О наилучшем полиномиальном приближении в пространстве L₂ и поперечниках некоторых классов функций
Розглянуто питання про найкращу полiномiальну апроксимацiю 2π-перiодичних функцiй у просторi L₂, коли величина похибки наближення En−1(f) оцiнюється через модуль неперервностi k-го порядку Ωk(f), в якому замiсть оператора зсуву Thf(x)=f(x+h) використано оператор Стєклова Shf. Для класiв функцiй, виз...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Український математичний журнал
2012
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/164436 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | О наилучшем полиномиальном приближении в пространстве L₂ и поперечниках некоторых классов функций / С.Б. Вакарчук, В.И. Забутная // Український математичний журнал. — 2012. — Т. 64, № 8. — С. 1025-1032. — Бібліогр.: 21 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Розглянуто питання про найкращу полiномiальну апроксимацiю 2π-перiодичних функцiй у просторi L₂, коли величина похибки наближення En−1(f) оцiнюється через модуль неперервностi k-го порядку Ωk(f), в якому замiсть оператора зсуву Thf(x)=f(x+h) використано оператор Стєклова Shf. Для класiв функцiй, визначених за допомогою вказаної характеристики гладкостi, обчислено точнi значення рiзних n-поперечникiв. |
---|