The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals

We investigate the numerical solutions of nonlinear Volterra integral equations by the block-by-block method especially useful for the solution of integral equations on large-size intervals. A convergence theorem is proved showing that the method has at least sixth order of convergence. Finally, the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Katani, R., Shahmorad, S.
Формат: Стаття
Мова:English
Опубліковано: Український математичний журнал 2012
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164448
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals / R. Katani, S. Shahmorad // Український математичний журнал. — 2012. — Т. 64, № 7. — С. 919-931. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164448
record_format dspace
spelling irk-123456789-1644482020-02-10T01:28:15Z The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals Katani, R. Shahmorad, S. Статті We investigate the numerical solutions of nonlinear Volterra integral equations by the block-by-block method especially useful for the solution of integral equations on large-size intervals. A convergence theorem is proved showing that the method has at least sixth order of convergence. Finally, the performance of the method is illustrated by some numerical examples. Дослiджено чисельний розв’язок нелiнiйних iнтегральних рiвнянь Вольтерра поблочним методом, який є особливо корисним при розв’язуваннi iнтегральних рiвнянь на великих iнтервалах. Доведено теорему про збiжнiсть, яка показує, що цей метод має щонайменше шостий порядок збiжностi. Дiю методу проiлюстровано на кiлькох числових прикладах. 2012 Article The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals / R. Katani, S. Shahmorad // Український математичний журнал. — 2012. — Т. 64, № 7. — С. 919-931. — Бібліогр.: 14 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164448 517.9 en Український математичний журнал Український математичний журнал
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Katani, R.
Shahmorad, S.
The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals
Український математичний журнал
description We investigate the numerical solutions of nonlinear Volterra integral equations by the block-by-block method especially useful for the solution of integral equations on large-size intervals. A convergence theorem is proved showing that the method has at least sixth order of convergence. Finally, the performance of the method is illustrated by some numerical examples.
format Article
author Katani, R.
Shahmorad, S.
author_facet Katani, R.
Shahmorad, S.
author_sort Katani, R.
title The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals
title_short The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals
title_full The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals
title_fullStr The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals
title_full_unstemmed The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals
title_sort block-by-block method with romberg quadrature for the solution of nonlinear volterra integral equations on large intervals
publisher Український математичний журнал
publishDate 2012
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164448
citation_txt The block-by-block method with Romberg quadrature for the solution of nonlinear volterra integral equations on large intervals / R. Katani, S. Shahmorad // Український математичний журнал. — 2012. — Т. 64, № 7. — С. 919-931. — Бібліогр.: 14 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT katanir theblockbyblockmethodwithrombergquadratureforthesolutionofnonlinearvolterraintegralequationsonlargeintervals
AT shahmorads theblockbyblockmethodwithrombergquadratureforthesolutionofnonlinearvolterraintegralequationsonlargeintervals
AT katanir blockbyblockmethodwithrombergquadratureforthesolutionofnonlinearvolterraintegralequationsonlargeintervals
AT shahmorads blockbyblockmethodwithrombergquadratureforthesolutionofnonlinearvolterraintegralequationsonlargeintervals
first_indexed 2025-07-14T17:00:22Z
last_indexed 2025-07-14T17:00:22Z
_version_ 1837642466431336448
fulltext UDC 517.9 R. Katani, S. Shahmorad (Univ. Tabriz, Iran) THE BLOCK BY BLOCK METHOD WITH ROMBERG QUADRATURE FOR SOLVING NONLINEAR VOLTERRA INTEGRAL EQUATIONS ON THE LARGE INTERVALS ПОБЛОЧНИЙ МЕТОД IЗ КВАДРАТУРОЮ РОМБЕРГА ДЛЯ РОЗВ’ЯЗУВАННЯ НЕЛIНIЙНИХ IНТЕГРАЛЬНИХ РIВНЯНЬ ВОЛЬТЕРРА НА ВЕЛИКИХ IНТЕРВАЛАХ We investigate the numerical solution of nonlinear Volterra integral equations by block by block method, which is useful specially for solving integral equations on large-size intervals. A convergence theorem is proved that shows that the method has at least sixth order of convergence. Finally, the performance of the method is illustrated by some numerical examples. Дослiджено чисельний розв’язок нелiнiйних iнтегральних рiвнянь Вольтерра поблочним методом, який є особливо корисним при розв’язуваннi iнтегральних рiвнянь на великих iнтервалах. Доведено теорему про збiжнiсть, яка показує, що цей метод має щонайменше шостий порядок збiжностi. Дiю методу проiлюстровано на кiлькох числових прикладах. 1. Introduction. Consider nonlinear Volterra Integral Equations (VIEs) of the form f(x) = g(x) + x∫ 0 k(x, s, f(s))ds, 0 ≤ x ≤ X, (1.1) where g and k are continuous respectively on [0,∞], and D = {(x, s, f)|0 < s < x < R,−∞ < < f <∞}. Suppose (i) ∀X > 0 and ψ : [0, X] → R continuous, k(x, s, ψ(s)) is continuous for s ∈ (0, x) and∣∣∣∣∫ x 0 k(x, s, ψ(s))ds ∣∣∣∣ <∞ for x ∈ [0, X]; (ii) ∃ q(x, s) continuous on 0 < s < x <∞ satisfying x∫ 0 q(x, s)ds <∞, x ∈ (0,∞), and all X > 0, as positive δ −→ 0, x+δ∫ x q(x+ δ, δ)ds −→ 0, x ∈ [0, X], uniformly in x, such that |k(x, s, f1)− k(x, s, f2)| ≤ q(x, s) |f1 − f2| ∀d > 0 and f1, f2 ∈ Sd = {f ∈ R| |f | < d}. Under these conditions, there exists a constant α > 0 such that on [0, α], Eq. (1.1) has a unique solution. Furthermore, if there exist B > 0, such that for |f(x)| ≤ B on the all intervals of the form [0, β] (β > 0), the Eq. (1.1) has a unique solution, then Eq. (1.1) has a unique solution on [0,∞) [5]. c© R. KATANI, S. SHAHMORAD, 2012 ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 919 920 R. KATANI, S. SHAHMORAD Numerical methods to approximate solution of Eq. (1.1) have been extensively studied in lite- rature [2 – 4, 7, 8]. Except some low order methods, such as the trapezoidal rule, the other methods that are based on numerical integration require one or more starting values which must be found by an other method. A different class of approximating formulas for (1.1) is based on extensions of the Runge-Kutta methods which have been studied in details by Pouzet [10, 11]. The Runge-Kutta methods are self-starting, but tend to be complicated and inefficient and hence its practical use is limited. There is another approach which uses numerical quadrature, and its computations are arranged in such a way that several values of the unknown function are obtained at the same time. This is generally called a block by block method and it is what we are concerned about. The block by block approach was first suggested by Young [13] in connection with product integration techniques. In fact, a block by block method is an extrapolation procedure which has advantages of being self-starting and producing a block of values at the same time [2, 3]. Linz [7] described a two blocks method and used it for solving nonlinear VIE of the second kind. Also AL-Asdi [1] used two and three blocks for solving Hammerstien VIE of the second kind and then Saify [12] used two, three and four blocks for solving a system of linear VIE of the second kind. In 2010, the authors used a block by block method for solving system of nonlinear VIEs [6]. In this paper, we extend this method by using Romberg quadrature rule to get a desired order of the error. In addition to the general advantages of the block by block methods such as having no need to start values, simple structure for application and computing several values of the unknown function at the same time, the presented method has the following advantages. 1. Most of the available methods for solving (1.1) are based on expansion of solution, for example the Taylor and Chebyshev expansion methods, the Tau method, the Adomian and homotopy methods and so on. These methods are efficient only for the intervals with small length (say [0, 1] or [−1, 1]) and they are useless for the large intervals. The method of this paper is one of the most suitable methods for the large intervals. In the final section of this paper, we will compare numerical results between HPM (Homotopy Perturbation Method) [14], ADM (Adomian Decomposition Method) [4] and the given block by block method (Tables 1 and 3). 2. For the given step size h, the order of convergence for this method is at least h6 while it is h4 by using Simpson rule [7]. 3. By increasing number of blocks, the order of convergence increases in such a way that it would be at least h8 and h10 respectively for 8 and 16 blocks. 4. At the first step of Romberg rule, the Simpson rule can be used instead of trapezoidal rule for increasing order of convergence. 5. Compared to known methods, the computation time for this method is low. The rest of the paper is organized as follows. In Section 2, the general process is presented. In Section 3, the method for the large interval is described. The sixth-order convergence is proved in Section 4. Finally, the paper is closed by giving numerical experiments in order to test reliability of the method in Section 5. 2. The general process. Let 0 = x0 < x1 < . . . < xN = X be a partition of [0, X] with the step size h, such that xi = x0 + ih, i = 1, 2, . . . , N, and let Fi be the approximate value of f(x) at the ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 THE BLOCK BY BLOCK METHOD WITH ROMBERG QUADRATURE FOR SOLVING . . . 921 mesh point x = xi and F0 = g(x0). To simplify formulation, let the number of blocks to be 4 (for 8, 16, . . . blocks the process will be similar). Putting x = x4m+p in (1.1), we have F4m+p ' f(x4m+p) = g(x4m+p) + x4m+p∫ 0 k(x4m+p, s, f(s))ds = g(x4m+p)+ + x4m∫ 0 k(x4m+p, s, f(s))ds+ x4m+p∫ x4m k(x4m+p, s, f(s))ds, m = 0, 1, . . . , N/4− 1, p = 1, 2, 3, 4. (2.1) Assume that F0, F1, . . . , F4m are known, then the first integral can be approximated by standard quadrature rules and the second one can be estimated by Romberg quadrature rule at the points x4m, x4m+1, x4m+2, x4m+3 and x4m+4. Therefore we obtain a system containing four simultaneous equa- tions that is solved for a block of four values of F. To simplify notation, we set ki := k(x4m+p, xi, Fi) and use the trapezoidal rule for ∫ xu xv k(x4m+p, s, f(s))ds, thus we obtain T (0) u,v := xu−v 2 [kv + ku] , T (1) u,v := 1 2 T (0) u,v + xu−v 2 ku+v 2 , T (2) u,v := 1 2 T (1) u,v + xu−v 4 [ ku+3v 4 + k3u+v 4 ] , T (3) u,v := 1 2 T (2) u,v + xu−v 8 [ ku+7v 8 + k3u+5v 8 + k5u+3v 8 + k7u+v 8 ] . It is easy to get x4m+p∫ x4m k(x4m+p, s, f(s))ds ' 64 45 T (2) 4m+p,4m − 20 45 T (1) 4m+p,4m + 1 45 T (0) 4m+p,4m = = xp 90 [ 7(k4m + k4m+p) + 12k4m+p/2 + 32(k4m+p/4 + k4m+3p/4) ] , p = 1, 2, 3, 4, (2.2) by using Romberg rule. If ip 4 , i = 1, 2, 3, are not integers, the points x 4m+ ip 4 will not belong to the mesh points and F 4m+ ip 4 will be unknown which leads to a difficulty in computing (2.2). In this case, we use the Lagrange interpolation polynomial at the points x4m, x4m+1, x4m+2, x4m+3 and x4m+4 to approximate F 4m+ ip 4 , i.e., F4m+ ip 4 ≈ P ( x4m + ip 4 h ) = 4∑ j=0 Lj ( ip 4 ) F4m+j , i = 1, 2, 3, ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 922 R. KATANI, S. SHAHMORAD where Lj ( ip 4 ) := 4∏ ii=0 ii 6=j ip/4− ii j − ii . Then we find F 4m+ 3 2 ≈ −5 128 F4m + 15 32 F4m+1 + 45 64 F4m+2 − 5 32 F4m+3 + 3 128 F4m+4, F 4m+ 3 4 ≈ 195 2048 F4m + 585 512 F4m+1 − 351 1024 F4m+2 + 65 512 F4m+3 − 45 2048 F4m+4, F 4m+ 9 4 ≈ 35 2048 F4m − 63 512 F4m+1 + 945 1024 F4m+2 + 105 512 F4m+3 − 45 2048 F4m+4, (2.3) F 4m+ 1 2 ≈ 35 128 F4m + 35 32 F4m+1 − 35 64 F4m+2 + 7 32 F4m+3 − 5 128 F4m+4, F 4m+ 1 4 ≈ 1155 2048 F4m + 385 512 F4m+1 − 495 1024 F4m+2 + 105 512 F4m+3 − 77 2048 F4m+4. The first integral in (2.1) can be approximated by similar Romberg rule without any difficulty. If 4m is a multiple of 8, then by using 3-stage Romberg quadrature rule we define A := x4m∫ 0 k(x4m+p, s, f(s))ds ≈ (4096T (3) 4m,0 − 1344T (2) 4m,0 + 84T (1) 4m,0 − T (0) 4m,0)/2835 = = x4m 2835 [ 108.5(k0 + k4m) + 218k2m + 176(km + k3m) + 512(km/2 + k7m/2 + k3m/2 + k5m/2) ] , (2.4) otherwise A := x4m∫ 0 k(x4m+p, s, f(s))ds = x4∫ 0 k(x4m+p, s, f(s))ds+ x4m∫ x4 k(x4m+p, s, f(s))ds ≈ ≈ (64T (2) 4,0 − 20T (1) 4,0 + T (0) 4,0 )/45 + (4096T (3) 4m,4 − 1344T (2) 4m,4 + 84T (1) 4m,4 − T (0) 4m,4)/2835 = = x4 90 [7(k0 + k4) + 12k2 + 32(k1 + k3)] + x4m − x4 2835 [ 217 2 (k4 + k4m) + 218k2m+2 + +176(km+3 + k3m+1) + 512 ( km+7 2 + k7m+1 2 + k3m+5 2 + k5m+3 2 )] . (2.5) Consequently, substituting in (2.1), yields for p = 4 F4m+4 = g(x4m+4) +A+ x4 90 [7(k4m + k4m+4) + 12k4m+2 + 32(k4m+1 + k4m+3)] , (2.6) ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 THE BLOCK BY BLOCK METHOD WITH ROMBERG QUADRATURE FOR SOLVING . . . 923 and p = 1, p = 3 F4m+p = g(x4m+p) +A+ xp 90 [ 7(k4m + k4m+p) + 12k ( x4m+p, x4m+p/2,P ( x4m + p 2 h )) + +32 ( k ( x4m+p, x4m+p/4,P ( x4m + p 4 h )) + k(x4m+p, x4m+3p/4,P ( x4m + 3p 4 h) ))] . (2.7) For p = 2 need not use the Lagrange interpolation for F4m+ p 2 , so F4m+2 = g(x4m+2) +A+ x2 90 [ 7(k4m + k4m+2) + 12k4m+1+ +32 ( k ( x4m+2, x4m+1/2,P ( x4m + 1 2 h )) + k ( x4m+2, x4m+3/2,P ( x4m + 3 2 h )))] . (2.8) Therefore in each step (for different values of m) (2.6), (2.7) and (2.8) for p = 1, 2, 3, 4, forms a system of equations with four unknowns F4m+1, F4m+2, F4m+3 and F4m+4, which will be linear and nonlinear respectively for linear and nonlinear integral equations. The linear case the system can be solved via a direct method, but in the nonlinear case the system may be solved by iterative methods or by a suitable software package such as Maple. 3. Large intervals. We noticed that the method of previous section gives four values of the unknown function in each step, but these values are computed approximately and we use some of them for the next steps. For instant F0, F1, . . . , F4 for m = 1 are applied from previous step to approximate the first integral in (2.1). In order to reduce the effect of accumulated errors, we need more accurate approximation for this integral in evaluating the unknown function at the points near to the end of interval, when x changes in a large interval or when the step size is very small. Thus for approximating the integral ∫ xu xv k(x4m+p, s, f(s))ds, under above strategy, we define T (4) u,v := 1 2 T (3) u,v+ + xu−v 16 [ ku+15v 16 + k3u+13v 16 + k5u+11v 16 + k7u+9v 16 + k9u+7v 16 + k11u+5v 16 + k13u+3v 16 + k15u+v 16 ] then by using Romberg quadrature rule with 2, 3 and 4 stages, we have, respectively, xu∫ xv k(x4m+p, s, f(s))ds ≈ 64 45 T (2) u,v − 20 45 T (1) u,v + 1 45 T (0) u,v = = u− v 90 h [ 7(kv + ku) + 12ku+v 2 + 32 ( ku+3v 4 + k3u+v 4 )] , (3.1) xu∫ xv k(x4m+p, s, f(s))ds ≈ (4096T (3) u,v − 1344T (2) u,v + 84T (1) u,v − T (0) u,v )/2835 = ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 924 R. KATANI, S. SHAHMORAD = u− v 2835 h [ 108.5(kv + ku) + 218ku+v 2 + 176 ( ku+3v 4 + k3u+v 4 ) + + 512 ( ku+7v 8 + k7u+v 8 + k3u+5v 8 + k5u+3v 8 )] (3.2) and xu∫ xv k(x4m+p, s, f(s))ds ≈ ≈ (1048576T (4) u,v − 348160T (3) u,v + 22848T (2) u,v − 340T (1) u,v + T (0) u,v )/722925 = = u− v 722925 h [ 13779.5(kv + ku) + 27559ku+v 2 + 27728 ( ku+3v 4 + k3u+v 4 ) + +22016 ( ku+7v 8 + k7u+v 8 + k3u+5v 8 + k5u+3v 8 ) + 65536 ( ku+15v 16 + k15u+v 16 + + k3u+13v 16 + k13u+3v 16 + k5u+11v 16 + k11u+5v 16 + k7u+9v 16 + k9u+7v 16 )] . (3.3) Now, if 4m is multiple of 16, then we use the 4-stages Romberg rule (3.3) to approximate the first integral in (2.1) and if remaining of 4m 16 is 4, then we write A := x4m∫ 0 k(x4m+p, s, f(s))ds = x4∫ 0 k(x4m+p, s, f(s))ds+ x4m∫ x4 k(x4m+p, s, f(s))ds and approximate the first integral by (3.1) and the second one by (3.3). Similarly, if remaining of 4m 16 is 8, then we write A := x4m∫ 0 k(x4m+p, s, f(s))ds = x8∫ 0 k(x4m+p, s, f(s))ds+ x4m∫ x8 k(x4m+p, s, f(s))ds and use (3.2) and (3.3) respectively for the first and second integrals. Otherwise we write A := x4m∫ 0 k(x4m+p, s, f(s))ds = = x4∫ 0 k(x4m+p, s, f(s))ds+ x12∫ x4 k(x4m+p, s, f(s))ds+ x4m∫ x12 k(x4m+p, s, f(s))ds and approximate the integrals respectively by (3.1), (3.2) and (3.3). ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 THE BLOCK BY BLOCK METHOD WITH ROMBERG QUADRATURE FOR SOLVING . . . 925 Therefore, having larger interval or very small step size, one can use more accurate integration rules to approximate the first integral in (2.1). We conclude that, this method has not any restriction on the given intervals. 4. Convergence analysis. Theorem 4.1. The approximation method given by the system (2.6), (2.7) and (2.8) is con- vergent and its order of convergence is at least 6 for the functions k and f with at least six order derivatives. Proof. It can be written from (2.4) and (2.5) A := x4m∫ 0 k(x4m+p, s, f(s))ds ≈ h 4m∑ i=0 wik(x4m+p, xi, Fi). Let p = 1 or p = 3 (for other values of p the process is similar), then from (2.1) and (2.7) we obtain |ε4m+p| := |f(x4m+p)− F4m+p| = = ∣∣∣∣∣∣ x4m∫ 0 k(x4m+p, s, f(s))ds+ x4m+p∫ x4m k(x4m+p, s, f(s))ds − −h 4m∑ i=0 wik(x4m+p, xi, Fi)− xp 90 [ 7k4m + 7k4m+p + 12k ( x4m+p, x4m+p/2,P ( x4m + p 2 h )) + +32k ( x4m+p, x4m+p/4,P ( x4m + p 4 h )) +32k ( x4m+p, x4m+3p/4,P ( x4m + 3p 4 h ))]∣∣∣∣∣ . By adding and diminishing the terms h 4m∑ i=0 wik(x4m+p, xi, f(xi)), 7xp 90 k (x4m+p, x4m, f(x4m)) , . . . . . . , 32xp 90 k(x4m+p, x 4m+ 3p 4 , 4∑ j=0 Lj ( 3p 4 ) f(x4m+j)) and using (ii) for k(x, s, f(s)), one obtains |ε4m+p| ≤ h 4m∑ i=0 wiq(x4m+p, xi)|εi|+ + 7xp 90 q(x4m+p, x4m)|ε4m|+ 7xp 90 q(x4m+p, x4m+p)|ε4m+p|+ + 12xp 90 q(x4m+4, x4m+p/2) ∣∣∣∣∣∣P ( x4m + p 2 h ) − 4∑ j=0 Lj (p 2 ) f(x4m+j)) ∣∣∣∣∣∣+ ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 926 R. KATANI, S. SHAHMORAD + 32xp 90 q(x4m+p, x4m+p/4) ∣∣∣∣∣∣P ( x4m + p 4 h ) − 4∑ j=0 Lj (p 4 ) f(x4m+j)) ∣∣∣∣∣∣+ + 32xp 90 q(x4m+p, x4m+3p/4) ∣∣∣∣∣∣P ( x4m + 3p 4 h ) − 4∑ j=0 Lj ( 3p 4 ) f(x4m+j)) ∣∣∣∣∣∣+R1 +R2, where R1 and R2 are errors of the numerical integrations. Since q(x, s) was supposed continuous, it is bounded on [0, X]. Therefore |ε4m+p| ≤ h 4m∑ i=0 wili |εi|+ 7p 90 hl4m |ε4m|+ 7p 90 hl4m+p |ε4m+p|+ + 12p 90 hl 4m+ p 2 max j { Lj (p 2 )} 4∑ j=0 |ε4m+j |+ + 32p 90 hl 4m+ p 4 max j { Lj (p 4 )} 4∑ j=0 |ε4m+j |+ + 32p 90 hl 4m+ 3p 4 max j { Lj ( 3p 4 )} 4∑ j=0 |ε4m+j |+R1 +R2 ≤ ≤ hc 4m∑ i=0 |εi|+ hc1 |ε4m+1|+ hc2 |ε4m+2|+ hc3 |ε4m+3|+ hc4 |ε4m+4| . Without lose of generality, let ‖εj‖∞ = maxj=1,2,3,4 |ε4m+j | = |ε4m+p| , then it is easy to get |ε4m+p| ≤ hc′ 4m+p−1∑ i=0 |εi|+ hc′′ |ε4m+p|+R1 +R2, (4.1) where c′ and c′′ are constants or equivalently ‖εj‖∞ ≤ hc′ 1− hc′′ 4m+p−1∑ i=0 |εi|+ R1 +R2 1− hc′′ . Then from the Gronwall inequality [8], we conclude that ‖εj‖∞ ≤ R1 +R2 1− hc′′ e c′ 1−hc′′ xn , which implies ‖εj‖∞ ≤ R1 +R2 1− hc′′ e c′ 1−hc′′ xn → as h→0 0. ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 THE BLOCK BY BLOCK METHOD WITH ROMBERG QUADRATURE FOR SOLVING . . . 927 For the functions k and f with at least sixth order derivatives, the orders for R1 and R2 will be at least O(h6) and so ‖εj‖ = O(h6). 5. Numerical results. In this section, some examples are given to illustrate convergence and error bound of the presented method. These examples have chosen from [9] and the results computed by programming in Maple 10. I. Equation with exponential nonlinearity f(x) +A x∫ a eλf(s)ds = Bx+ C, 0 ≤ x ≤ X, with the exact solution f(x) =  −1 λ ln[Aλ(x− a) + e−Cλ], B = 0, −1 λ ln [ A B + ( e−λf0 − A B ) eλB(a−x) ] , f0 = aB + C, B 6= 0. II. Equation with power-low nonlinearity f(x) +A x∫ a f2(s)ds = Bx+ C, 0 ≤ x ≤ X, with the exact solution f(x) =  K (K + fa)e 2AK(x−a) + fa −K (K + fa)e2AK(x−a) − fa +K , K = √ B A , fa = aB + C, AB > 0, C AC(x− a) + 1 , AB = 0, K tan [ AK(a− x) + arctan fa K ] , K = √ −B A , fa = aB + C, AB < 0. III. A linear equation with trigonometric kernel f(x)−A x∫ a cos (λx) cos (λs) f(s)ds = g(x), 0 ≤ x ≤ X, with the exact solution f(x) = g(x) +A x∫ a eA(x−s) cos (λx) cos (λs) g(s)ds. The results in Tables 1 – 5, show the absolute error |f(xi)− Fi|, for i = 1, 2, . . . , N, at the selected grid points, where f(xi) and Fi are the exact and corresponding approximate solutions at x = xi. ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 928 R. KATANI, S. SHAHMORAD In Tables 1 and 3 the results of the HPM [14], ADM [4] and block by block method are compared, where m denotes number of iterations for HPM and ADM and N denotes number of the mesh points for the block by block method. The results of Examples 1 and 2 (see Tables 1 and 3) show that the HPM and ADM behave worse than the presented method even in the interval [0, 1]. For the Example 1, HPM and ADM does not work respectively for more than 3 and 5 iterations (probably because of exponential nonlinearity). Table 3, shows that the above mentioned behavior occur again for the large intervals (sayX = 10) by the HPM and ADM, although it does not occur for [0, 1]. The last rows of Tables 1 – 5 compar the computing time for the HPM, ADM and block by block method which for the last one is less than two others, where programming for all methods have been done using Maple package. Remark 5.1. Let E(h) = Chq be error of the block by block method, where C and q are respectively a constant and order of the error, then q = ln(E(h)/C) ln(h) . By computing the order q from this formula for the reported errors in Tables 1 – 5, we conclude that q ≥ 6. This result confirms the claim that was stated in introduction and was proved in Section 4. For example, we get q = 7.68 in Table 2 for xi = 1 20 (X = 1, N = 20), error = 7.664e−10, h = 0.05, and q = 9 in Table 5 for xi = 10 (X = 10, N = 1000), error = 1.604e−18, h = 0.01. Table 1. Numerical results of example I (λ = 1/2, A = 4, B = 3, C = 1/8, a = 0) xi HPM ADM block by block X = 1 X = 10 X = 1 X = 10 X = 1 X = 10 N = 40 m = 3 m = 3 m = 5 m = 3 4X/N 9.037e−01 7.561e+00 2.725e−05 6.812e−01 9.709e−10 1.222e−04 8X/N 1.770e+00 4.875e+01 1.255e−05 1.158e+01 5.386e−10 3.729e−05 12X/N 2.621e+00 2.442e+01 1.275e−04 8.093e+01 5.840e−10 1.477e−05 16X/N 3.473e+00 1.131e+03 6.470e−04 4.047e+04 5.415e−10 7.495e−06 20X/N 4.341e+00 5.115e+03 2.252e−03 1.867e+03 2.286e−10 1.150e−05 24X/N 5.238e+00 2.298e+04 6.187e−03 8.439e+03 2.285e−09 1.848e−05 28X/N 6.180e+00 1.031e+05 1.446e−02 3.790e+04 2.105e−09 8.723e−04 32X/N 7.182e+00 4.620e+05 3.004e−02 1.699e+05 6.388e−10 7.938e−04 36X/N 8.265e+00 2.076e+06 5.706e−02 7.615e+05 5.781e−10 3.607e−04 X 9.459e+00 9.280e+06 1.010e−01 3.410e+06 5.781e−10 3.607e−04 time 1.703′′ 3.375′′ 172.921′′ 0.609′′ 1.078′′ ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 THE BLOCK BY BLOCK METHOD WITH ROMBERG QUADRATURE FOR SOLVING . . . 929 Table 2. Numerical results of example I (λ = 10, A = 1/10, B = 0, C = 1/100, a = 0) xi X = 1 X = 10 X = 30 N = 20 N = 60 N = 20 N = 60 N = 60 N = 100 X/N 7.664e−10 1.469e−12 3.907e−05 3.904e−07 3.907e−05 5.377e−06 2X/N 4.450e−10 8.644e−13 2.130e−05 2.194e−07 2.130e−05 2.961e−06 5X/N 5.842e−10 1.224e−12 5.199e−05 3.792e−07 5.199e−05 6.261e−06 7X/N 5.472e−10 1.199e−12 4.022e−05 3.203e−07 4.022e−05 5.023e−06 X/2 5.471e−11 1.966e−13 1.551e−05 1.956e−07 1.791e−05 6.662e−05 (N − 7)X/N 3.182e−10 2.498e−11 2.841e−05 1.693e−06 2.825e−04 2.686e−04 (N − 5)X/N 3.001e−10 2.453e−11 2.502e−05 1.624e−06 2.719e−04 2.631e−04 (N − 2)X/N 1.769e−10 1.342e−11 2.349e−06 1.888e−06 1.336e−04 5.289e−04 X 1.737e−10 1.317e−11 2.144e−06 1.806e−06 1.293e−04 5.188e−04 time 3.891′′ 5.343′′ 3.813′′ 6.297′′ 6.172′′ 8.188′′ Table 3. Numerical results of example II (A = 1/2, B = 2, C = 1, a = 0) xi HPM ADM block by block X = 1 X = 10 X = 1 X = 10 X = 1 X = 10 m = 10 m = 10 m = 9 m = 9 N = 60 N = 100 X/N 7.218e−05 3.128e−03 0 1.000e−09 4.518e−12 2.709e−07 5X/N 2.095e−03 1.666e−01 1.000e−09 3.000e−09 4.912e−13 3.524e−08 10X/N 9.995e−03 1.481e+00 2.000e−09 1.050e−05 3.559e−12 4.986e−08 15X/N 2.655e−02 8.021e+00 1.000e−09 1.431e−03 5.771e−12 1.492e−07 25X/N 1.002e−01 1.121e+70 1.000e−09 2.824e+67 4.888e−12 8.361e−08 X/2 1.666e−01 3.078e+340 4.000e−09 1.000e+320 2.543e−13 2.160e−06 (N − 25)X/N 2.606e−01 1.283e+507 1.900e−08 2.308e+491 6.600e−12 1.794e−06 (N − 15)X/N 5.631e−01 3.875e+559 4.030e−07 5.031e+551 7.977e−13 1.167e−06 (N − 10)X/N 7.924e−01 3.072e+583 1.431e−06 3.508e+576 1.561e−11 1.046e−06 (N − 5)X/N 1.092e+00 1.916e+606 4.510e−06 1.075e+600 8.741e−11 8.601e−07 X 1.481e+00 9.205e+627 1.050e−05 2.021e+622 4.768e−11 5.353e−06 time 75.235′′ 125.858′′ 24.609′′ 26.329′′ 0.329′′ 0.626′′ ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 930 R. KATANI, S. SHAHMORAD Table 4. Numerical results of example II (A = 1/10, B = 0, C = 1, a = 0) xi X = 1 X = 10 X = 30 N = 100 N = 1000 N = 100 N = 300 N = 100 N = 300 X/N 4.444e−18 4.494e−24 3.977e−12 5.922e−15 2.287e−09 3.977e−12 10X/N 2.430e−18 2.642e−24 9.448e−13 2.666e−15 1.938e−10 9.448e−13 20X/N 9.411e−20 9.993e−27 5.535e−13 3.706e−16 5.214e−10 5.535e−13 30X/N 2.033e−18 2.596e−24 9.575e−14 1.450e−15 1.104e−10 9.575e−14 40X/N 7.571e−20 9.316e−27 2.554e−13 1.929e−16 2.029e−09 2.554e−13 X/2 1.618e−18 3.712e−21 2.146e−11 1.875e−11 1.567e−07 1.065e−07 (N − 40)X/N 3.002e−19 2.375e−18 7.913e−12 2.938e−09 1.414e−08 6.862e−06 (N − 30)X/N 1.726e−18 2.850e−18 1.833e−10 1.923e−09 4.355e−07 2.524e−06 (N − 20)X/N 1.722e−20 3.420e−18 6.947e−11 3.895e−09 3.494e−09 5.948e−06 (N − 10)X/N 1.409e−18 3.370e−18 7.000e−10 7.443e−09 3.929e−07 1.345e−06 X 2.661e−18 4.031e−18 7.436e−09 5.407e−09 1.343e−05 6.929e−06 time 0.64′′ 6.484′′ 0.672′′ 2.046′′ 0.702′′ 2.046′′ Table 5. Numerical results of example III (A = 1/100, λ = 2, g(x) = cos (2x), a = 0) xi X = 1 X = 10 X = 30 N = 100 N = 1000 N = 100 N = 1000 N = 100 N = 1000 X/N 5.869e−17 1.291e−22 1.869e−09 5.869e−17 3.072e−06 3.463e−13 10X/N 5.887e−16 2.045e−23 1.576e−08 5.887e−16 4.132e−06 1.256e−12 20X/N 1.539e−18 5.205e−27 6.651e−11 1.539e−18 3.372e−07 5.532e−15 30X/N 1.864e−15 1.218e−22 1.821e−09 1.864e−15 1.773e−05 5.187e−12 40X/N 3.505e−18 1.728e−26 1.691e−11 3.505e−18 2.031e−07 1.527e−14 X/2 2.756e−15 7.623e−24 1.188e−09 1.744e−16 5.367e−07 6.250e−13 (N − 40)X/N 8.240e−18 1.132e−22 1.313e−10 4.937e−16 7.443e−08 2.100e−13 (N − 30)X/N 2.744e−15 3.420e−21 4.674e−10 1.904e−15 7.642e−07 5.577e−11 (N − 20)X/N 2.820e−18 1.370e−22 1.061e−10 1.711e−15 2.074e−07 2.430e−12 (N − 10)X/N 4.316e−15 3.410e−21 6.186e−09 2.209e−15 2.076e−06 2.528e−12 X 9.055e−18 2.221e−23 6.585e−11 1.604e−18 3.491e−06 1.080e−13 time 0.265′′ 3.077′′ 0.311′′ 3.765′′ 0.312′′ 3.844′′ ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7 THE BLOCK BY BLOCK METHOD WITH ROMBERG QUADRATURE FOR SOLVING . . . 931 6. Conclusion. In this paper, we presented a block by block method for solving Volterra integral equations on the large intervals with at least 6 order of convergence. The method can be improved by using accurate Romberg rule or even other suitable integration methods. Numerical results given in Tables 1 – 5 show high accuracy of the method. The last rows of these tables show that the computing time of the presented method is less than two other methods (HPM and ADM). 1. Al-Asdi A. S. The numerical solution of Hammerstion – Volterra-second kind- integral equations: M. Sci. Thesis. – Univ. Al-Mustansiriya, Iraq, 2002. 2. Delves L. M., Mohamed J. L. Computational methods for integral equations. – Cambridge Univ. Press, 1985. 3. Delves L. M., Walsh J. Numerical solution of integral equations. – Oxford: Clarendon Press, 1974. 4. El-Kalla I. L. Convergence of the Adomian method applied to a class of nonlinear integral equations // Appl. Math. Lett. – 2008. – 21. – P. 327 – 376. 5. Jumarhon B., Mckee S. On the heat equation with nonlinear and nonlocal boundary conditions // J. Math. Anal. and Appl. – 1995. – 190. – P. 806 – 820. 6. Katani R., Shahmorad S. Block by block method for the systems of nonlinear Volterra integral equations // Appl. Math. Modeling. – 2010. – 34. – P. 400 – 406. 7. Linz P. A method for solving nonlinear Volterra integral equations of the second kind // Courant Inst. Math. Sci. New York Univ. – 1968. – P. 505 – 599. 8. Linz P. Analytical and numerical methods for Volterra equations. – Siam Philadelphia, 1985. 9. Polyanin A. D., Manzhirov A. V. Handbook of integral equations. – CRC Press, 1998. 10. Pouzet P. Etude du vue deleur traitment numberique d’equation, integrales at integro-differentilles du type de Volterra pour des problemes de conditions initiales: Thesis. – Univ. Strassbourg, 1962. 11. Pouzet P. Method d’intergration numerique des equations integrales et integro-differentiells du type de Volterra de seconde espece, Formules de Runge-Kutts symposium on the numerical treatment of ordinary differential equations, Integral and integro-differential equations. – Basel: Birkhäser, 1960. – P. 362 – 368. 12. Saify S. A. A. Numerical methods for a system of linear Volterra integral equations: M. Sci. Thesis. – Univ. Technology, Iraq, 2005. 13. Young A. The application of approximate product-integration to the numerical solution of integral equations // Proc. Roy. Soc. London A. – 1954. – 224. – P. 561 – 573. 14. Yusufoǧlu (Agadjanov) E. A homotopy perturbation algorithm to solve a system of Fredholm-Volterra type integral equations // Math. Comput. Modelling. – 2008. – 47. – P. 1099 – 1107. Received 30.04.11 ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7