Impulsive differential inclusions involving evolution operators in separable Banach spaces

We present some results on the existence of mild solutions and study the topological structures of the sets of solutions for the following first-order impulsive semilinear differential inclusions with initial and boundary conditions: where J=R+, 0 = t 0 < t 1 < … < t m <…, m∈N, lim k→∞...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Benchohra, M., Nieto, J.J., Ouahab, A.
Format: Artikel
Sprache:English
Veröffentlicht: Український математичний журнал 2012
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/164445
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Impulsive differential inclusions involving evolution operators in separable Banach spaces / M. Benchohra, J.J. Nieto, A. Ouahab // Український математичний журнал. — 2012. — Т. 64, № 7. — С. 867-891. — Бібліогр.: 63 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We present some results on the existence of mild solutions and study the topological structures of the sets of solutions for the following first-order impulsive semilinear differential inclusions with initial and boundary conditions: where J=R+, 0 = t 0 < t 1 < … < t m <…, m∈N, lim k→∞ t k = ∞, A(t) is the infinitesimal generator of a family of evolution operators U(t, s) in a separable Banach space E and F is a set-valued mapping. The functions I k characterize the jumps of solutions at the impulse points t k , k = 1, ….The mapping L: PC b →E is a bounded linear operator. We also investigate the compactness of the set of solutions, some regularity properties of the operator solutions, and the absolute retract.