHeHar HMeeT KOHeqHOe qaC~O pemenHlt , ( 6 ) (7) L(z) = (1.+ o(1))~jz pj, (8) I z l - ~ , ~j=l~jlexp(iaj) , j = l , 2 . . . . . q < m , p j ~ paurioHaJIbHbIe qrtc~a, KOTOpbIe Haxo/IJ~TC~ C nOMOIIIblO JIoMaHHx ~jr C; HblOTOHa [4, C. 69]. Ecam n (8) pj > 0, TO/XJIa ]xamnax pj n aj cymecTByeT KOHeHHOC MHO)KeCTBO uemax auaqerma k, Hanpm~ep, k r { 0, 1 . . . . . mj }, TaxHx, wro ar ia a n c e ~ 2gk - aj 9j = 9 ( ] , k) = (9) Pj BbnaoalrlalOTCZ HepaBeneTBa 0 < 9 j < 2/~. HosloT, cd~4 ~ j = ~ U , k ) = ~ j - , ~ j=~U,k)= ~ j + - - , (10) 2pj 29j j = l , 2 . . . . . q, k=O, 1 . . . . . mj. Ypannenne (2) y a o ~ e r a o p ~ r y c ~ o s r t ~ , npH Korop~ax K ero t~eamal pememtaM n p r ~ e r m ~ M~ro~t BH~ana - B a s m p o H a [2, c. 222]. B qac rnoe rn , n a n e e ~ o , wro mo- 6or lle~loe pemenrle f a.y. (2) runeer Ir n o p ~ t o x poeTa p = p j , r/Xe p] I$$N 0041-6053. Yxp. ,~tam. a~'y. pu., 1999, m. 51, N ~ 1 O HOP$1~KE POCTA PEUIEHHi~ AJIFEBPAHtlECKHX ... 71 o~no ri3 '~Hcen, onpeaenerm~x B (8). I lycTb {cq} ~ MItoTKeCTBO Bcex Hy~eta tteno- ro petIIeHHJt f n e r o npoH3BO/Iahlx f l . . . . . f r Bu6epeM npOn3BO:lbHOe G > 0 H }IJIJt Ka~]10rO CqE { Cq} HOCTpOHM 3aMKHyTb/IR Kpyr C tteHTpOM Cq pa/~Hyca ~ q-= = ]Cql -p-(~ qepe3 E , 0603HaqHM HHOmeCTBO r0qez , n p r l H a ~ e m a t t ~ x 3TRIM KpyraM. Toraa cornacHo meopevte BasmpoHa [4, c. 87] f:(z) clz 12~p+~ (11) < z e D \ E , , c = c o n s t , j = l , 2 . . . . . p . fI~Iz K a x a o r o Cq E { Cq} IIOCTpOHM TaKx~.e anTepBan [ ICq[ - ~q, I Cql + ~q]. I IycTb A - - MHOmeCTBO To,aeK Ha [0, oo), nprma/memamrlx ~TVlM rmTepBa.naM. 3rqi~a-uBaa (11), m e s a < ~ 25q < o o a E,--MHOmeCTBO KpyroB C KOHeaHOR CyMHOIt pa~nycoB. Ecnri g (z) - - t ~ e n a a (a.rm MepoMopqbHa.q) B D dpyImlma, TO O603HaqHM M(r,g) = m a x { I g ( z ) l , z: Izl = r} . (12) H3BeCTHO [1, C. 50], qTO ~nJt TOrO, YTO6t,I raenaz B n~tocKocTa C qbyHIO.ma g 61,ma TpaHcI2eH/~eHTHOi~I, Heo6xo~riMO rt/~OCTaTOqHO, qT06 r4 lira l nM (r , g ) _ +o.. (13) r~+** l n r 12enaz cl0yHKUHJt g (Z), Z e D , Ha3blBaeTc~I TpaHcueH/IeHTHOI~, ecnH BblIIOJIHSI- eTCJ~ (13 ) . TeopeMa 1. IIycmb f (z) ~ , e , w e mpanc,encgenmnoe peu~enue &y. (2) B D . Tozcga f u~teem nopaOoK pocma p , 1 /2 < p < +,,~. Bbmo.anatomca ma~me c.aecgy- 1ou~ue ceoacmea: 1) c)'u~ecmeyem l > 1 yz . loe Gj = { z : "qj < argz < yj}, ~na KomopbtX 8 Gj\E, Inf(z) = zPJ(I3jp~ I + o(1)), z --~ 0o, (14) (o~em<apa6noztepnano argz 8 o~nacmu {z: rlj+e < argz < 7j-e}\E., ~ > 0, ~ npousoonbno sacgannoe) ; 2) cyu~ecm~ytom q> l .ay~ert {z: argz= 0j} (cmoponbt yzaoe Gj), na KomopblX In [f(reiO01 = o(rP), r --> o0, r E A, mes A < 0~ ; (15) 3) na cgono.~nenuu K yKaeannb~t yz:tazt u .ay~azt one ~mo~recmea E. I f ( r e i* ) l < r v, r > r ( ~ ) , r ~ A, v =const . (16) 3/~ec~ qHcna p j n ~j , r I j n ~ IIpHHHMaIOT KaKHe-TO H3 KOHeHHblX MHOX<.eCTB 3aa~ennfl, onpe~tenerImax cooameTcamermo B (8), (10); V = max ['C K + m - IKl~n-I - x,~ + 2PlIKII] + e, e > 0 , e ~ K a x y r o z m o Ha.rloe. TeopeMa 2. Ec.au &y. (2) uJteem ~ D , e . w e pemenue f ( z ) nopaSKa p = = 1 /2 , mo cyu~ecm8yem " q j e R maroe, ~mo ~ o6nacmu { z : r l j < a r g z < r l j + + 2 x } \ E. eepno I n f ( z ) = zt/2(2~3j + o(1)), z --r o., (17) (o,en~a paono~tepna no argz e ato6oa enympennea yzaoeo~ o6aacmu), a n a ay~e { z : a r g z = rlj) ISSN 0041-6053. Ytcp. ~uJm. acypn., 1999, m. M, N e I 72 A. 3. MOXOHbKO, B./I. MOXOHbKO l n l f ( r e i r l o I = o ( r l12) , r--> +e~, r ' E ' A . (18) 3a~to tanue 1. OyaKUriJ~ f ( z ) = COS-v/-Z, Z r C, Jmn~teTca tte~naM pemenneM a.Y. f 2 + 4 z ( f , ) 2 = 0 H HMeeT nopazoK p = 1 / 2 , nprIqeM I n f ( z ) = ~r-z(- i + + o(1)) , Z ~ {Z: 0 < a rgz < 2rc]., a rgz = const, T. e. cnpaaettmtBo (17), ri Ha ny- qe {Z: a rgz = 0} manonH~e'rca (18). 3 a ~ e ~ a u u e 2. I I o K a ~ e ~ , Kax npeo6paaymTca y T a e p ~ e n r t a TeopeM 1, 2, ecml paccMaTprmaTb 6onee mnpoKnit Knacc MepOMOpqbn~aX pemenri~. C n a q a n a npezmo- noa:,rtM, ,-rro f ( z ) ~ MepoMopqbnoe pemenne a.Y. (1) B D . H n a x > 0 nono~rIM ln+x = max ( l n x , 0). PaccMoTprIM rleBannrmaOaCKym xapaKreprlcTHKy m ( r , f ) = = (2n)_ ~ ~ n in + [ f ( re i~) I d g . B [5] 6~ano noKaaaHo, qTO a paccMaTpaBaeMoM cny- ,~ae ~m6o Bepno m ( r , f ) < l n + M ( r , f ) < v l n r , t E A , m e s A < ~ * , (19) v > 0, v ~ HeKoTopaa KOnCTaaTa, nn6o xapaKTeprICTHKa m ( r , f ) nMeeT nopa~OK p, 1/2 < p < ~ ; ecnH p = 1 /2 , TO BUnOZHaIOTC.a y'rBepa~]xemtJ~ (17), (18), r a e g . ~ MHO)KeCTBO KpyFOB C KoHeqHo~ cyblMO~l paRrIycoB, HO C ReHTpaMH B ny~J~X H n o ~ o c a x pe tuennz f . Flopaz~OK pocTa ~epoMopqbnot4 qbyHKmIri f coBna~aeT c nopz/~OM p ee xapaK- reprlCTrlKrl T ( r , f ) [1, c. 65]. Hop~I/~OKpOCTa xapaKrepncTnl~i4 m ( r , f ) O6oanaqrlM qepe3 p . EcJ1rI, B qaCTHOCTri, f ( z ) ~ 12e~Ioe petuenne (1), onpeztezeHnoe B C , TO m ( r , f ) = T ( r , f ) , p = p , a n3 (19) c~e~ayeT, qTO ~n60 f ~ ~noroqneH r ae Bume v , m~6o f ~ Tpanctten~eHTHaZ u e n a z qbynKUnZ nopzaKa p _> 1 /2 . Eczn f ( z ) ~ MepoMopqbnoe B yrnoBO~t o6nacTn B = { z : a -< arg z <- 13 } pe- meHne ~t.y. (2) moHeqHoro nopz~Ka p , TO, KaK noKaaano B [6], B o6naca~a B TaK~e BUrtO~HJ~OTC~ HeKOTOpb~e yTBep~eHr t a , aHa~IOrHqH~e cqbopMym4po~anm, tM B nyH- KTaX 1 --3 TeOpeMu 1 gannol~ CTaTbH, 3a cne/~y~o~HM HcKn~oqem~eM: B TeopeMe 1 r~3 [6] ne yTsep~t taeTca , qTO cymecTByeT no xpat~ael~ Mepe ozma y r n o s a a o6nacT~ H XOTJ~ 6U O/trill nyq, Ha KOTOpblX COOTBOTCTBeHHO B u n o n u z e r c a (14) n (15). 3TO OT- nnqrie orpaz~aeT Oco6eHHOCTri MepoMopqbHb~X pemeHnt~. Hanpr Inep , pe tuenHe~ ypaaneanz ( f , ) 2 = 4 f 3 + g 2 f + g3, gj = const , ZB~ZeTCZ annrtnrnqecKa,a qbyHK- raria BeileptuTpacca p (z) , z e C [7, c. 359], a pememIaMrt ypaBHeHri~t HeaneBe f " = 6 f 2 + z rI f " = 2 f 3 + z f + a , a = const , ZBna~OTCa Tpaacttea/IenTHue qbyHKttnn FleHneBe [8]. 3Tri ypaaHeHnZ nMe~OT aria (2), a HX pe tuerma aBna~OTCa MepOMOpClDHHMH dpyHKl.r;rlZMH KOHeqHOFO rtopJt/~Ka pOCTa p [9] n n n z unx BhIIIOJIH$I- e'rcJ~ otteaKa (c~. [6] ) : I f (z) l < lzl C \E , , IzI > > R, v = c o n s t > 0 , (19 ' ) E . ~ aeKoTopoe r, mo;~eCTBO KpyroB C KoneqHo~ CyMMOfl pa/mycoa. OTClO/Ia c.rte- ]~yer, qXO BO Bcei~I o6nacT~ cyI/~eCTBOBaHH}t peuIeHn~I nMeCT MeCTO (16). OcTaeTcH HeBbI$1CHeHHIalM, cymecTBylOT .rl14 MepoMopdpHne pemeHHZ ~a.y. (2), Hlvtelolliae 6eCKOHeqHbI~ nop.'~IOK pOCTft~, HerlaBeCTHa TaK~Ke TOqHa.,q onerma CHH3y nopaaKa p o e r a TaraX petueHnia. ~ o r a ~ m e n ~ m ~ o m e o p e ~ 1 u 2. Ha (3) , (6), (11) cneayeT, qTO cymeCTByeT V ~ = c0nst > 0, onpe~aenJ~eMaa no Brtay ypa.aHeHUa (2), Tara.a, q-ro ,. / kp .(fp f ) I < Izl D \E , . (20) B~a6epeM V = const > v l a pacc~oTpm4 MHO~eCTBa ISSN 0041-6053, Yrp. ~lam. a~'ypn., 1999, ra. 51, N ~ 1 0 I'IOP~I~IKE POCTA PEIIIEHHI~ A3"IFEBPAHqECKHX ... 73 El = {z: z~ D\E,, [f(z)l-> [z[V}, E = D\{EI[JE.}. (21) YqHT~Ba~ (4), (5), (20), (21), no.ny~aeM (d m = O, cx m ~ O) m (I + o(1))Ctszd"(L(s)) a = o(I), Z~ E l , [Z[ -'~ oo. (22) s=0 Ecyn~ ypaBaeHHe (22) He 3flBHCHT OT L, TO B J'leBOfl qaCTH n.Y. (2) TOJIbKO O~HO c~a- raeMoe (1 + o (1 ) ) a 0 z % f n, a o ~ O, HMCCT rlo f g f l cTerlerlb n. Tor~ta cymecT- ByeT R 1 > 0 : E l N { z : [z [ > Rl } = 0 . ~eltCTBrITe~bHO, HHaqe ypaBneuae (22) nMeeTBna a0(1 + o(1)) = o (1 ) , z e E l , z -~ 0-, a3Haqrrr, a 0 = 0, wro npoTH- aopeqHT npe~x_noJIoacenH~, l-loaroMy H3 (21) cze]xyeT I f ( z ) l -< I z 1", z ~ D \ E , , [ z [ > Rl, T.e. a paccMaTpHBaeMoM c~yqae BO Bcet~ 06~aCT~ D HMeew MeCTO yTaep- ~ e H H e 3 reopeMta 1. (OTMeTHM, qZO B npHHepax, paccHoTpeHHUX B 3aMeqamm 2, xapaKTepHCTHqeCKHe ypaBHenHJ~ He 3aBHCJ~T OT L, HO3TOHy ~J~ HHX rt BblrlO.rlH~qeT- CA OUeHKa (19 ' ) . ) Ec.rm ypaBHeHrie (22) 3aBHCHT OT L, L = z f l ( z ) / f ( z ) , TO OHO rlMeeT KOHeqHoe qHCnO pemeHHfl [4., c. 69] zA (z) = (~ j+o(1 ) )Z pj, z ~ E I , j = l , 2 . . . . . q, [z[---> ~ . (23) f ( z ) l-lycT~ Z. ~ E l , [Z, [ > r 0 > h. PaCCMOTpHM CBZaHy~O KOMnOHeHTy E 0, Z. E 0 c E 1 . B ~a~r~o~ TOaKe Z r E 0, I z [ > r0, r0 ~/XOCTaTO~HO 6 o ~ , m o e , Bta- no~HaeTca O~HO H3 COOTHOtUeHH~ (23). HH B OZ~HOfi rq~Ke Z ~ E 0 He ~ o r y r 6~aT~, paBH/.dMH npaB~e ~aCTH z~Byx cOOTHOmeBHfl Ha (23) C HHReKCaMH ,* H j TaKHMr~, qTO l i t - [~j[+ [ P t - Pj[ > 0. B ToqKe Z. ~ E o c E I Blano.rlHaeTca ( 2 3 ) c HeKOTOpt, I- MH qbHKcHpOBam~Ma j . Y~HTtaBaZ aenpepUBHOCTb Z i f ( Z ) / f ( z ) , nozy~aeM, qTO TO ace COOTaomeHHe BbIrlOJIH~qeTCJl Z~:~l Ka~/~OrO Z ~ E0, ] Z [ > r0. I-IO~TOMy 143 (23) cne/xyeT, wro npH Ka~r e > 0 cytuec'myeT r o > 0 Tahoe, aTO z f ' ( z ) = (~ + u(z))z p, z ~ Eo, lu(z)l < a, (24) f ( z ) Izl > re, u(z ) ~HeKOTOpa~l qbyHKl.IH~, ~ = I3(E0), p = P (E0) ; 13, p ~ o z m o H3 qHce.rl ~j, pj. 0603naqHM M ( r ) = M ( r , f ) = max If(z)l = l / ( ~ ) l , ~ = r e x p ( i c p ( r ) ) . (25) Izl--r HO qbop~yne MaKHHTa~pa [4, C. 62] B TOq~Ce MaICcH~y~a ~, [ ~ [ = r, ;f'(;_.__~) = rM'(r.___~) = K( r ) , (26) f (~) M (r) M ' ( r ) ~ IIpOHZBO]~Ha51 cnpa~a. I'Iocxo,rlbKy ~ I lle~olt rpaHct~ertaerrrao~ cIDyI'IKI/,HH In M ( r ) / I n r---> **, K ( r ) --> + **, r ---> ** [4, c. 66], TO H3 (21) cJ-Ie~yeT, q t O ; r E 1 , [ ~ [ = r > r ' , a yq~T~Ba~ (24), (26), noay~ae~ K ( r ) = (1 + o(1))[~s~ p" > O, Ps > o, I~1 = r ~ A, (27) m e s a <**, s = l , 2 . . . . . q ( cM. ( l l ) ) . rIyc-n, ISSN 0041-6053. Yxp. s~m. ~'vpa., 1999, m. 51, I~- I 74 A. 3. MOXOHbKO, B. ~. MOXOHbKO p . = lim ln:-'r'/((~ _< ~ ( ~ l i m l n K ' r " = p*, r - e ~ o . l n r ln r In K ( r ) Ha (27) cneRyeT, wro BHe MHO~KeCTBa A XOHeqHO~ Mepr40TnOtUeHne ~ npri l n r r --~ co rIMeeT KOneqnoe qncno npe/IeamHHX 3Ha~emti~ p i . . . . , pq. OTC~O/Ia B~aTexa- eT [4, C. 33], neMMa 2,23 n cne~cTBae 1, '~TO p . -" p* = p , p coBna,aaeT c o a n n ~ aa Ps B (27). TaKriM o6paao~, cytraecTByeT lim InK( r ) = ln r p~ , r---> o . , r ~ A , mes A < o.. 1-10aTO~y rI3 (27) cne~yeT ([4, c. 34], ner4Ma 2.33) K ( r ) = (11 ,1 + o(1)) rp, r > r ' , P, [~s [ OaHO n TO ~ e a n n Kazxaoro r > r ' . E c n n O603HaqaTb [~s = [ [31 exp (its), ~ = r exp (i 9 ( r ) ) , To na (27), (28) nozyqaeM pq~(r) + a = 2r~k + o ( 1 ) , cos (pq~( r ) + o~) = 1 + o ( 1 ) , 1 c o s ( p g ( r ) + a ) > ~ , r E A , m e s A < ~ , r > r ' , (28) = ~ = (29) k ~ Ltenoe, p = p s - const , '9' r > r ' ; a , k npnHrIMatOT KoHeqHoe qrtca/o r M ' ( r ) BO3MO)KI-.IblX 3HaqeHnlt (0 < ~ ( r ) < 2~x). I,'I3 (28) rt COOTHOmenI4g K ( r ) = M ( r ) nwrerpnpoBaHHeM no,ny~aeM l n .M( r ) = ( l ~ lP - I + o(1)) P , r > r ' , p > 0 , (30) p n IIB I n To JKe nprl gaa~oM r > r ' . Ha (30), (21) c~e/IyeT I f ( ; ) l = M ( r ) > r v, ~ E 0 = E o ( r ) c E I , (31) E 0 ~ CB~3Ha~I KOMHOHeHTa E l . O603HaHHM 2 ~ -- CZ n 2~k -_._____~ + 1"1 = p 2 p ' y : P ~p , (32) r~e k = k ( r ) ~ ttenoe qrtcno, onpe~eneHHoe n (29). HOKaT~eM, qTO VT~, ~ ( r 1 < 7 ~ < ~ < 7 ) , {z: Izl = r , :Z -< argz -< V } c E o, r > r ( Z , V ) . (33) Ecnrt rl < Z -< 0, < ~ < 7, To, yqrrr~maz (32), (30) (p > 0), naxo~HM T i p + a = 2 r ~ k - E < p x + a _ < 2 7[ < p C , + a < p ~ / + ~ < TP + a = 2r,..k + ~.. IIOaTO~4y cos (p 0, + a ) -> rain (cos (p ~ + a ) , cos (p V + a ) ) > 0. (34) H y c r o 00 - - HalIMCHbmCC, e . - - Han6oJIbmec 3HaqCHH~I TaKHC, HTO ~yra h = = { z : z = r c x p ( i O ) , 0 0 ~ 0 < 0 , } c E 0. H3 (31), (21) cnc~ycT, qTO 0 0 < < arg~ < e , . HnTcrp~rpya (24) no/~3're h OTTOqKn ~ aOTOqKn Z = r c x p ( i ~ 0 ) ~ ISSN 0041-6053. Y~p. ~tam. ~.'vtm.,1999 , m. 51, N ~ 1 O rlOP.q~KE POCTA PEUIEHHI~ AJII'EBPAHHECKHX ... 75 e h, B ~ e n a a ]~el~C'l'BHTeJIbHIde qacrlt H yqHThIBas, HT0 COS (p (argO) + oc ) = = 1 + o(1) (CM. (29)),nonyqacM In f(reiCO)l [ [ ~ [ p - l r P [ c o s ( p i D + a ) - c o s ( p ( a r g ~ ) + a ) + o (1 ) ] = f ( ~ ) l = [ [ 3 [ p - i r P [ c o s ( p i D + a ) - 1 + o (1 ) ] . IIocxoJmKy g ( r ) = If(~) l, TO OTC~na H H3 (30) CaenyeT ln[ f ( re i~)[ = [ ~ l p - l r P [ c o s ( p i D + a ) - 1 + o(1) ] + + I~l P - l r P ( 1 + o (1) ) = = I[~]p-lrP[cos(piD + a) + o(1)], 00<iD<0. . (35) YIpczmoaoacuM, qT0 0, ~ W" 143 OI~IpC~cJ"IOHH~ CB.,~aHO~ KOMI'IOHCHT]~ E 0 H onpc- ~CaCHHS 0 . cnc~yc~r (cM. (21)) [f(reiO*)[ = r v. HOaTO~ty, ccnH n (35) q) = 0 . , TO n o n y , a ~ l n r v = [ B l p - l r P [ c o s ( p 0 . + ~) + o(1)]. Y,~trn~as (34), B ~ M , wro ~TO paBCHCTBO npPl ~ocraTo'mo 6oJ~stuHx r HCBOaMO)K- HO. I'Io~ToMy 0 . > V" AHanorHqHO MO~O HOKaSaTb, wro 00< Z. TeM caMH~ (33) ~oKaaaHo. Tor~a via (35) cnc~yeT lnlf(reiCP)[ = l [ 3 [ p - ' r P [ c o s ( p i D + c~) + o (1 ) ] , Z<-ID<-~/. (36) Hpe~nonoaCZ~M, qToa(36) p < l / 2 . Tor~a y - v l = Jz/p > 2~ H qHcna Z H V MO~L'~O auSpaTb TaK, WrO6,., Blm]OnHanHCb yCnOBHa s i n ( p z + a + ~ p ) ~ 0, W = Z + 2 ~ . (37) [IOCKOnbKy f ( r e iz) = f(rei(Z+2x)), TO Ha (36), (37) caenycT 0 = In [ f ( re iu - in [ f (reiZ)[ = = ( c o s ( p z + 2~p + a ) - c o s ( p z + a ) + o(1)) l~ l rPp -~ = = ( - 2 ( s i n ~ p ) s i n ( p z + a + x p ) + o(1)) l [~ lp-~r p. (38) IIocK0a,.zy 0 < X p < = / 2 , TO sin ~z p ~ 0. Tor~a, y .HT~Saa (37), nony . ac~ s in~p sin(p Z + a + ~ p ) ~ 0, qTO npoT~nope~mv (38). TaZHMO6paaOM, p > 1/2. CymecTnyeT KOHCqH0e '-IHCnO aHaqCHHfl ida e [ 0, 2~], RJIa KOT0pI~IX cos(piDs + a)= 1, aH~em~o (ps =(2~k- cc)/p, (k, p, a npHHm~amT KOHe'~- HOe HHCJIO 3HaqeHHJ~). COOTBeTCrBCHHO cy~eMrBycT KOHeqHOe W/4CJIO HHTepBan0B [iDs-=/3p,iD, +~/3p] = [Xs,~ts], HaKOTOpHX 1 ~,~ < 0 < lXa, 'S e I, (39) cos(p e + ~) > ~, rae I -zoHeqHOe smoxe~o m~ezco~. Ha (29) cae~,~r, ,fro ~ ~ = r exp ( i qU (r)) -- Toga .azcm~yua, TO a~aqcm~e iD(r) npm~a~e~rr Zaz0My-ro Ha ozp~os [~.~, tt~]: ( V r > r ' , r ~ A ) ( ~ s = s ( r ) e I ) : ~., < iD(r) < l~ , [ f ( r e x p (iq~(r)) [ ffi M(r ) . (40) ISSN 0041.6053. Y~p. :,am..:@,p... 1999. m. 51. !~ 1 76 A. 3. MOXOHbKO, B. ,/1. MOXOHbKO rIOCKOJIbKy OTpC3KOB [~'s, Its], s e I, KOItCqrlOe q14CYI0, TO ( 3 s ( O ) e l ) ( V a > 0 ) ( 3 r > a , r ~ A ) : ~,s(0) < (p(r) < Its(o). (41) IIycT~ A = { r : r ~ A , Xs(O) < (p(r) < Its(o)}. H3(41) CnvATeT supA = +0o. Tor~a Ha oTpC3KC [~'s(0), Its(0)] C ] X, V[ BblnOJIH~CTC~ cOOTHOmOHrIC (36) : In ]f(reie) l - I [3[ p-lrP cos (p 0 + a), (42) ~s(o) < 0 < ~ts(o), r e A. B [6, c. 518] 6bino/~ozazar[o TaKOe yrsep~,~enae: ecJm aJm MHo>zec'rBa KpyroB E , c ReHT'paMH B B TOqKaX Cq, Cq fi { Cq}, H pazmycaMa 8 q Bblrlo.r/H~eTC..q Z ~q < C (CM.(l l)) ,TO V 0 t , 0 2 , 0 < 0 t < 0 z < 2 r c , 3~:, O t < K < 0 2, TaKOe, aTO .nya {Z: argz = ~:, I zl > a > o} He nepeceKaeT Kpyra E , : {z : argz = ~:, I zl > a = = 2 z c / ( O 2 - 0 1 ) } I ~ E . = O. HoaTo~y, ec~tHBu6paTb 0 t = ~'s(0), 02 = Its(0), TO 3 K , ks(0) < ~ < Its(0): zy,~ s(~:) = {z : argz = ~ , Izl > d = 2rcc / ( i t s (o) - Xs(0))} nMeeT CBO~CTBO s ( ~ ) 13 E, = o . H3 (41), (42), (39), (21) c.rte/xyeT, '-fro E l A S('~) :~ O . MHO~ec'rBo E 1 I'q S(K) MO}KHO Hpe/IcTaBHTb m Bri/Ie 06"bO/XHHOHHJI ,,MaKCHM831bHIalX" oTpe3KO B COt TBKHX, qTO I f (z ) l -> I zl ~, z e co,, (43) rlpHqCM, ec.rlH Zl t - -Haqa.no, Z2t ~KOHeR cot I4 ]Zlt j > r', IZzt] < 0% TO [ f (z t , ) [ = [zt,[ v, If(z2,)[ = [Z2, l v. (44) PaCCMOTpHM Ha ~ e S ( ~ ) TOqZy Z = r , e iz, r , e A. H3 (39), (42), (43) c.ne- /1yeT, trro r, ei~:e cot C E o , EO ~CBZaHaa KoMnoHeHTa E t . Ha cot B~nO.nH~aercz (24). EcJm IlpOrlHTerpnpOBaTt, (24) Ha cot a Bra,/~eJlH-rl, ]~et~c'rBnTe.rlbHHe ttaCTH, IIO- ~y'a~ard ( q ( z ) , v (Z) ~ HeZOTOpUe dl)yrmtm14, Iq(z) l, l u (z ) l < ~, ~5 > 0 - - gag yro~-~o ~4anoe, ec.na I z I aocraTO'aHO 6OnbLUOe, Z~r = Z~, Z2t = Z2, } Zi I = r t , Izz l = "z) , To hi [ (z) = (z p _zlp)(~p-1 + 1)(Z)), Z = r e i ~ e cot, (45) f(Zl) I : (0 [ = ( : _ ~)(II~I p-' cosCpz + a) + q(0), r~ -< r _< r2. (46) IIpmm~a.,t so BHmdaHHe (39), (42), no.ny'.lac~ cos (p Z: + a) > 1/2. I'IpcAno~IO~M, q'ro cot m4eeT KOHe,myIO Aa14Iiy. Ha (44), (46) cJzcAyeT V In.(r2/r I ) = ( ~ -- rl p) X x (ItBlp-~cosCo~: + a) + e(z~)), nOaTO~y vp-~In (r~/r~) > (r~ - ~)ll~IP -~ x x 2-~cos(p~ + a) 1 4 ~ 2v . (47) c ( l n x 2 - l n x 0 > x= - xt , x~ = ~ < x~ = ~ , c = It3lcos(p~: + c0 O y m o ~ a x - c l n x aoapacTaeT Ha It ,**), IIOaTOMy HepaBeHCTBO (47) HeBOZMO- ~ 0 , r r I (C,rlCROBaT~/IBHO, Xl) /~oc'raToqllo 6OJIblIIO~. OTclo]la cJIe]lyffr, qTO 155N 0041-6053. Yrp. ~am. :~. pn . , 1999 , m. $1,1V ~ ] O FIOPJ;UIKE POC~A PEIIIEHHI~I AJIFEBPAHqECKHX ... 77 l n f ( z ) = In If(z) l = TaKa~ o6pa3oM, (J0 t HMeCT 6eCKOHCqHylO RJIHHy, CCJIH t i t ,/IOCTaTOqHO 6OJll, IIIOC. (45), noJ~yqaeM Z p ~ p - ! ( 1 + o ( 1 ) ) , Z = re i~, r > r O, rP[l~[ p-lcos(p~: + a)(1 + o(1)), r > r o. ToF~a , yHHTHBa~ (48) { z : argz = ~:, Iz[ > r0} c E 0. (49) IIyc-n, B (32) r p, g TO 3aaqenH,q, npH KOTOpHX B (29), (39), (41) onpe/Ie.rlaeTc.q oTpeaoK [~s(0), ~ts(0)]- IlosTopaa c aeanaqaTenbau~m naMeaenaaMH p a c c y ~ e - HH~q, HCnO.rroaoaaHHUe n p n AOKaaaTe2IbCTBe (36) (aTO RoKaaaTe2II, CTBO CM. B [6, qbOpM. ( 4 4 ) ] ) , MO~KHO noKaaaTb, qTO Ha (49) Cnc~ycT: V Z , V (13 < Z < ~g < T), { z : Z -< a rg z -< V , [ z I > r0 } \ E , c E 0 n a aTOR o 6 n a c T a Buno~maCTCa o a e n g a (14), paaHoMcpHaa no arg z. Ec.aH s (32), (14 ) ) ' - 13 = 2~, TO Ha (14) c~caye'r (17). ,~OKa3aTCXIbCTBO OI.~CHOK (15), (16) CMOTpH a [6]. 1. Fo,~6epz A. A., Ocrapoocrul~ I4. B. PacnpeAcneHue anaqeHa~t MepoMopqbtl~x qbylmuHtl. - M.: HayKa, 1970. - 5 9 2 c. 2. Ba.~upon )K. AllaJml~qecKne qbylmttHn. -- M.: FocTeXTeopna/laT, 1957. - 235 c. 3. 3u,~wen,~i~ B. B. 0 nopa/IKe pocTa RCdlblX TpalICRelIAeHTIlUX pemellrll~ a/Ire6parlqeCKnX /Iaqbqbe- pellanaJIbH~X ypaunelmlt nToporo nopa•Ka // MaT. c6. - 1971. - 85(127), N~2 (6). - C. 286 - 302. 4. Cmpe,~uq 111. H. ACHMrlTOTHqr CBOgCTBa atlaJ1HTHqeCKHX pemenH• ~H~pClIRHaJlbHHX ypaBHeHHIL- BrtnblUOC: Mmrrnc, 1972. - 4 6 7 c. 5. Moxon~o B. ~[.. Fopfar A. E. 0 MepoMopqbitux pemeHa~X ~mqx~pemmam,nux ypaane- tatar1 nepaoro nopa/tKa///IHqbqbepeHu, ypalmeHHa.- 1991. - 2 7 , N e 6. - C . 1087-1089. 6. MoxoabKO A. 3. 0 MepoMopqbHhlX pemeHn.qx a.nre6paaqecgHx ~[a~pCHuHa3"lbHbig ypaanenafl n yr.~oaux o6oaacTax//Ygp. MaT. a~ypn. - 1992.- 44, N -~ 4 . - C. 514-523. 7. Map~.'vtueeuq A. 14. TcopHa aHa.aaraqccxnx qbynguatL B 2-x T. -- M.: Hayga, 1968. - T. 2. - 624 c. 8. Fo,~y6eo B. 8. Jlegunn no aHa.amlaqecxo~ Teopaa Anqbqbepemtaa.nbnux ypaaaenalt. - M.; JI.: rocTexTeopaa~laT, 1950. - 436 c. 9. Boutroux P. Sur queiques propriet6s des fonctions enti6res//Acta math. - 1904. - 29. - P. 97-204. l'lo~yqeao 13.08.96, noc..ae Aopa6OTKH - - 12.03.98 ISSN 0041-6053. Yrp. ~tam. ,,rypx., 1999, m. 51, bl ~ 1